From 259a3c55a8a9bb9d59d5cf6a1cee2b03ab37c931 Mon Sep 17 00:00:00 2001
From: Walmes Zeviani <walmes@ufpr.br>
Date: Fri, 25 Mar 2016 16:57:23 -0300
Subject: [PATCH] Renomeia Tab -> Tb, Prod -> alt, salva sem aspas com \tab.

---
 R/ZimmermannTb3.2.1.R           |  13 +-
 R/ZimmermannTb4.11.R            |  20 +-
 data-raw/ZimmermannTab3.2.1.txt |  33 ---
 data-raw/ZimmermannTab4.11.txt  | 201 ----------------
 data-raw/ZimmermannTb3.2.1.txt  |   2 +-
 data-raw/ZimmermannTb4.11.txt   | 402 ++++++++++++++++----------------
 data/ZimmermannTab3.2.1.rda     | Bin 305 -> 0 bytes
 data/ZimmermannTab4.11.rda      | Bin 997 -> 0 bytes
 data/ZimmermannTb3.2.1.rda      | Bin 358 -> 357 bytes
 data/ZimmermannTb4.11.rda       | Bin 994 -> 865 bytes
 10 files changed, 219 insertions(+), 452 deletions(-)
 delete mode 100644 data-raw/ZimmermannTab3.2.1.txt
 delete mode 100644 data-raw/ZimmermannTab4.11.txt
 delete mode 100644 data/ZimmermannTab3.2.1.rda
 delete mode 100644 data/ZimmermannTab4.11.rda

diff --git a/R/ZimmermannTb3.2.1.R b/R/ZimmermannTb3.2.1.R
index 1e0715e..3091890 100644
--- a/R/ZimmermannTb3.2.1.R
+++ b/R/ZimmermannTb3.2.1.R
@@ -1,5 +1,5 @@
 #' @name ZimmermannTb3.2.1
-#' @title Estudo sobre adubação nitrogenada na cultura do arroz
+#' @title Adubação nitrogenada na Cultura do Arroz
 #' @description Dados de um experimento em DIC que visa estudar a
 #'     adubação nitrogenada no arroz irrigado, com 4 tratamentos e 8
 #'     repetições. A resposta observada foi a produção de grãos de arroz
@@ -8,8 +8,8 @@
 #'
 #' \describe{
 #'
-#' \item{\code{adub}}{Fator de níveis nominais. Indica a adubação aplicada ao
-#'      arroz irrigado.}
+#' \item{\code{adub}}{Fator de níveis nominais. Indica a adubação
+#'      aplicada ao arroz irrigado.}
 #'
 #' \item{\code{rept}}{Número inteiro que identifica as repetições de
 #'     cada tratamento.}
@@ -29,12 +29,13 @@
 #' data(ZimmermannTb3.2.1)
 #'
 #' str(ZimmermannTb3.2.1)
-#' unstack(x = ZimmermannTb3.2.1, form = prod ~ trat)
 #'
-#' aggregate(prod ~ trat, data = ZimmermannTb3.2.1,
+#' unstack(x = ZimmermannTb3.2.1, form = prod ~ adub)
+#'
+#' aggregate(prod ~ adub, data = ZimmermannTb3.2.1,
 #'           FUN = function(x) { c(mean = mean(x), var = var(x)) })
 #'
-#'  xyplot(prod ~ trat, data = ZimmermannTb3.2.1,
+#'  xyplot(prod ~ adub, data = ZimmermannTb3.2.1,
 #'         type = c("p", "a"), jitter.x = TRUE,
 #'         xlab = "Tratamentos",
 #'         ylab = expression(Produção~de~grãos~(kg~ha^{-1})))
diff --git a/R/ZimmermannTb4.11.R b/R/ZimmermannTb4.11.R
index 7774941..d06cbc2 100644
--- a/R/ZimmermannTb4.11.R
+++ b/R/ZimmermannTb4.11.R
@@ -1,8 +1,8 @@
 #' @name ZimmermannTb4.11
-#' @title Estudo sobre alturas médias de perfilhos
-#' @description Dados de um ensaio com dez tratamentos, quatro blocos e
-#'     cinco amostras, tomadas ao acaso, de alturas médias de perfilhos
-#'     em plantas, medidos em cm.
+#' @title Alturas Médias de Perfilhos
+#' @description Dados de um ensaio com dez genótipos, quatro blocos e
+#'     cinco amostras por parcela, tomadas ao acaso, das alturas dos
+#'     perfilhos, medidos em cm.
 #' @format Um \code{data.frame} com 200 observações e 4 variáveis
 #'
 #' \describe{
@@ -10,13 +10,13 @@
 #' \item{\code{geno}}{Fator de níveis nominais. Identifica o genótipo
 #'     da planta.}
 #'
-#' \item{\code{amostra}}{Fator de níveis numéricos. Identifica à qual
-#'     amostra pertence a observação.}
-#'
 #' \item{\code{bloco}}{Número inteiro que identifica o bloco da
 #'     observação.}
 #'
-#' \item{\code{prod}}{Altura média de perfilhos (cm).}
+#' \item{\code{amostra}}{Fator de níveis numéricos. Identifica à qual
+#'     amostra pertence a observação.}
+#'
+#' \item{\code{alt}}{Altura de perfilhos (cm).}
 #'
 #' }
 #' @keywords DBC
@@ -31,14 +31,14 @@
 #'
 #' str(ZimmermannTb4.11)
 #'
-#' xyplot(prod ~ geno, groups = bloco,
+#' xyplot(alt ~ geno, groups = bloco,
 #'        data = ZimmermannTb4.11,
 #'        type = c("p", "a"), jitter.x = TRUE,
 #'        xlab = "Tratamentos",
 #'        ylab = "Altura média de perfilhos (cm)",
 #'        scales=list(x=list(rot=90)))
 #'
-#' aggregate(prod ~ geno, data = ZimmermannTb4.11,
+#' aggregate(alt ~ geno, data = ZimmermannTb4.11,
 #'           FUN = function(x) { c(mean = mean(x), var = var(x)) })
 #'
 NULL
diff --git a/data-raw/ZimmermannTab3.2.1.txt b/data-raw/ZimmermannTab3.2.1.txt
deleted file mode 100644
index 8f35e67..0000000
--- a/data-raw/ZimmermannTab3.2.1.txt
+++ /dev/null
@@ -1,33 +0,0 @@
-"adub" "rep" "prod"
-1 1 6276
-2 1 7199
-3 1 6457
-4 1 7202
-1 2 6035
-2 2 6890
-3 2 6174
-4 2 7173
-1 3 6086
-2 3 6586
-3 3 6612
-4 3 7169
-1 4 5594
-2 4 7149
-3 4 6087
-4 4 6590
-1 5 6321
-2 5 6657
-3 5 5797
-4 5 6444
-1 6 6746
-2 6 6210
-3 6 5865
-4 6 6740
-1 7 5751
-2 7 6128
-3 7 6498
-4 7 6370
-1 8 6191
-2 8 6393
-3 8 6486
-4 8 7270
diff --git a/data-raw/ZimmermannTab4.11.txt b/data-raw/ZimmermannTab4.11.txt
deleted file mode 100644
index fddec34..0000000
--- a/data-raw/ZimmermannTab4.11.txt
+++ /dev/null
@@ -1,201 +0,0 @@
-"geno" "amostra" "bloco" "prod"
-"BG 90 2" "1" "1" "93"
-"CNAi 9920" "1" "1" "95"
-"CNAi 9922" "1" "1" "90"
-"CNAi 9924" "1" "1" "90"
-"CNAi 9926" "1" "1" "84"
-"CNAi 9928" "1" "1" "94"
-"CNAi 9930" "1" "1" "95"
-"CNAi 9932" "1" "1" "90"
-"CNAi 9934" "1" "1" "92"
-"CNAi 9936" "1" "1" "102"
-"BG 90 2" "2" "1" "95"
-"CNAi 9920" "2" "1" "93"
-"CNAi 9922" "2" "1" "101"
-"CNAi 9924" "2" "1" "94"
-"CNAi 9926" "2" "1" "93"
-"CNAi 9928" "2" "1" "95"
-"CNAi 9930" "2" "1" "90"
-"CNAi 9932" "2" "1" "97"
-"CNAi 9934" "2" "1" "95"
-"CNAi 9936" "2" "1" "97"
-"BG 90 2" "3" "1" "96"
-"CNAi 9920" "3" "1" "89"
-"CNAi 9922" "3" "1" "92"
-"CNAi 9924" "3" "1" "99"
-"CNAi 9926" "3" "1" "109"
-"CNAi 9928" "3" "1" "93"
-"CNAi 9930" "3" "1" "95"
-"CNAi 9932" "3" "1" "93"
-"CNAi 9934" "3" "1" "91"
-"CNAi 9936" "3" "1" "93"
-"BG 90 2" "4" "1" "98"
-"CNAi 9920" "4" "1" "91"
-"CNAi 9922" "4" "1" "102"
-"CNAi 9924" "4" "1" "92"
-"CNAi 9926" "4" "1" "95"
-"CNAi 9928" "4" "1" "100"
-"CNAi 9930" "4" "1" "92"
-"CNAi 9932" "4" "1" "100"
-"CNAi 9934" "4" "1" "95"
-"CNAi 9936" "4" "1" "98"
-"BG 90 2" "5" "1" "100"
-"CNAi 9920" "5" "1" "93"
-"CNAi 9922" "5" "1" "103"
-"CNAi 9924" "5" "1" "95"
-"CNAi 9926" "5" "1" "94"
-"CNAi 9928" "5" "1" "93"
-"CNAi 9930" "5" "1" "92"
-"CNAi 9932" "5" "1" "102"
-"CNAi 9934" "5" "1" "95"
-"CNAi 9936" "5" "1" "97"
-"BG 90 2" "1" "2" "95"
-"CNAi 9920" "1" "2" "94"
-"CNAi 9922" "1" "2" "95"
-"CNAi 9924" "1" "2" "96"
-"CNAi 9926" "1" "2" "109"
-"CNAi 9928" "1" "2" "100"
-"CNAi 9930" "1" "2" "99"
-"CNAi 9932" "1" "2" "95"
-"CNAi 9934" "1" "2" "95"
-"CNAi 9936" "1" "2" "95"
-"BG 90 2" "2" "2" "99"
-"CNAi 9920" "2" "2" "94"
-"CNAi 9922" "2" "2" "96"
-"CNAi 9924" "2" "2" "100"
-"CNAi 9926" "2" "2" "99"
-"CNAi 9928" "2" "2" "105"
-"CNAi 9930" "2" "2" "100"
-"CNAi 9932" "2" "2" "95"
-"CNAi 9934" "2" "2" "101"
-"CNAi 9936" "2" "2" "97"
-"BG 90 2" "3" "2" "90"
-"CNAi 9920" "3" "2" "90"
-"CNAi 9922" "3" "2" "90"
-"CNAi 9924" "3" "2" "100"
-"CNAi 9926" "3" "2" "89"
-"CNAi 9928" "3" "2" "97"
-"CNAi 9930" "3" "2" "101"
-"CNAi 9932" "3" "2" "95"
-"CNAi 9934" "3" "2" "98"
-"CNAi 9936" "3" "2" "98"
-"BG 90 2" "4" "2" "92"
-"CNAi 9920" "4" "2" "86"
-"CNAi 9922" "4" "2" "96"
-"CNAi 9924" "4" "2" "100"
-"CNAi 9926" "4" "2" "95"
-"CNAi 9928" "4" "2" "100"
-"CNAi 9930" "4" "2" "102"
-"CNAi 9932" "4" "2" "94"
-"CNAi 9934" "4" "2" "94"
-"CNAi 9936" "4" "2" "105"
-"BG 90 2" "5" "2" "98"
-"CNAi 9920" "5" "2" "90"
-"CNAi 9922" "5" "2" "97"
-"CNAi 9924" "5" "2" "103"
-"CNAi 9926" "5" "2" "98"
-"CNAi 9928" "5" "2" "100"
-"CNAi 9930" "5" "2" "97"
-"CNAi 9932" "5" "2" "95"
-"CNAi 9934" "5" "2" "100"
-"CNAi 9936" "5" "2" "100"
-"BG 90 2" "1" "3" "100"
-"CNAi 9920" "1" "3" "98"
-"CNAi 9922" "1" "3" "93"
-"CNAi 9924" "1" "3" "99"
-"CNAi 9926" "1" "3" "99"
-"CNAi 9928" "1" "3" "97"
-"CNAi 9930" "1" "3" "92"
-"CNAi 9932" "1" "3" "98"
-"CNAi 9934" "1" "3" "92"
-"CNAi 9936" "1" "3" "94"
-"BG 90 2" "2" "3" "106"
-"CNAi 9920" "2" "3" "90"
-"CNAi 9922" "2" "3" "95"
-"CNAi 9924" "2" "3" "98"
-"CNAi 9926" "2" "3" "95"
-"CNAi 9928" "2" "3" "97"
-"CNAi 9930" "2" "3" "93"
-"CNAi 9932" "2" "3" "96"
-"CNAi 9934" "2" "3" "93"
-"CNAi 9936" "2" "3" "94"
-"BG 90 2" "3" "3" "98"
-"CNAi 9920" "3" "3" "85"
-"CNAi 9922" "3" "3" "100"
-"CNAi 9924" "3" "3" "99"
-"CNAi 9926" "3" "3" "100"
-"CNAi 9928" "3" "3" "95"
-"CNAi 9930" "3" "3" "91"
-"CNAi 9932" "3" "3" "97"
-"CNAi 9934" "3" "3" "95"
-"CNAi 9936" "3" "3" "99"
-"BG 90 2" "4" "3" "100"
-"CNAi 9920" "4" "3" "90"
-"CNAi 9922" "4" "3" "95"
-"CNAi 9924" "4" "3" "97"
-"CNAi 9926" "4" "3" "95"
-"CNAi 9928" "4" "3" "94"
-"CNAi 9930" "4" "3" "91"
-"CNAi 9932" "4" "3" "100"
-"CNAi 9934" "4" "3" "98"
-"CNAi 9936" "4" "3" "97"
-"BG 90 2" "5" "3" "105"
-"CNAi 9920" "5" "3" "82"
-"CNAi 9922" "5" "3" "94"
-"CNAi 9924" "5" "3" "94"
-"CNAi 9926" "5" "3" "85"
-"CNAi 9928" "5" "3" "92"
-"CNAi 9930" "5" "3" "92"
-"CNAi 9932" "5" "3" "97"
-"CNAi 9934" "5" "3" "92"
-"CNAi 9936" "5" "3" "97"
-"BG 90 2" "1" "4" "95"
-"CNAi 9920" "1" "4" "93"
-"CNAi 9922" "1" "4" "90"
-"CNAi 9924" "1" "4" "93"
-"CNAi 9926" "1" "4" "90"
-"CNAi 9928" "1" "4" "97"
-"CNAi 9930" "1" "4" "94"
-"CNAi 9932" "1" "4" "93"
-"CNAi 9934" "1" "4" "96"
-"CNAi 9936" "1" "4" "95"
-"BG 90 2" "2" "4" "92"
-"CNAi 9920" "2" "4" "90"
-"CNAi 9922" "2" "4" "90"
-"CNAi 9924" "2" "4" "89"
-"CNAi 9926" "2" "4" "99"
-"CNAi 9928" "2" "4" "93"
-"CNAi 9930" "2" "4" "85"
-"CNAi 9932" "2" "4" "90"
-"CNAi 9934" "2" "4" "90"
-"CNAi 9936" "2" "4" "99"
-"BG 90 2" "3" "4" "94"
-"CNAi 9920" "3" "4" "90"
-"CNAi 9922" "3" "4" "90"
-"CNAi 9924" "3" "4" "95"
-"CNAi 9926" "3" "4" "95"
-"CNAi 9928" "3" "4" "90"
-"CNAi 9930" "3" "4" "90"
-"CNAi 9932" "3" "4" "94"
-"CNAi 9934" "3" "4" "86"
-"CNAi 9936" "3" "4" "96"
-"BG 90 2" "4" "4" "89"
-"CNAi 9920" "4" "4" "90"
-"CNAi 9922" "4" "4" "90"
-"CNAi 9924" "4" "4" "95"
-"CNAi 9926" "4" "4" "90"
-"CNAi 9928" "4" "4" "92"
-"CNAi 9930" "4" "4" "102"
-"CNAi 9932" "4" "4" "99"
-"CNAi 9934" "4" "4" "95"
-"CNAi 9936" "4" "4" "93"
-"BG 90 2" "5" "4" "94"
-"CNAi 9920" "5" "4" "78"
-"CNAi 9922" "5" "4" "95"
-"CNAi 9924" "5" "4" "105"
-"CNAi 9926" "5" "4" "100"
-"CNAi 9928" "5" "4" "85"
-"CNAi 9930" "5" "4" "102"
-"CNAi 9932" "5" "4" "99"
-"CNAi 9934" "5" "4" "90"
-"CNAi 9936" "5" "4" "94"
diff --git a/data-raw/ZimmermannTb3.2.1.txt b/data-raw/ZimmermannTb3.2.1.txt
index 52a4806..75bd59d 100644
--- a/data-raw/ZimmermannTb3.2.1.txt
+++ b/data-raw/ZimmermannTb3.2.1.txt
@@ -1,4 +1,4 @@
-trat	rept	prod
+adub	rep	prod
 1	1	6276
 2	1	7199
 3	1	6457
diff --git a/data-raw/ZimmermannTb4.11.txt b/data-raw/ZimmermannTb4.11.txt
index fddec34..29b677a 100644
--- a/data-raw/ZimmermannTb4.11.txt
+++ b/data-raw/ZimmermannTb4.11.txt
@@ -1,201 +1,201 @@
-"geno" "amostra" "bloco" "prod"
-"BG 90 2" "1" "1" "93"
-"CNAi 9920" "1" "1" "95"
-"CNAi 9922" "1" "1" "90"
-"CNAi 9924" "1" "1" "90"
-"CNAi 9926" "1" "1" "84"
-"CNAi 9928" "1" "1" "94"
-"CNAi 9930" "1" "1" "95"
-"CNAi 9932" "1" "1" "90"
-"CNAi 9934" "1" "1" "92"
-"CNAi 9936" "1" "1" "102"
-"BG 90 2" "2" "1" "95"
-"CNAi 9920" "2" "1" "93"
-"CNAi 9922" "2" "1" "101"
-"CNAi 9924" "2" "1" "94"
-"CNAi 9926" "2" "1" "93"
-"CNAi 9928" "2" "1" "95"
-"CNAi 9930" "2" "1" "90"
-"CNAi 9932" "2" "1" "97"
-"CNAi 9934" "2" "1" "95"
-"CNAi 9936" "2" "1" "97"
-"BG 90 2" "3" "1" "96"
-"CNAi 9920" "3" "1" "89"
-"CNAi 9922" "3" "1" "92"
-"CNAi 9924" "3" "1" "99"
-"CNAi 9926" "3" "1" "109"
-"CNAi 9928" "3" "1" "93"
-"CNAi 9930" "3" "1" "95"
-"CNAi 9932" "3" "1" "93"
-"CNAi 9934" "3" "1" "91"
-"CNAi 9936" "3" "1" "93"
-"BG 90 2" "4" "1" "98"
-"CNAi 9920" "4" "1" "91"
-"CNAi 9922" "4" "1" "102"
-"CNAi 9924" "4" "1" "92"
-"CNAi 9926" "4" "1" "95"
-"CNAi 9928" "4" "1" "100"
-"CNAi 9930" "4" "1" "92"
-"CNAi 9932" "4" "1" "100"
-"CNAi 9934" "4" "1" "95"
-"CNAi 9936" "4" "1" "98"
-"BG 90 2" "5" "1" "100"
-"CNAi 9920" "5" "1" "93"
-"CNAi 9922" "5" "1" "103"
-"CNAi 9924" "5" "1" "95"
-"CNAi 9926" "5" "1" "94"
-"CNAi 9928" "5" "1" "93"
-"CNAi 9930" "5" "1" "92"
-"CNAi 9932" "5" "1" "102"
-"CNAi 9934" "5" "1" "95"
-"CNAi 9936" "5" "1" "97"
-"BG 90 2" "1" "2" "95"
-"CNAi 9920" "1" "2" "94"
-"CNAi 9922" "1" "2" "95"
-"CNAi 9924" "1" "2" "96"
-"CNAi 9926" "1" "2" "109"
-"CNAi 9928" "1" "2" "100"
-"CNAi 9930" "1" "2" "99"
-"CNAi 9932" "1" "2" "95"
-"CNAi 9934" "1" "2" "95"
-"CNAi 9936" "1" "2" "95"
-"BG 90 2" "2" "2" "99"
-"CNAi 9920" "2" "2" "94"
-"CNAi 9922" "2" "2" "96"
-"CNAi 9924" "2" "2" "100"
-"CNAi 9926" "2" "2" "99"
-"CNAi 9928" "2" "2" "105"
-"CNAi 9930" "2" "2" "100"
-"CNAi 9932" "2" "2" "95"
-"CNAi 9934" "2" "2" "101"
-"CNAi 9936" "2" "2" "97"
-"BG 90 2" "3" "2" "90"
-"CNAi 9920" "3" "2" "90"
-"CNAi 9922" "3" "2" "90"
-"CNAi 9924" "3" "2" "100"
-"CNAi 9926" "3" "2" "89"
-"CNAi 9928" "3" "2" "97"
-"CNAi 9930" "3" "2" "101"
-"CNAi 9932" "3" "2" "95"
-"CNAi 9934" "3" "2" "98"
-"CNAi 9936" "3" "2" "98"
-"BG 90 2" "4" "2" "92"
-"CNAi 9920" "4" "2" "86"
-"CNAi 9922" "4" "2" "96"
-"CNAi 9924" "4" "2" "100"
-"CNAi 9926" "4" "2" "95"
-"CNAi 9928" "4" "2" "100"
-"CNAi 9930" "4" "2" "102"
-"CNAi 9932" "4" "2" "94"
-"CNAi 9934" "4" "2" "94"
-"CNAi 9936" "4" "2" "105"
-"BG 90 2" "5" "2" "98"
-"CNAi 9920" "5" "2" "90"
-"CNAi 9922" "5" "2" "97"
-"CNAi 9924" "5" "2" "103"
-"CNAi 9926" "5" "2" "98"
-"CNAi 9928" "5" "2" "100"
-"CNAi 9930" "5" "2" "97"
-"CNAi 9932" "5" "2" "95"
-"CNAi 9934" "5" "2" "100"
-"CNAi 9936" "5" "2" "100"
-"BG 90 2" "1" "3" "100"
-"CNAi 9920" "1" "3" "98"
-"CNAi 9922" "1" "3" "93"
-"CNAi 9924" "1" "3" "99"
-"CNAi 9926" "1" "3" "99"
-"CNAi 9928" "1" "3" "97"
-"CNAi 9930" "1" "3" "92"
-"CNAi 9932" "1" "3" "98"
-"CNAi 9934" "1" "3" "92"
-"CNAi 9936" "1" "3" "94"
-"BG 90 2" "2" "3" "106"
-"CNAi 9920" "2" "3" "90"
-"CNAi 9922" "2" "3" "95"
-"CNAi 9924" "2" "3" "98"
-"CNAi 9926" "2" "3" "95"
-"CNAi 9928" "2" "3" "97"
-"CNAi 9930" "2" "3" "93"
-"CNAi 9932" "2" "3" "96"
-"CNAi 9934" "2" "3" "93"
-"CNAi 9936" "2" "3" "94"
-"BG 90 2" "3" "3" "98"
-"CNAi 9920" "3" "3" "85"
-"CNAi 9922" "3" "3" "100"
-"CNAi 9924" "3" "3" "99"
-"CNAi 9926" "3" "3" "100"
-"CNAi 9928" "3" "3" "95"
-"CNAi 9930" "3" "3" "91"
-"CNAi 9932" "3" "3" "97"
-"CNAi 9934" "3" "3" "95"
-"CNAi 9936" "3" "3" "99"
-"BG 90 2" "4" "3" "100"
-"CNAi 9920" "4" "3" "90"
-"CNAi 9922" "4" "3" "95"
-"CNAi 9924" "4" "3" "97"
-"CNAi 9926" "4" "3" "95"
-"CNAi 9928" "4" "3" "94"
-"CNAi 9930" "4" "3" "91"
-"CNAi 9932" "4" "3" "100"
-"CNAi 9934" "4" "3" "98"
-"CNAi 9936" "4" "3" "97"
-"BG 90 2" "5" "3" "105"
-"CNAi 9920" "5" "3" "82"
-"CNAi 9922" "5" "3" "94"
-"CNAi 9924" "5" "3" "94"
-"CNAi 9926" "5" "3" "85"
-"CNAi 9928" "5" "3" "92"
-"CNAi 9930" "5" "3" "92"
-"CNAi 9932" "5" "3" "97"
-"CNAi 9934" "5" "3" "92"
-"CNAi 9936" "5" "3" "97"
-"BG 90 2" "1" "4" "95"
-"CNAi 9920" "1" "4" "93"
-"CNAi 9922" "1" "4" "90"
-"CNAi 9924" "1" "4" "93"
-"CNAi 9926" "1" "4" "90"
-"CNAi 9928" "1" "4" "97"
-"CNAi 9930" "1" "4" "94"
-"CNAi 9932" "1" "4" "93"
-"CNAi 9934" "1" "4" "96"
-"CNAi 9936" "1" "4" "95"
-"BG 90 2" "2" "4" "92"
-"CNAi 9920" "2" "4" "90"
-"CNAi 9922" "2" "4" "90"
-"CNAi 9924" "2" "4" "89"
-"CNAi 9926" "2" "4" "99"
-"CNAi 9928" "2" "4" "93"
-"CNAi 9930" "2" "4" "85"
-"CNAi 9932" "2" "4" "90"
-"CNAi 9934" "2" "4" "90"
-"CNAi 9936" "2" "4" "99"
-"BG 90 2" "3" "4" "94"
-"CNAi 9920" "3" "4" "90"
-"CNAi 9922" "3" "4" "90"
-"CNAi 9924" "3" "4" "95"
-"CNAi 9926" "3" "4" "95"
-"CNAi 9928" "3" "4" "90"
-"CNAi 9930" "3" "4" "90"
-"CNAi 9932" "3" "4" "94"
-"CNAi 9934" "3" "4" "86"
-"CNAi 9936" "3" "4" "96"
-"BG 90 2" "4" "4" "89"
-"CNAi 9920" "4" "4" "90"
-"CNAi 9922" "4" "4" "90"
-"CNAi 9924" "4" "4" "95"
-"CNAi 9926" "4" "4" "90"
-"CNAi 9928" "4" "4" "92"
-"CNAi 9930" "4" "4" "102"
-"CNAi 9932" "4" "4" "99"
-"CNAi 9934" "4" "4" "95"
-"CNAi 9936" "4" "4" "93"
-"BG 90 2" "5" "4" "94"
-"CNAi 9920" "5" "4" "78"
-"CNAi 9922" "5" "4" "95"
-"CNAi 9924" "5" "4" "105"
-"CNAi 9926" "5" "4" "100"
-"CNAi 9928" "5" "4" "85"
-"CNAi 9930" "5" "4" "102"
-"CNAi 9932" "5" "4" "99"
-"CNAi 9934" "5" "4" "90"
-"CNAi 9936" "5" "4" "94"
+geno	bloco	amostra	alt
+BG 90 2	1	1	93
+CNAi 9920	1	1	95
+CNAi 9922	1	1	90
+CNAi 9924	1	1	90
+CNAi 9926	1	1	84
+CNAi 9928	1	1	94
+CNAi 9930	1	1	95
+CNAi 9932	1	1	90
+CNAi 9934	1	1	92
+CNAi 9936	1	1	102
+BG 90 2	1	2	95
+CNAi 9920	1	2	93
+CNAi 9922	1	2	101
+CNAi 9924	1	2	94
+CNAi 9926	1	2	93
+CNAi 9928	1	2	95
+CNAi 9930	1	2	90
+CNAi 9932	1	2	97
+CNAi 9934	1	2	95
+CNAi 9936	1	2	97
+BG 90 2	1	3	96
+CNAi 9920	1	3	89
+CNAi 9922	1	3	92
+CNAi 9924	1	3	99
+CNAi 9926	1	3	109
+CNAi 9928	1	3	93
+CNAi 9930	1	3	95
+CNAi 9932	1	3	93
+CNAi 9934	1	3	91
+CNAi 9936	1	3	93
+BG 90 2	1	4	98
+CNAi 9920	1	4	91
+CNAi 9922	1	4	102
+CNAi 9924	1	4	92
+CNAi 9926	1	4	95
+CNAi 9928	1	4	100
+CNAi 9930	1	4	92
+CNAi 9932	1	4	100
+CNAi 9934	1	4	95
+CNAi 9936	1	4	98
+BG 90 2	1	5	100
+CNAi 9920	1	5	93
+CNAi 9922	1	5	103
+CNAi 9924	1	5	95
+CNAi 9926	1	5	94
+CNAi 9928	1	5	93
+CNAi 9930	1	5	92
+CNAi 9932	1	5	102
+CNAi 9934	1	5	95
+CNAi 9936	1	5	97
+BG 90 2	2	1	95
+CNAi 9920	2	1	94
+CNAi 9922	2	1	95
+CNAi 9924	2	1	96
+CNAi 9926	2	1	109
+CNAi 9928	2	1	100
+CNAi 9930	2	1	99
+CNAi 9932	2	1	95
+CNAi 9934	2	1	95
+CNAi 9936	2	1	95
+BG 90 2	2	2	99
+CNAi 9920	2	2	94
+CNAi 9922	2	2	96
+CNAi 9924	2	2	100
+CNAi 9926	2	2	99
+CNAi 9928	2	2	105
+CNAi 9930	2	2	100
+CNAi 9932	2	2	95
+CNAi 9934	2	2	101
+CNAi 9936	2	2	97
+BG 90 2	2	3	90
+CNAi 9920	2	3	90
+CNAi 9922	2	3	90
+CNAi 9924	2	3	100
+CNAi 9926	2	3	89
+CNAi 9928	2	3	97
+CNAi 9930	2	3	101
+CNAi 9932	2	3	95
+CNAi 9934	2	3	98
+CNAi 9936	2	3	98
+BG 90 2	2	4	92
+CNAi 9920	2	4	86
+CNAi 9922	2	4	96
+CNAi 9924	2	4	100
+CNAi 9926	2	4	95
+CNAi 9928	2	4	100
+CNAi 9930	2	4	102
+CNAi 9932	2	4	94
+CNAi 9934	2	4	94
+CNAi 9936	2	4	105
+BG 90 2	2	5	98
+CNAi 9920	2	5	90
+CNAi 9922	2	5	97
+CNAi 9924	2	5	103
+CNAi 9926	2	5	98
+CNAi 9928	2	5	100
+CNAi 9930	2	5	97
+CNAi 9932	2	5	95
+CNAi 9934	2	5	100
+CNAi 9936	2	5	100
+BG 90 2	3	1	100
+CNAi 9920	3	1	98
+CNAi 9922	3	1	93
+CNAi 9924	3	1	99
+CNAi 9926	3	1	99
+CNAi 9928	3	1	97
+CNAi 9930	3	1	92
+CNAi 9932	3	1	98
+CNAi 9934	3	1	92
+CNAi 9936	3	1	94
+BG 90 2	3	2	106
+CNAi 9920	3	2	90
+CNAi 9922	3	2	95
+CNAi 9924	3	2	98
+CNAi 9926	3	2	95
+CNAi 9928	3	2	97
+CNAi 9930	3	2	93
+CNAi 9932	3	2	96
+CNAi 9934	3	2	93
+CNAi 9936	3	2	94
+BG 90 2	3	3	98
+CNAi 9920	3	3	85
+CNAi 9922	3	3	100
+CNAi 9924	3	3	99
+CNAi 9926	3	3	100
+CNAi 9928	3	3	95
+CNAi 9930	3	3	91
+CNAi 9932	3	3	97
+CNAi 9934	3	3	95
+CNAi 9936	3	3	99
+BG 90 2	3	4	100
+CNAi 9920	3	4	90
+CNAi 9922	3	4	95
+CNAi 9924	3	4	97
+CNAi 9926	3	4	95
+CNAi 9928	3	4	94
+CNAi 9930	3	4	91
+CNAi 9932	3	4	100
+CNAi 9934	3	4	98
+CNAi 9936	3	4	97
+BG 90 2	3	5	105
+CNAi 9920	3	5	82
+CNAi 9922	3	5	94
+CNAi 9924	3	5	94
+CNAi 9926	3	5	85
+CNAi 9928	3	5	92
+CNAi 9930	3	5	92
+CNAi 9932	3	5	97
+CNAi 9934	3	5	92
+CNAi 9936	3	5	97
+BG 90 2	4	1	95
+CNAi 9920	4	1	93
+CNAi 9922	4	1	90
+CNAi 9924	4	1	93
+CNAi 9926	4	1	90
+CNAi 9928	4	1	97
+CNAi 9930	4	1	94
+CNAi 9932	4	1	93
+CNAi 9934	4	1	96
+CNAi 9936	4	1	95
+BG 90 2	4	2	92
+CNAi 9920	4	2	90
+CNAi 9922	4	2	90
+CNAi 9924	4	2	89
+CNAi 9926	4	2	99
+CNAi 9928	4	2	93
+CNAi 9930	4	2	85
+CNAi 9932	4	2	90
+CNAi 9934	4	2	90
+CNAi 9936	4	2	99
+BG 90 2	4	3	94
+CNAi 9920	4	3	90
+CNAi 9922	4	3	90
+CNAi 9924	4	3	95
+CNAi 9926	4	3	95
+CNAi 9928	4	3	90
+CNAi 9930	4	3	90
+CNAi 9932	4	3	94
+CNAi 9934	4	3	86
+CNAi 9936	4	3	96
+BG 90 2	4	4	89
+CNAi 9920	4	4	90
+CNAi 9922	4	4	90
+CNAi 9924	4	4	95
+CNAi 9926	4	4	90
+CNAi 9928	4	4	92
+CNAi 9930	4	4	102
+CNAi 9932	4	4	99
+CNAi 9934	4	4	95
+CNAi 9936	4	4	93
+BG 90 2	4	5	94
+CNAi 9920	4	5	78
+CNAi 9922	4	5	95
+CNAi 9924	4	5	105
+CNAi 9926	4	5	100
+CNAi 9928	4	5	85
+CNAi 9930	4	5	102
+CNAi 9932	4	5	99
+CNAi 9934	4	5	90
+CNAi 9936	4	5	94
diff --git a/data/ZimmermannTab3.2.1.rda b/data/ZimmermannTab3.2.1.rda
deleted file mode 100644
index b3103632e930b85fb482569b76b5df6d3bc801cb..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 305
zcmV-10nYv(iwFP!000000}FDAFye~fVqjokVqj)sW&k1v1{NkD!N|bEzzL*<qB3)H
zQ;TvF^YTIxlZ^F@^b8pon1z8dAf<djtYH6v0Sp`%pfm@R7J$&hU7i6g9B|Qa{kUij
z0<-`DT7&>CL4cMaKr7&<8KB|du%iVczDFKH@3e&Sl_2!?$q;(iD+s+q4l2(Il|Kg6
zw+l*Nfyy&N=&iRP^zOG%^~a&=_Cd|t2sIz7e%n&0ybe@63aZWtD*qBH9s=c;L(TmF
z)t3ZS{|HL!L+PJT`7o&a(xAbBl7m?D5_40FfeZl#P^N(hvLvRICPCTEMX3ca;ew+4
z6g2&uMfv4=Ff(|8n5h9`ivqeu$vKI|FpFS<Tq%hqiF#>8K>a}8KM)20gxC?`^#cF^
DMWTfL

diff --git a/data/ZimmermannTab4.11.rda b/data/ZimmermannTab4.11.rda
deleted file mode 100644
index 52b314fdd35e4505ba9fc5d63ffed10812397739..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 997
zcmV<B0~-7viwFP!000001MSy`a~nkzz~NQ1V+-4oWyzt&^w5lo+tE`X)BquX2~~FF
zU{DFNN$4%~gx-4(z4zYRKNa|0^xkQ89%e2xFyk3K<IneQZ|~ji?Y;AP&C2n7=Xj?v
zCTt?%h~dYWXqaCi6Ez)dlk27{l~TP@tX9`f3=QUTIb$Lzw-?(kwtwvG>?WY0(QaaB
zLpv71P1L#2Z=v7+vtLU=wUtYoO63`%1me=#zI@eylO4#*ZpVt%%cch$C!h5<%;_=Y
zZy516jQJW0{-gze(t<x}L6b&j>&02$jAE1J;*3tno90w;a<*0{+TnXq1Q8A>5>Pat
zSU?N&SeVCuFb}t^!he}YCACQ<g>o8bnT84)Xq|?J^*vIo)MlvBMy`nF`gf{wz6-j#
z^Ig!VZ@vp!9rIjERmOIqDq|Dn+GK5)N-+ud>$+RGUm3ktTS9JaO8SQ7xP4w)Vt3nz
zE;+B?G`>ud*7-fM%}5-PzA4ivsf27((kCSSqtd3=w#SvWj-_M_?Q(9vw5fjS*JmA%
zS=S6pzHUoM=9HG>I<}0AV>c_G&Lbk%>6QE$>t02zxuvahR7U35FVb=yy`G!1P4ekj
z^gbkIEJ^9-9*bLZ)iL&1*VguKGxvV>SYt}dTso||#brzhYn*z1QgZ4xZLMFQ^hsFv
zxl6{9l)T!mYo`0Umb%|-twEQspZyH$v!M58k?iaG$E|*nx1|&pOC?2e*=#e+HN$)}
zEHuO6W;oIe9SOsu`nen)%X`s~7Y%#Sh!=V1I$1Bud6AdJDR_~W&++m(UOs2ki@dQo
zdX4DDdTo7>S4!(AdbL<7%}DpCrrJ=d*8JZMEpM(lm-G^L)N7juHL1S5g8a)Amxn_i
zj2;=3J_P#0a39W$EdFBbjy<p^_QKxS2TL%3eX$?*#{oDH2jO5W#UVHphv9G>fk7OJ
zEON-BfFTTH1fv*(gQIXXj=`}w4#(pJEW>iFz)GBmlduXW;}o2V({MV@z-pX{vv4-n
z;2f;Qxi}B!V;mP?9WKO0xEPn<Qd|bU_{;<*!D5*brmz8*V;WcBN|aGS75sTJ8*vrf
zC&yh+{=qX>V-q&x8eEI(a6N9ojkpOn;}+bC+pq<<;||=3yKpz|!M)guZMYBj;{iN~
zhwv~S!J~K#kK+kEiKp;1p24$t4$tESyoi_ZGG4)}cn#a}I^MvWcnfdi9lVS8@IF4k
zhxiB|;}d*}&+s|Ez?b+6U*j8mi|_C~e!!3T2|wc({EFZ3yJ^(MpZ`#^o$HIU#lfjM
TrDS&2t=aK6gl=t1l@kB}7ZU!`

diff --git a/data/ZimmermannTb3.2.1.rda b/data/ZimmermannTb3.2.1.rda
index 363b07ec29191623306824f24eff46e21d5f3959..1edd0a427b68250a850e1d08c317ae49348ab6ee 100644
GIT binary patch
literal 357
zcmV-r0h<0oT4*^jL0KkKS^wx83jhI^fB*k;Y(>xoydcy76;MAX-+)8_2mk^ABmDt@
z1P~B1Kq0UJEEdC5AZ<o~00vD1BR~KEGBotkdVv#Cexexw7)>-902&w|0009(kwi>T
z(?OsB0LWwjJwSSapbUtviqunoYvyIvmg!{Yc*St{{G9B&n_IE~wgUiR0iZDfb$4_G
z3u#&>V|(FkB&`9#07~SbaZMs7xCC4Xv3lQl85%hY)lE7;Dmq|_?FBgXM<t*U7Lo~A
zf)%OkyM=o(DZx%8(pWd3AW=gBva>=AHVAA23{tdbgGp710$0^2K@os2>7Wu$$lspF
zr8HHHV!{~?i#5W)G?5}iSP%)fN_Vm@<QCq&QBnexRSoG{rk0T(Q6wWOTJ9PH3B@8I
z`LSe@35-ed)2LSP9MH~4CQvV_S7rh__!z-VK)@se0UpofFa)<%pYeAjQ-ui+{(-Qt
D?huFz

literal 358
zcmV-s0h#_nT4*^jL0KkKS;o`Ju>b*=fB*k;Y(>xoydcy76;MAX-GD>@2mk^ABmDt@
z1P~B1Kq0UJEEdC5Oox;W05lCW&>A!V00SnTg!KX@r2QlYhJzy@&;T^ilMny^4FW|J
z^-mHq00Te+A)p42P#&NFWJQEmq)0Zv`!2M<MUHo$GiScx&da&>J17faU;_{h0gMh6
z-O>;)C2XCI?}fyYwg&_OE3yNQYRI|-9O^7yx84Ruj#J*Lr$_}w=mmy?oO+{@#0ZN?
z1eyXERQ7xo^Aec~VJ4EnasmYuFdHP$g1bl?0E0?R8Q{`YVZf8>kU<fEFX^Bar(|!>
zXVRJ~#w@}Yof%dG6dFjZkroI7H%@tq!-=-7)rbsamX76xUQn<W5)rI>tL5ac5<yW9
z%_@nbIBmsFdC0xtLlDi3aRlL??0W1#NMHjPDF_$@fM6rB`5XZ&s^9p#k}1N3hBlr}
Eh^-He2><{9

diff --git a/data/ZimmermannTb4.11.rda b/data/ZimmermannTb4.11.rda
index 2f47b77f5d1f899bf3bbcc62ae6545b7803cbd2d..9efc5d07563494277f10b8006bf90498b93bc62c 100644
GIT binary patch
literal 865
zcmZ>Y%CIzaj8qGb%&Ux5WZ=-K|MMRgc)-ATfN4%%d!DQkg9+m+UdD+FE-qYf<U|Tv
zn~y^V12gBsWep4r%x=w0nH`DD4pIyZ3`&^`IF#o3GG&}xkOJg_fZQ@)69@}TN+~e=
zGAk~2c3^fexsb%>?7+ByLDGbQr@<(5;<BDzwgv`X218z{%$5rW8ATRqKAO?la<b*b
zR|A2|&OX9Snah9#&x}h9Qf4hYGZ;8B4w@WaRi!L&a+#VkgW7?t$P-Mi8z+iPTIf_*
zpwO|B^Af`Zfi9<(7jtzPgqQ?9T;{5ZI)Uh&C!Hd@w2WC8IVPGcR8leJm=LlkRI%X!
z1H)5S`QJgWuB<x3(Q(f9vU;k&|Al~SFIG>zW##o%x9(u##)y|I-%N{Gu~D!oIeGCD
zR&GgURdr1*laeia4*Z<Ca_7mLFMn}KX<0dmY@6~`)HM9+)Fs&`x7`Uz<F=i3_UyT?
zdzq^*$Ysx4<lq#_#Jk!l*|TF-gLRhIDhVeExsR>SC0HkhEcW_*R9K-=zfo~f&YRBO
zpmR6*R2Fo8lJhAH?YeNS#UrX;_*w@`Q&+`8R^fBU9Q>3UpX^yYZN^<kPRq4|9VsWP
zFL-sHQ0Ja^bfvqGmeZr@h923jALsIjH?w&t_%RsmG&8$p%<wVm0_*0vdyk&IdUN;b
z+pqud$mrPk#N^cU%vrPN%$+x%e@SVWZ22mX{U+ya?z_DA`5y{C7Je%FT>M4x<*V0k
z-oAVP;iF5h`t<pW;^R~9z5FMl8M6Lq`t`fDt-Vv{E>G00tB;yfuG!I@&9zu{sb-oY
zW44{N)XnAR)=Y5_oW>wlqorFb_3G8F5baf(OQ%e+kC<!UYjW8?t3hCqGRFibrAAJ!
z#XKSp7;`_Y*vO^z_Q8Bk6Blj)UEc3kS{9|dhd7+H4Vo&S(*Hc_ablyF1>?CX?*iDB
z8@jF}Fd8r(xU*1fV?s;qg-Z>Zik#v6H<>~&O$a+A>h`zhj`+$9vA1o<-!9^R+^FJa
zz~14t@PR|X^>>}pIj18;+D#2Oq*o;HX&x|NwUpb()8yd;f#o7TZ9x*8-ba!-KNMfd
nOz8Y}vF}CH4v8Z5rU_i4oIPv?0j=}@={@NxSg3I4(=I0f*mZh)

literal 994
zcmV<810DPyiwFP!000001MSy`a~nkzz~NQ1V+-4oWyztN9-2{cJ9-L)8XyEPp~{XN
z3@Sl33BC8;doQ8)n$SD^Q-R-E@10iXVdgReGoHaS{(SHD_TKH@-aDVyt{TsGj&~Yk
z!X^@q7=Db2hWQmTQPaUTv3|NzDb*{*YIWVj&|ofSOeE!YV%x>`kGa0?`7|`zO$=>l
z#}c@CIv4vb_WOVKYpJKUa%pp^JVTT~Tw2>#tR8T(19{o)Sh;5T^nl~!v;Ky8J%;=Z
zBmRalUqiv4wBS!#@Fy*3(&)xgwdR{qY_eRO(Fu9eoGMPv*6Kt%d@qV1!U07BiUt%5
zXmK8k^Y{<u;g(hSFVm=`HmRggP6I8|P(cH&)6lTKM~ao&%xt~b$Q99C|4vmdbU{~l
zp$q!-Ep$PvV}Wa_%Ggd+Wo)8co2>0rDJJ25U3UxjE2GzHOUSKFN#C#>x6eyU>~8ze
zCFk{<#+OObI=@G@8Hpp(H)R?nm5^;p`h=u^RNC~~_PEm4v6PIVUC!;7Hq|fv`mEzI
z>zZN7*KG;OoYHb!$Ci<C>|*89c|_zoy^=p;-K(fIx3qPR%E%o1MOv<-*K>2WNj@Em
z-iM@&B`N*fV{vP)I>sLB+S=Z2=HJgAYfNdGONTYLxQr=bjZ@E0N>1ITt@Z1ZJ_+kS
zcga|il2_Yx&2(SaQulkUHR$s7v!7vo7WCdMk$qkNxYbYcwv^&hsia6Qn{9@<W|(h=
zg=RS13`d%wBVl+{KbON}c`q9BqG2x@@gnbBC+kHyFY>ZD1uydQIbJ@;%jb-GkvA4c
zuMyo;uWbnON@@K>uNEt%8R;I?RCC|*zVC*XH`lyNdI>w~wJn31R9{{}{$+~G!=VpG
zj|@s50)1h)4`)Uee<^mwZrB}rU{CCYy)l4&urKz*{x|>!;vg);!8inm;xHVJK^%cB
za>%2AAq-;#qZosOBXJat#xXb+$KiM^#|o^(Dx825u^K1gWSoLiaT-p?8k~VMaTeC%
zY^=jMI2Y$(9Oq*_F2IGj2p8iLTnfJU%mgOEVwn=Auo0JG8kge=lu<zy{CP5)a3$O)
z$6e1^T!qcpf~#>2uElk@9yj1d+=QEP3vR`2xE*)kPTYmNaS!greYhVF;6Xfuhw%s=
z#bbCJPvA*Bg{Schp2c%`9xvcUyo8tW3SPx)cpYzGE8fIgcpLBFUA%|)@c}->NB9_@
z;8T2t&+!Gm#8=pc?f4qs;9Go$@9_hE#83Dczu;H=hTl!2HvasFn(f?BoGlJc)hQ)2
QSGQ)z-vv#cSd<e00DZvq!T<mO

-- 
GitLab