From 2647d08f866ce881c90eb7e8f97966cb1c7216c5 Mon Sep 17 00:00:00 2001
From: Walmes Zeviani <walmes@ufpr.br>
Date: Fri, 25 Mar 2016 16:58:33 -0300
Subject: [PATCH] Corrige resposta que estava como fator.

---
 R/ZimmermannTb5.11.R          |  22 +-
 data-raw/ZimmermannTb5.11.txt | 970 +++++++++++++++++-----------------
 data/ZimmermannTb5.11.rda     | Bin 2401 -> 2557 bytes
 data/ZimmermannTb5.11.txt     | 485 -----------------
 4 files changed, 495 insertions(+), 982 deletions(-)
 delete mode 100644 data/ZimmermannTb5.11.txt

diff --git a/R/ZimmermannTb5.11.R b/R/ZimmermannTb5.11.R
index d173c95..98b5e40 100644
--- a/R/ZimmermannTb5.11.R
+++ b/R/ZimmermannTb5.11.R
@@ -1,12 +1,12 @@
 #' @name ZimmermannTb5.11
-#' @title Proposrção de hastes sobreviventes ao ataque de insetos
+#' @title Proporção de hastes sobreviventes ao ataque de insetos
 #' @description Experimento em delineamento quadrado latino onde foram
-#'     tomadas quatro amostras em cada uma das parcelas (tipo de 
-#'     inseticida) no que diz respeito ao número total de hastes 
-#'     e número de hastes mortas por cupim (\emph{Sinthermes} sp.)
-#'     e lagarta elasmo (\emph{Elasmopalpus} sp.).  Com base 
-#'     nestes números, a proporção de hastes sobreviventes ao 
-#'     ataque de insetos foi calculada.
+#'     tomadas quatro amostras em cada uma das parcelas (tipo de
+#'     inseticida) no que diz respeito ao número total de hastes e
+#'     número de hastes mortas por cupim (\emph{Sinthermes} sp.) e
+#'     lagarta elasmo (\emph{Elasmopalpus} sp.). Com base nestes
+#'     números, a proporção de hastes sobreviventes ao ataque de insetos
+#'     foi calculada.
 #' @format Um \code{data.frame} com 484 observações e 5 variáveis
 #'
 #' \describe{
@@ -17,12 +17,12 @@
 #' \item{coluna}{Fator de níveis nominais. Indica em que coluna do
 #'      quadrado latino a unidade experimental está.}
 #'
-#' \item{amostra}{Fator de níveis numéricos. Identifica a amostra em
-#'     cada unidade experimental.}
-#'
 #' \item{inset}{Fator de níveis nominais. Indica o inseticida
 #'     aplicado.}
 #'
+#' \item{amostra}{Fator de níveis numéricos. Identifica a amostra em
+#'     cada unidade experimental.}
+#'
 #' \item{prop}{Proporção de hastes sobreviventes ao ataque de insetos. O
 #'     Só é conhecida a proporção amostral. Não são conhecidos o
 #'     númerador (número hastes sobreviventes) e denominador (total de
@@ -41,8 +41,6 @@
 #'
 #' str(ZimmermannTb5.11)
 #'
-#' ZimmermannTb5.11$prop <- as.numeric(as.character(ZimmermannTb5.11$prop))
-#'
 #' aux <- aggregate(prop ~ linha + coluna + inset,
 #'                  data = ZimmermannTb5.11, FUN = mean)
 #' str(aux)
diff --git a/data-raw/ZimmermannTb5.11.txt b/data-raw/ZimmermannTb5.11.txt
index 35a69f9..f85da6d 100644
--- a/data-raw/ZimmermannTb5.11.txt
+++ b/data-raw/ZimmermannTb5.11.txt
@@ -1,485 +1,485 @@
-linha	coluna	amostra	prop	inset
-1	1	1	0.9	2
-2	1	1	0.7368	6
-3	1	1	0.9184	3
-4	1	1	1	7
-5	1	1	0.8621	4
-6	1	1	0.88	11
-7	1	1	0.77	10
-8	1	1	0.775	5
-9	1	1	0.9091	1
-10	1	1	0.9474	8
-11	1	1	0.92	9
-1	2	1	0.913	11
-2	2	1	0.9524	3
-3	2	1	0.875	8
-4	2	1	1	9
-5	2	1	0.8525	1
-6	2	1	1	7
-7	2	1	0.8525	6
-8	2	1	0.9273	4
-9	2	1	0.8	5
-10	2	1	0.8974	2
-11	2	1	0.7647	10
-1	3	1	0.873	10
-2	3	1	0.9821	11
-3	3	1	0.8182	1
-4	3	1	1	2
-5	3	1	0.8793	6
-6	3	1	0.8298	5
-7	3	1	0.94	9
-8	3	1	0.9167	8
-9	3	1	1	7
-10	3	1	0.8615	4
-11	3	1	1	3
-1	4	1	0.9394	9
-2	4	1	0.9744	5
-3	4	1	0.7273	6
-4	4	1	0.9867	3
-5	4	1	0.9524	11
-6	4	1	0.9667	4
-7	4	1	0.8293	1
-8	4	1	0.9846	2
-9	4	1	0.8421	8
-10	4	1	0.7813	10
-11	4	1	0.9318	7
-1	5	1	0.8929	5
-2	5	1	0.9375	8
-3	5	1	0.9	9
-4	5	1	0.9556	6
-5	5	1	0.9811	10
-6	5	1	0.8421	2
-7	5	1	0.9123	11
-8	5	1	0.9583	7
-9	5	1	0.8824	4
-10	5	1	0.8983	3
-11	5	1	0.9615	1
-1	6	1	0.9149	4
-2	6	1	0.9362	2
-3	6	1	0.925	10
-4	6	1	0.9841	11
-5	6	1	0.8971	8
-6	6	1	0.8364	1
-7	6	1	0.9189	7
-8	6	1	0.9605	3
-9	6	1	1	9
-10	6	1	0.9048	5
-11	6	1	0.7059	6
-1	7	1	0.8571	6
-2	7	1	0.9556	10
-3	7	1	0.9483	11
-4	7	1	0.939	5
-5	7	1	0.8677	2
-6	7	1	0.9048	9
-7	7	1	0.9811	8
-8	7	1	0.9643	1
-9	7	1	0.9677	3
-10	7	1	0.8793	7
-11	7	1	0.9344	4
-1	8	1	0.9783	8
-2	8	1	0.962	9
-3	8	1	0.8929	2
-4	8	1	1	4
-5	8	1	0.8571	7
-6	8	1	0.8571	6
-7	8	1	0.9867	3
-8	8	1	0.963	10
-9	8	1	0.9722	11
-10	8	1	0.7931	1
-11	8	1	0.6889	5
-1	9	1	0.8	7
-2	9	1	0.9219	1
-3	9	1	0.8269	5
-4	9	1	0.8824	8
-5	9	1	1	3
-6	9	1	0.8781	10
-7	9	1	0.9702	4
-8	9	1	0.913	11
-9	9	1	0.7586	6
-10	9	1	0.8889	9
-11	9	1	0.8	2
-1	10	1	0.8387	3
-2	10	1	0.9531	4
-3	10	1	1	7
-4	10	1	0.9846	1
-5	10	1	0.9039	5
-6	10	1	0.9375	8
-7	10	1	0.8478	2
-8	10	1	0.9583	9
-9	10	1	0.9231	10
-10	10	1	0.8	6
-11	10	1	1	11
-1	11	1	0.75	1
-2	11	1	0.931	7
-3	11	1	0.9825	4
-4	11	1	0.9057	10
-5	11	1	0.95	9
-6	11	1	0.9857	3
-7	11	1	0.8864	5
-8	11	1	0.8571	6
-9	11	1	0.9048	2
-10	11	1	0.913	11
-11	11	1	1	8
-1	1	2	0.88	2
-2	1	2	0.6757	6
-3	1	2	0.94	3
-4	1	2	1	7
-5	1	2	0.9111	4
-6	1	2	0.8824	11
-7	1	2	0.64	10
-8	1	2	0.9091	5
-9	1	2	1	1
-10	1	2	0.9524	8
-11	1	2	1	9
-1	2	2	0.9024	11
-2	2	2	0.9863	3
-3	2	2	0.7593	8
-4	2	2	1	9
-5	2	2	0.8889	1
-6	2	2	1	7
-7	2	2	0.8333	6
-8	2	2	0.9524	4
-9	2	2	0.9556	5
-10	2	2	0.8636	2
-11	2	2	0.75	10
-1	3	2	1	10
-2	3	2	1	11
-3	3	2	0.8621	1
-4	3	2	0.9756	2
-5	3	2	0.9348	6
-6	3	2	0.8853	5
-7	3	2	0.8636	9
-8	3	2	0.8393	8
-9	3	2	0.9556	7
-10	3	2	0.9107	4
-11	3	2	0.8983	3
-1	4	2	1	9
-2	4	2	0.8889	5
-3	4	2	0.7381	6
-4	4	2	1	3
-5	4	2	0.9487	11
-6	4	2	0.9857	4
-7	4	2	0.9697	1
-8	4	2	0.9265	2
-9	4	2	0.8846	8
-10	4	2	0.8421	10
-11	4	2	0.9841	7
-1	5	2	0.7111	5
-2	5	2	0.7105	8
-3	5	2	0.9778	9
-4	5	2	0.8824	6
-5	5	2	0.8611	10
-6	5	2	0.8281	2
-7	5	2	0.9167	11
-8	5	2	0.9508	7
-9	5	2	0.8824	4
-10	5	2	0.85	3
-11	5	2	0.76	1
-1	6	2	0.8649	4
-2	6	2	0.9383	2
-3	6	2	0.9394	10
-4	6	2	0.9821	11
-5	6	2	1	8
-6	6	2	0.8871	1
-7	6	2	0.8667	7
-8	6	2	0.9516	3
-9	6	2	0.973	9
-10	6	2	0.9091	5
-11	6	2	0.7222	6
-1	7	2	0.8929	6
-2	7	2	0.8571	10
-3	7	2	0.9756	11
-4	7	2	0.8986	5
-5	7	2	0.9643	2
-6	7	2	0.9444	9
-7	7	2	0.9592	8
-8	7	2	0.913	1
-9	7	2	1	3
-10	7	2	0.7692	7
-11	7	2	1	4
-1	8	2	0.9524	8
-2	8	2	0.9677	9
-3	8	2	0.9778	2
-4	8	2	0.9211	4
-5	8	2	0.9492	7
-6	8	2	0.7955	6
-7	8	2	0.7353	3
-8	8	2	0.8889	10
-9	8	2	0.9032	11
-10	8	2	0.8594	1
-11	8	2	0.8	5
-1	9	2	0.7097	7
-2	9	2	0.6364	1
-3	9	2	0.8621	5
-4	9	2	0.8793	8
-5	9	2	0.9608	3
-6	9	2	0.8182	10
-7	9	2	0.9032	4
-8	9	2	1	11
-9	9	2	0.8261	6
-10	9	2	0.8409	9
-11	9	2	1	2
-1	10	2	0.9063	3
-2	10	2	0.9054	4
-3	10	2	0.963	7
-4	10	2	0.9296	1
-5	10	2	0.9787	5
-6	10	2	1	8
-7	10	2	0.8462	2
-8	10	2	0.946	9
-9	10	2	1	10
-10	10	2	0.875	6
-11	10	2	0.8387	11
-1	11	2	0.7059	1
-2	11	2	0.913	7
-3	11	2	0.9216	4
-4	11	2	0.8718	10
-5	11	2	0.9706	9
-6	11	2	0.8853	3
-7	11	2	0.9737	5
-8	11	2	0.7391	6
-9	11	2	0.9722	2
-10	11	2	0.9231	11
-11	11	2	0.9615	8
-1	1	3	0.9032	2
-2	1	3	0.64	6
-3	1	3	0.9804	3
-4	1	3	0.8788	7
-5	1	3	0.8472	4
-6	1	3	0.9118	11
-7	1	3	0.8182	10
-8	1	3	0.8333	5
-9	1	3	0.9535	1
-10	1	3	0.9787	8
-11	1	3	0.7931	9
-1	2	3	0.8333	11
-2	2	3	0.9875	3
-3	2	3	0.9444	8
-4	2	3	0.9375	9
-5	2	3	0.9057	1
-6	2	3	0.9677	7
-7	2	3	0.8235	6
-8	2	3	0.9492	4
-9	2	3	0.9333	5
-10	2	3	0.8889	2
-11	2	3	0.9333	10
-1	3	3	0.7188	10
-2	3	3	0.9702	11
-3	3	3	0.8542	1
-4	3	3	1	2
-5	3	3	0.8537	6
-6	3	3	0.9149	5
-7	3	3	0.942	9
-8	3	3	0.9722	8
-9	3	3	0.9298	7
-10	3	3	0.9756	4
-11	3	3	0.9091	3
-1	4	3	0.8983	9
-2	4	3	0.9434	5
-3	4	3	0.7759	6
-4	4	3	0.9811	3
-5	4	3	1	11
-6	4	3	0.9868	4
-7	4	3	1	1
-8	4	3	0.92	2
-9	4	3	0.8947	8
-10	4	3	0.9143	10
-11	4	3	0.9388	7
-1	5	3	0.8361	5
-2	5	3	0.918	8
-3	5	3	0.9467	9
-4	5	3	0.6154	6
-5	5	3	0.9615	10
-6	5	3	0.9403	2
-7	5	3	0.9057	11
-8	5	3	0.9348	7
-9	5	3	0.9808	4
-10	5	3	0.8667	3
-11	5	3	0.9434	1
-1	6	3	0.9365	4
-2	6	3	0.8955	2
-3	6	3	0.8462	10
-4	6	3	0.9737	11
-5	6	3	0.9138	8
-6	6	3	0.8431	1
-7	6	3	0.7872	7
-8	6	3	0.8833	3
-9	6	3	1	9
-10	6	3	0.7959	5
-11	6	3	0.9575	6
-1	7	3	0.25	6
-2	7	3	0.8421	10
-3	7	3	0.9787	11
-4	7	3	0.975	5
-5	7	3	0.9474	2
-6	7	3	0.9859	9
-7	7	3	0.9623	8
-8	7	3	0.7931	1
-9	7	3	0.9697	3
-10	7	3	0.6818	7
-11	7	3	0.9818	4
-1	8	3	0.8158	8
-2	8	3	0.9546	9
-3	8	3	0.9677	2
-4	8	3	0.9298	4
-5	8	3	0.9583	7
-6	8	3	0.9688	6
-7	8	3	0.7857	3
-8	8	3	1	10
-9	8	3	0.9815	11
-10	8	3	0.625	1
-11	8	3	0.7679	5
-1	9	3	0.9388	7
-2	9	3	0.9091	1
-3	9	3	0.8254	5
-4	9	3	0.7647	8
-5	9	3	0.9091	3
-6	9	3	0.8611	10
-7	9	3	0.9333	4
-8	9	3	0.9744	11
-9	9	3	0.8511	6
-10	9	3	0.925	9
-11	9	3	0.7679	2
-1	10	3	0.8571	3
-2	10	3	0.9623	4
-3	10	3	0.9556	7
-4	10	3	0.8548	1
-5	10	3	0.7755	5
-6	10	3	0.8571	8
-7	10	3	0.8966	2
-8	10	3	1	9
-9	10	3	0.9706	10
-10	10	3	0.8824	6
-11	10	3	0.8085	11
-1	11	3	0.65	1
-2	11	3	1	7
-3	11	3	0.9702	4
-4	11	3	0.9231	10
-5	11	3	0.95	9
-6	11	3	0.9286	3
-7	11	3	0.9583	5
-8	11	3	1	6
-9	11	3	0.8254	2
-10	11	3	0.7308	11
-11	11	3	0.9184	8
-1	1	4	0.875	2
-2	1	4	0.7895	6
-3	1	4	0.9828	3
-4	1	4	0.875	7
-5	1	4	0.8085	4
-6	1	4	0.8409	11
-7	1	4	0.7037	10
-8	1	4	0.8571	5
-9	1	4	0.9546	1
-10	1	4	1	8
-11	1	4	1	9
-1	2	4	0.7778	11
-2	2	4	0.9259	3
-3	2	4	0.9767	8
-4	2	4	0.7917	9
-5	2	4	0.9231	1
-6	2	4	0.9672	7
-7	2	4	0.8	6
-8	2	4	0.9851	4
-9	2	4	0.871	5
-10	2	4	0.9524	2
-11	2	4	0.4375	10
-1	3	4	0.8846	10
-2	3	4	0.9167	11
-3	3	4	0.9804	1
-4	3	4	1	2
-5	3	4	0.963	6
-6	3	4	0.8571	5
-7	3	4	0.9259	9
-8	3	4	0.946	8
-9	3	4	0.8833	7
-10	3	4	0.7761	4
-11	3	4	0.9091	3
-1	4	4	0.8966	9
-2	4	4	0.8226	5
-3	4	4	0.9245	6
-4	4	4	0.9722	3
-5	4	4	0.9592	11
-6	4	4	0.9683	4
-7	4	4	0.9565	1
-8	4	4	0.9167	2
-9	4	4	0.9474	8
-10	4	4	0.8214	10
-11	4	4	0.8039	7
-1	5	4	0.8	5
-2	5	4	0.9298	8
-3	5	4	1	9
-4	5	4	0.9778	6
-5	5	4	1	10
-6	5	4	0.9136	2
-7	5	4	0.9091	11
-8	5	4	0.9167	7
-9	5	4	0.9016	4
-10	5	4	0.6613	3
-11	5	4	0.8387	1
-1	6	4	0.9667	4
-2	6	4	0.8919	2
-3	6	4	0.9706	10
-4	6	4	0.9231	11
-5	6	4	0.9286	8
-6	6	4	0.9778	1
-7	6	4	0.9531	7
-8	6	4	0.9667	3
-9	6	4	0.9825	9
-10	6	4	0.8936	5
-11	6	4	0.7167	6
-1	7	4	0.6667	6
-2	7	4	0.9057	10
-3	7	4	0.9184	11
-4	7	4	0.92	5
-5	7	4	0.9302	2
-6	7	4	0.9355	9
-7	7	4	0.9362	8
-8	7	4	0.9348	1
-9	7	4	0.8163	3
-10	7	4	0.8289	7
-11	7	4	0.8636	4
-1	8	4	0.5714	8
-2	8	4	1	9
-3	8	4	0.9589	2
-4	8	4	0.9891	4
-5	8	4	0.9846	7
-6	8	4	0.907	6
-7	8	4	0.9677	3
-8	8	4	0.9268	10
-9	8	4	0.902	11
-10	8	4	0.9722	1
-11	8	4	0.7174	5
-1	9	4	0.7941	7
-2	9	4	0.7344	1
-3	9	4	0.8781	5
-4	9	4	0.9048	8
-5	9	4	0.9718	3
-6	9	4	0.946	10
-7	9	4	0.76	4
-8	9	4	0.8857	11
-9	9	4	0.9655	6
-10	9	4	0.7674	9
-11	9	4	0.7636	2
-1	10	4	0.6071	3
-2	10	4	0.9114	4
-3	10	4	0.9524	7
-4	10	4	0.9841	1
-5	10	4	0.9737	5
-6	10	4	0.9661	8
-7	10	4	0.92	2
-8	10	4	0.9365	9
-9	10	4	0.72	10
-10	10	4	0.8261	6
-11	10	4	1	11
-1	11	4	0.3529	1
-2	11	4	0.8491	7
-3	11	4	0.9273	4
-4	11	4	0.8889	10
-5	11	4	0.9697	9
-6	11	4	0.9575	3
-7	11	4	0.9375	5
-8	11	4	0.8462	6
-9	11	4	0.9016	2
-10	11	4	0.8929	11
-11	11	4	0.881	8
+linha	coluna	inset	amostra	prop
+1	1	2	1	0.9
+2	1	6	1	0.7368
+3	1	3	1	0.9184
+4	1	7	1	1
+5	1	4	1	0.8621
+6	1	11	1	0.88
+7	1	10	1	0.77
+8	1	5	1	0.775
+9	1	1	1	0.9091
+10	1	8	1	0.9474
+11	1	9	1	0.92
+1	2	11	1	0.913
+2	2	3	1	0.9524
+3	2	8	1	0.875
+4	2	9	1	1
+5	2	1	1	0.8525
+6	2	7	1	1
+7	2	6	1	0.8525
+8	2	4	1	0.9273
+9	2	5	1	0.8
+10	2	2	1	0.8974
+11	2	10	1	0.7647
+1	3	10	1	0.873
+2	3	11	1	0.9821
+3	3	1	1	0.8182
+4	3	2	1	1
+5	3	6	1	0.8793
+6	3	5	1	0.8298
+7	3	9	1	0.94
+8	3	8	1	0.9167
+9	3	7	1	1
+10	3	4	1	0.8615
+11	3	3	1	1
+1	4	9	1	0.9394
+2	4	5	1	0.9744
+3	4	6	1	0.7273
+4	4	3	1	0.9867
+5	4	11	1	0.9524
+6	4	4	1	0.9667
+7	4	1	1	0.8293
+8	4	2	1	0.9846
+9	4	8	1	0.8421
+10	4	10	1	0.7813
+11	4	7	1	0.9318
+1	5	5	1	0.8929
+2	5	8	1	0.9375
+3	5	9	1	0.9
+4	5	6	1	0.9556
+5	5	10	1	0.9811
+6	5	2	1	0.8421
+7	5	11	1	0.9123
+8	5	7	1	0.9583
+9	5	4	1	0.8824
+10	5	3	1	0.8983
+11	5	1	1	0.9615
+1	6	4	1	0.9149
+2	6	2	1	0.9362
+3	6	10	1	0.925
+4	6	11	1	0.9841
+5	6	8	1	0.8971
+6	6	1	1	0.8364
+7	6	7	1	0.9189
+8	6	3	1	0.9605
+9	6	9	1	1
+10	6	5	1	0.9048
+11	6	6	1	0.7059
+1	7	6	1	0.8571
+2	7	10	1	0.9556
+3	7	11	1	0.9483
+4	7	5	1	0.939
+5	7	2	1	0.8677
+6	7	9	1	0.9048
+7	7	8	1	0.9811
+8	7	1	1	0.9643
+9	7	3	1	0.9677
+10	7	7	1	0.8793
+11	7	4	1	0.9344
+1	8	8	1	0.9783
+2	8	9	1	0.962
+3	8	2	1	0.8929
+4	8	4	1	1
+5	8	7	1	0.8571
+6	8	6	1	0.8571
+7	8	3	1	0.9867
+8	8	10	1	0.963
+9	8	11	1	0.9722
+10	8	1	1	0.7931
+11	8	5	1	0.6889
+1	9	7	1	0.8
+2	9	1	1	0.9219
+3	9	5	1	0.8269
+4	9	8	1	0.8824
+5	9	3	1	1
+6	9	10	1	0.8781
+7	9	4	1	0.9702
+8	9	11	1	0.913
+9	9	6	1	0.7586
+10	9	9	1	0.8889
+11	9	2	1	0.8
+1	10	3	1	0.8387
+2	10	4	1	0.9531
+3	10	7	1	1
+4	10	1	1	0.9846
+5	10	5	1	0.9039
+6	10	8	1	0.9375
+7	10	2	1	0.8478
+8	10	9	1	0.9583
+9	10	10	1	0.9231
+10	10	6	1	0.8
+11	10	11	1	1
+1	11	1	1	0.75
+2	11	7	1	0.931
+3	11	4	1	0.9825
+4	11	10	1	0.9057
+5	11	9	1	0.95
+6	11	3	1	0.9857
+7	11	5	1	0.8864
+8	11	6	1	0.8571
+9	11	2	1	0.9048
+10	11	11	1	0.913
+11	11	8	1	1
+1	1	2	2	0.88
+2	1	6	2	0.6757
+3	1	3	2	0.94
+4	1	7	2	1
+5	1	4	2	0.9111
+6	1	11	2	0.8824
+7	1	10	2	0.64
+8	1	5	2	0.9091
+9	1	1	2	1
+10	1	8	2	0.9524
+11	1	9	2	1
+1	2	11	2	0.9024
+2	2	3	2	0.9863
+3	2	8	2	0.7593
+4	2	9	2	1
+5	2	1	2	0.8889
+6	2	7	2	1
+7	2	6	2	0.8333
+8	2	4	2	0.9524
+9	2	5	2	0.9556
+10	2	2	2	0.8636
+11	2	10	2	0.75
+1	3	10	2	1
+2	3	11	2	1
+3	3	1	2	0.8621
+4	3	2	2	0.9756
+5	3	6	2	0.9348
+6	3	5	2	0.8853
+7	3	9	2	0.8636
+8	3	8	2	0.8393
+9	3	7	2	0.9556
+10	3	4	2	0.9107
+11	3	3	2	0.8983
+1	4	9	2	1
+2	4	5	2	0.8889
+3	4	6	2	0.7381
+4	4	3	2	1
+5	4	11	2	0.9487
+6	4	4	2	0.9857
+7	4	1	2	0.9697
+8	4	2	2	0.9265
+9	4	8	2	0.8846
+10	4	10	2	0.8421
+11	4	7	2	0.9841
+1	5	5	2	0.7111
+2	5	8	2	0.7105
+3	5	9	2	0.9778
+4	5	6	2	0.8824
+5	5	10	2	0.8611
+6	5	2	2	0.8281
+7	5	11	2	0.9167
+8	5	7	2	0.9508
+9	5	4	2	0.8824
+10	5	3	2	0.85
+11	5	1	2	0.76
+1	6	4	2	0.8649
+2	6	2	2	0.9383
+3	6	10	2	0.9394
+4	6	11	2	0.9821
+5	6	8	2	1
+6	6	1	2	0.8871
+7	6	7	2	0.8667
+8	6	3	2	0.9516
+9	6	9	2	0.973
+10	6	5	2	0.9091
+11	6	6	2	0.7222
+1	7	6	2	0.8929
+2	7	10	2	0.8571
+3	7	11	2	0.9756
+4	7	5	2	0.8986
+5	7	2	2	0.9643
+6	7	9	2	0.9444
+7	7	8	2	0.9592
+8	7	1	2	0.913
+9	7	3	2	1
+10	7	7	2	0.7692
+11	7	4	2	1
+1	8	8	2	0.9524
+2	8	9	2	0.9677
+3	8	2	2	0.9778
+4	8	4	2	0.9211
+5	8	7	2	0.9492
+6	8	6	2	0.7955
+7	8	3	2	0.7353
+8	8	10	2	0.8889
+9	8	11	2	0.9032
+10	8	1	2	0.8594
+11	8	5	2	0.8
+1	9	7	2	0.7097
+2	9	1	2	0.6364
+3	9	5	2	0.8621
+4	9	8	2	0.8793
+5	9	3	2	0.9608
+6	9	10	2	0.8182
+7	9	4	2	0.9032
+8	9	11	2	1
+9	9	6	2	0.8261
+10	9	9	2	0.8409
+11	9	2	2	1
+1	10	3	2	0.9063
+2	10	4	2	0.9054
+3	10	7	2	0.963
+4	10	1	2	0.9296
+5	10	5	2	0.9787
+6	10	8	2	1
+7	10	2	2	0.8462
+8	10	9	2	0.946
+9	10	10	2	1
+10	10	6	2	0.875
+11	10	11	2	0.8387
+1	11	1	2	0.7059
+2	11	7	2	0.913
+3	11	4	2	0.9216
+4	11	10	2	0.8718
+5	11	9	2	0.9706
+6	11	3	2	0.8853
+7	11	5	2	0.9737
+8	11	6	2	0.7391
+9	11	2	2	0.9722
+10	11	11	2	0.9231
+11	11	8	2	0.9615
+1	1	2	3	0.9032
+2	1	6	3	0.64
+3	1	3	3	0.9804
+4	1	7	3	0.8788
+5	1	4	3	0.8472
+6	1	11	3	0.9118
+7	1	10	3	0.8182
+8	1	5	3	0.8333
+9	1	1	3	0.9535
+10	1	8	3	0.9787
+11	1	9	3	0.7931
+1	2	11	3	0.8333
+2	2	3	3	0.9875
+3	2	8	3	0.9444
+4	2	9	3	0.9375
+5	2	1	3	0.9057
+6	2	7	3	0.9677
+7	2	6	3	0.8235
+8	2	4	3	0.9492
+9	2	5	3	0.9333
+10	2	2	3	0.8889
+11	2	10	3	0.9333
+1	3	10	3	0.7188
+2	3	11	3	0.9702
+3	3	1	3	0.8542
+4	3	2	3	1
+5	3	6	3	0.8537
+6	3	5	3	0.9149
+7	3	9	3	0.942
+8	3	8	3	0.9722
+9	3	7	3	0.9298
+10	3	4	3	0.9756
+11	3	3	3	0.9091
+1	4	9	3	0.8983
+2	4	5	3	0.9434
+3	4	6	3	0.7759
+4	4	3	3	0.9811
+5	4	11	3	1
+6	4	4	3	0.9868
+7	4	1	3	1
+8	4	2	3	0.92
+9	4	8	3	0.8947
+10	4	10	3	0.9143
+11	4	7	3	0.9388
+1	5	5	3	0.8361
+2	5	8	3	0.918
+3	5	9	3	0.9467
+4	5	6	3	0.6154
+5	5	10	3	0.9615
+6	5	2	3	0.9403
+7	5	11	3	0.9057
+8	5	7	3	0.9348
+9	5	4	3	0.9808
+10	5	3	3	0.8667
+11	5	1	3	0.9434
+1	6	4	3	0.9365
+2	6	2	3	0.8955
+3	6	10	3	0.8462
+4	6	11	3	0.9737
+5	6	8	3	0.9138
+6	6	1	3	0.8431
+7	6	7	3	0.7872
+8	6	3	3	0.8833
+9	6	9	3	1
+10	6	5	3	0.7959
+11	6	6	3	0.9575
+1	7	6	3	0.25
+2	7	10	3	0.8421
+3	7	11	3	0.9787
+4	7	5	3	0.975
+5	7	2	3	0.9474
+6	7	9	3	0.9859
+7	7	8	3	0.9623
+8	7	1	3	0.7931
+9	7	3	3	0.9697
+10	7	7	3	0.6818
+11	7	4	3	0.9818
+1	8	8	3	0.8158
+2	8	9	3	0.9546
+3	8	2	3	0.9677
+4	8	4	3	0.9298
+5	8	7	3	0.9583
+6	8	6	3	0.9688
+7	8	3	3	0.7857
+8	8	10	3	1
+9	8	11	3	0.9815
+10	8	1	3	0.625
+11	8	5	3	0.7679
+1	9	7	3	0.9388
+2	9	1	3	0.9091
+3	9	5	3	0.8254
+4	9	8	3	0.7647
+5	9	3	3	0.9091
+6	9	10	3	0.8611
+7	9	4	3	0.9333
+8	9	11	3	0.9744
+9	9	6	3	0.8511
+10	9	9	3	0.925
+11	9	2	3	0.7679
+1	10	3	3	0.8571
+2	10	4	3	0.9623
+3	10	7	3	0.9556
+4	10	1	3	0.8548
+5	10	5	3	0.7755
+6	10	8	3	0.8571
+7	10	2	3	0.8966
+8	10	9	3	1
+9	10	10	3	0.9706
+10	10	6	3	0.8824
+11	10	11	3	0.8085
+1	11	1	3	0.65
+2	11	7	3	1
+3	11	4	3	0.9702
+4	11	10	3	0.9231
+5	11	9	3	0.95
+6	11	3	3	0.9286
+7	11	5	3	0.9583
+8	11	6	3	1
+9	11	2	3	0.8254
+10	11	11	3	0.7308
+11	11	8	3	0.9184
+1	1	2	4	0.875
+2	1	6	4	0.7895
+3	1	3	4	0.9828
+4	1	7	4	0.875
+5	1	4	4	0.8085
+6	1	11	4	0.8409
+7	1	10	4	0.7037
+8	1	5	4	0.8571
+9	1	1	4	0.9546
+10	1	8	4	1
+11	1	9	4	1
+1	2	11	4	0.7778
+2	2	3	4	0.9259
+3	2	8	4	0.9767
+4	2	9	4	0.7917
+5	2	1	4	0.9231
+6	2	7	4	0.9672
+7	2	6	4	0.8
+8	2	4	4	0.9851
+9	2	5	4	0.871
+10	2	2	4	0.9524
+11	2	10	4	0.4375
+1	3	10	4	0.8846
+2	3	11	4	0.9167
+3	3	1	4	0.9804
+4	3	2	4	1
+5	3	6	4	0.963
+6	3	5	4	0.8571
+7	3	9	4	0.9259
+8	3	8	4	0.946
+9	3	7	4	0.8833
+10	3	4	4	0.7761
+11	3	3	4	0.9091
+1	4	9	4	0.8966
+2	4	5	4	0.8226
+3	4	6	4	0.9245
+4	4	3	4	0.9722
+5	4	11	4	0.9592
+6	4	4	4	0.9683
+7	4	1	4	0.9565
+8	4	2	4	0.9167
+9	4	8	4	0.9474
+10	4	10	4	0.8214
+11	4	7	4	0.8039
+1	5	5	4	0.8
+2	5	8	4	0.9298
+3	5	9	4	1
+4	5	6	4	0.9778
+5	5	10	4	1
+6	5	2	4	0.9136
+7	5	11	4	0.9091
+8	5	7	4	0.9167
+9	5	4	4	0.9016
+10	5	3	4	0.6613
+11	5	1	4	0.8387
+1	6	4	4	0.9667
+2	6	2	4	0.8919
+3	6	10	4	0.9706
+4	6	11	4	0.9231
+5	6	8	4	0.9286
+6	6	1	4	0.9778
+7	6	7	4	0.9531
+8	6	3	4	0.9667
+9	6	9	4	0.9825
+10	6	5	4	0.8936
+11	6	6	4	0.7167
+1	7	6	4	0.6667
+2	7	10	4	0.9057
+3	7	11	4	0.9184
+4	7	5	4	0.92
+5	7	2	4	0.9302
+6	7	9	4	0.9355
+7	7	8	4	0.9362
+8	7	1	4	0.9348
+9	7	3	4	0.8163
+10	7	7	4	0.8289
+11	7	4	4	0.8636
+1	8	8	4	0.5714
+2	8	9	4	1
+3	8	2	4	0.9589
+4	8	4	4	0.9891
+5	8	7	4	0.9846
+6	8	6	4	0.907
+7	8	3	4	0.9677
+8	8	10	4	0.9268
+9	8	11	4	0.902
+10	8	1	4	0.9722
+11	8	5	4	0.7174
+1	9	7	4	0.7941
+2	9	1	4	0.7344
+3	9	5	4	0.8781
+4	9	8	4	0.9048
+5	9	3	4	0.9718
+6	9	10	4	0.946
+7	9	4	4	0.76
+8	9	11	4	0.8857
+9	9	6	4	0.9655
+10	9	9	4	0.7674
+11	9	2	4	0.7636
+1	10	3	4	0.6071
+2	10	4	4	0.9114
+3	10	7	4	0.9524
+4	10	1	4	0.9841
+5	10	5	4	0.9737
+6	10	8	4	0.9661
+7	10	2	4	0.92
+8	10	9	4	0.9365
+9	10	10	4	0.72
+10	10	6	4	0.8261
+11	10	11	4	1
+1	11	1	4	0.3529
+2	11	7	4	0.8491
+3	11	4	4	0.9273
+4	11	10	4	0.8889
+5	11	9	4	0.9697
+6	11	3	4	0.9575
+7	11	5	4	0.9375
+8	11	6	4	0.8462
+9	11	2	4	0.9016
+10	11	11	4	0.8929
+11	11	8	4	0.881
diff --git a/data/ZimmermannTb5.11.rda b/data/ZimmermannTb5.11.rda
index a634d35bafa020156dffd1a12b0a79cc0e9413ff..7591eba58f5c8ae686e4bf1d101effb8c3aa5409 100644
GIT binary patch
literal 2557
zcmZ>Y%CIzaj8qGbWEMz_XAq95|4#@!;P}tL!2BSO;egbfi;EnbRYOc}&GuDa!R#wH
zL5jiTvcm=DD-0JGFu*{DRE7yJ0|PIE$qDwiYAe1nFx;BID&qpr${)Szi_8KzH<>M)
zHLGg2TT|W2N4)-5&6ZuMlA5>JZC2I1WmhB(rE(@1^hz-<c3*LUS8jsYgcL~=_LU2&
zW@Sh*E?|7gz<h<5eFej029^U1J}?Wh(Vh)V2@Go3WME>Psv^s``kV9%YgHvH&0F4O
zl<U6Y;$l;_1}Q22V3X!72F6!XRqZRE+WInF_#5!mL~hoss$MBMHH{3OS-gykFELa#
zyRY2JulbTc_{vw4zrmjr<^^Bjn&jbY;_MTYz;fAvmqAL3A>#rABPeJt3ov9bTwGuR
zww>9nKiKzIRc}zGvRm_&Fa25VD<|$QzVdHssP?RX*F!zd23=WY#nsuiwp+?$>T;cy
ztxF~@%9M6`>=6@jdzRbe`YEe+xtvUysIf#<NXIDMyG`k+B(HP8nkQF;@^ARe4gpE9
z97-{q?JT&}#D|%&<$&R%PN6PO2`?RC$%YJ(goE=NjwMK`7|ie%iSanERyeO9I>)VW
zL6S~j(lI5GK$o62p~nteQVeGDxOFay37nIpXE>83P}$D#<UE}O;}hvK&Zr(^ax+%!
zXPg%};k=l^jMI`FF@XtFI}W9bOYpSzB%IUO(y>@@PJ*6+@zNz~OpiGWJB~ywI;JV~
zXkq9=OSyjjf4inEt5?08*?sBNfwq;0ZmCSTwMu1D;^lSbEC+==b<1v_cyM($_oM?(
zp3+sGDux#s+Y;yYm3iJwPn$chtn*g7ti{X6Kf11NUGY>acZrL1rBJJ?s8g4whH9YD
zid8Mmlker5SMPr;v82UDe!u&pzJh~Nf`KZN7R_~PXAI=?o3<os@xyRGuZc<pUpbye
zhiqWI(rF*u7O4>ZOtsG}kU9K@u1tFDQ$2;Kvzg`f?d&=ZzwT6B60&UBToe0Jq^N{B
ze4e{_dEccd5BZk&@%Oe}ezZ(KR`Q%$k^Qpw{D$WYjy-*H$YN*I^pK9UbL<m()NiIN
z(OWfh>*0sZvp$Qrb~ku_^XlQAyj<k2;pzDgI##_{6A}05+^tE=KASwc*!nJ4za!Rs
zp0~p-W#2m2Up=)+aT|N0h2Do&xTRf~bz%Pfa;vE;R$c1)zVyejq+kc#fD6JKcr7>Y
z*S>al&Hu=W*H#`gb7oxXoiMNbKv-G+Ir*!LqBc2X9{QoU>`uQ>lZSSQ-(|Z!X#w+D
zW-TkQxmq`6(rS?>hgTm6bi7cSwberNYMS<b(JR*(8F`YHs_bp~YGQa*Ha>FkUB<~r
z^f&t#7%04VZ)x1b;%>X_%4a(#zK}g)%bwSEe9EvgjJ(cQ;dg-X%qPv|Y3EZKCmXNz
zKd(GBZj$x2I(GSaJpGn>oBW#?85!>Fne<ny?clrkf4|Mb7KP7=zHlY$h1VV~>ujDQ
zy1m8iE(t3u4}5=IzsUP|>G!7#8M^v|r*9H^v_wIwPgL?z^Uk~-jn2Or+ulVsvTV4*
zv8ai8a>VSEJ5f8Q_IW<FdYI_s!e#lOu{N}Ae(dfO@qcuA)kS}mY>+>C-TPtsO2a!T
zVGLTrDsJqY>625;ll$&iWV)(~Nt^q9$~F;bkXRflocEzBV^^Y^qM_$8`@WLd8HJVq
zw|(>VX1ujMBe$gGPB2IJnaJzEw=Uv3{Lf1IZF}mgqLAI2cL_3jS{oYJcyea+a2>0Q
z3jTiXReRJ&-H@jWXG;68i|tV@%vkIez;`oCh(|if)5tBy(d$S27GE{JXHvUU7R0?+
zl6A~ws*&@C+@&otQOV5#B?bJ;19}>sc|7b9l#E=;`Sjj_%VD|+s|7O;M$9wHS;BqL
zZNaJ;71Otiy?(tc`HF|^CS!JuZ%6B{+}aVna)#2u(4^J59QuMAmx=v}Tj2BbF3*AX
zY0Vb0sw~}`_e;8(T@#f&)fL^{RV(H`dGhJ2&vwe`r5;%SRA1=hf39UF9a=)!b*Yu=
z*;QRHx?Ss?PF%N>>RBRjW|=|5+V87-q*o*!_k0tU!dVvi&@CWlcVJ=Im1#+e3&ZSZ
zYxAW1Or5gC%)b1o=ic;9f)mrU5C3x!R)6z$V%E+#^O7|lwOn#t_?N%fnQemZoBi#6
zjkC%wxSfn_xfANI-?_qUf!70f4X%bz>(<rXv$@v$hO9C++jx}0f1|{~lR1UVD%;CB
z?Y`Pn*tUN2yS8?Q(Byk1QW1Gi>vmmzJz29`<*a0?*$IWmQy1u{hdw!4WY{W@&L+Ry
zspj0Pq8H5y^Xj);Ynz!8^^3(nZ$irEPr`STtXp%$mM=8<?)EEd{lT=P=(dnG>PA~a
zbV_+wa|@NdYhym%E3)m2TUPCnqSSAR_C=OPr(ATe&h%i(&=BNOvT0+L65F!!-mbbQ
zUJrwM{(ftmv+rQp!OZ>q{!iD)Wo~&b6%=K~UB9&E)5c3hEoDdMwM<hAW7jfFF}TD!
zA&7fYStv_j562`28^dReJMIWPl3cs=@x>|f6%KbUa9-pW6kPh#;y~V!IWY&^IT|IR
zeIt3kAL86zIjNJ&KV+9Gv+73~fzx`a4>SH=%CB&DH@NoT=B*+=-eWo2B7dK_*>0Ae
zvtIJoq}9^j-16jJ=e#;DFC+JO{+Zjp(}PL`p7p)`_2ggKmCXgk8cSvfp0G=3dE6$q
z*I0E!#MidQ&fbcomB&}}8ma3Quy4G#eO;Y);GPE-o#vN2W-qz_INWbf#!bzg-A``C
z6<uDE|J#c5!dcrHH+TBX<;hRZd&9Nr%-PwAGtQR;6>qeR6I*z0m&%K0-%D<X+*MzZ
z=f}F!FK+XkEq6}kMNe7u#@bP@EOv6x=YKs6({`~o94yh!{KqQT#>}F`#wnQIm04hO
zoO7mja$<W>*6Wj*rdKQ18=Nw!IwxEDedmn08S7{55<hx!ss6tBuq`!@zJ9Fw9rSIh
zmYbiG<;hC#C;KuV#aC?G7(PwLymbA<nh&hs&t|Tvy}Dm(GVkoE&+=dQO^9hd5!6@{
z7*cV-TZ}PS!)bvCM`VK2!9<OaP)82NK>JG%H|a4wF?SMY^03Nke{QEyt@*Dl<Ndj-
z8`AIdmK@4n>|J(0t$R*bcIji&h#OinSB9M_n3`+lbJc?9=;W}pX)!C!G&kyct<+lD
zd1UKpwIfTiFB$oEyPAnzTFJK8)AXv!byubADQdeiuQsj^kp2`Terr`EXH`qZS;@?z
zMUo{Oqx4j=eUl@uT|4!lXU*Dm3wNGMy|Q%6&B(}Ly_XB+1kPofwtC$+yE-k=*JsJ;
qj+1+fdp7G-2>&TA&-M|y=KF9%YtsRf>i^w4mF8%8Fm@QMZvX%uHjJA9

literal 2401
zcmb2|=3oE==C@IqB_W|g@0M(4XHgVpbaa`Rdc;8@jMaNu;)GBIrw#?PNEHV$Aqxc!
zAw?kx2N3}lUJHc<n>vlwC@G!T*TJOJ&E%=S{=U$}qp2MCe*1;)-S*Si_W2phqI0hg
z`##^hZ~MEo>-YUy^{e$?Y;g3krN=B~`U={O@4OWFFVoji@KO1U;KL5l_g61(DlRhO
zE{fT?Q}b}Nx~jUh%(+>Q>Xt}^9^GP8ye>xHZbJ9R%^HS_j&=w--<nu`<aY7fo!?@r
z*V$g5mwo>4{<FMmPXB+)!Jla1EFq}ab3(u^ghSb?MNs%q2XEq$R)a^*5@kJaC2kvT
zOU^m|<GlRi|4a35KRze3@W~3>cV`5<w%r18uDDd+nfX{Ra=N3fPQ3d8<M)3Kz2@&{
z(%q|4{O{MkfQJV059&AnUoLy=4sX`v?A`IwmqhlQ_CH>FCY~`aX8GO8RV&NVj4%AY
zYA0o@Bfq7_GLa`Ex4LfUDGk=zq^&#i^Xj=nwj3|}zfmvo(b0F?W3#i5h1}fXz<59U
z(^iQqXM>}jzOiM!$GKQuLa<us&oOIh`JLGc5|++&vBk%@y)L;|N6Go5TEA+3TmExv
zyyMKhskisNYIhJ1Yt6hcFYc0IRlR@q{_E}{IXmk0<6nQ8(fzG?;+4C*SIuL$x%(*W
zTb7+@PvuAZ7z@MZzZZJLmftI#+H8~@`S_ovo<W!2{JmCx)ilD@a@X9M&1`qPWApzQ
z<v;&dolka;TF>^i_vu7tsjEzL&$aJ(`FXdf*jzhyw`Ygr>mRN<`FiV<>)+f&o;Ln-
zJoaw>?L4Nf&MSZ2bU)v)>+^5XfI5aRw%+%4+dN3WuxqaLthh<6x3(UXm#^O_VRGbj
z#mmj_^yRCVulRnvDwUtlcuJi8i}QZfrf+{X#V5JvGS?nIadQ8h+6#wXXZ>aC@5$%P
zd-!*s_xc9;!lj>IuGBBF`CMf6B6QxJZ#mfv`yHw;ta`bp@7#Lt^{Z=me)XQ2ZM^^X
zvBC>?y7y;ZOVpH5lUcdo{r@GkSzjOaa35#>zO?+<--@5bbJMo4F3y{t_TG06gI)Mp
z^<Qf$<nMeGp2NiStTXM>5?hVO>+a_iXm=JS+h@;aXLX*XYkBI=7ccYkam=M>THkD)
z`+bA0tIN(eZelN(&bZHhmuxMP9~vdkA``yf!MUaH@v^f$y!#(m9Q>BCSN#6g=H1J#
zorq;&d)EEy_LH64#mrc2PuDaWe%`(II$J%{s{ms~N%2E-&z=95ST{}IwDa7a<>$8^
zyFGg~v%jHU>a*jME$S`#Cp^#j&Mq8a;1kvLxqHcsE6NS_9n!JdFYKRle>(Ah{r2Pf
za##ERuIH#ypKEyQsxZ$yrdjVFu}w@`u*^nX_fu7CMO)d{wq*7*KUbPRcmJ@{W@+$g
zxv1yc{#2)h&o!I=r)RyQOX7=%JQrNT?pjo_U9r;+tDjdi;q$~#C;wKSYJAjXQ;_^m
z!dB&A>9Nc9%NxHih&<tb*=u);XNKwf{Ab*I{{A`oJ@+O5zpZm!+vM16y|}L3oyM2A
z=jQw`za|AfxG%WP#ynH`#iVWF-UliU_z3hZX8+vssrxf$VdzEvbJxq(^Svwl>V9Eq
z4_{QR^!h#TZEn7w`u+LcWBjLz4>?vRE)AHYwt)Y4+1qw+_NM$boFWy=X1BIJURX8f
zwfXN=&GMh8emcDO<(=sh0+>&Aybmc4a4+f6e`$L&@!r$a^4fi|wgD|w+$T3y^jEFn
z`g+?c+vs&?THDt^gC*r3#dYP>u5^e9H2?cvp4t}m<Feff?j_S(rnlLAoG!m&dcn_N
zgH<P6q>ubDopnY?{T|c2smlyD&ztBsVcq2TDf5qQ*dzRP{gh^{$SF4Bf3}>PGTY-=
z^Jl*mrw-lp-x$AS`j?%J6~%W>+Fz3ISv@JN+}Eclxo^4JVv9?s3zuZ`Kl0x7ihtea
z3cgk0Rfj*HeXVmh^QZpe+e<H<s(xa4eYcqZ_L993;(Hc#O<A>j$Gr`5$@dR^RI{C$
zcxnyH+RIa=mUCw}=S}<Uxj^B+>B**fza7MH&i|LJzC-8ApO5^v3uL|=;hH${wxswa
z<>VjxukST6IDX36X1>}H<-%PLerj!YOq2_}V;bmsG$<g&%<i6Kjc!@k)mdlQwt7FE
zaDD%)!_U9ZOx0yBd9%4s_`OHJfIo9-%P+m;Yfsd8AFDUit$4Y4>GxwrcRcT(+9+@6
zR^^u_`<my}Uc>Ig$8A}Dt=a!2%0y?@W516JtkM!{YFBLT*_|{0+aBK3CBj#pE1VN?
zSB>VHbMUY9UG=>xa)I}sihJJIa(Y;IOnOQ36Zz{?w<Ikz=swV0dA78unR7;I+$r}f
ziTA(vr*d>TOMXkX>Ho!i%6rZ6TWOyk^l-oC`}N#0F5tgU)x+1D7HF(`SZTnO{rCCG
zci$tv7uH|W{%#V?plffacd+zQb>;EvnMYL@=o+)~_V|78?z$#cGo!rb-TbP4pFQjK
zU$0j5&=(Q<vqS&o56e^aYpO%Gdz43fZ~n0KucvzF@q3ex+gSuzojsM@)0}jwQu~6B
z#jN6g!FMmRT6KyxwHy7-liB=A{ZsVBF9rIH_roT?2)o~2^YlleZIZ2m-NVWg>$El-
z__h~$E}zj*$N#&!beYI5y))8>rdBxo4ygBdy<>i~iO#EEfASt2`~7r_{!7kJE&KHo
z<JUg?F8%IxV7bVZde>8BN4MYMk9CT%@O%9`Z0<E{9-dXkH`ZqfeYHBh#wI@3?AwA_
zMK<#uKNLH*Th5<hex#pzGy7|kujlW4ziz~Q?Bnt}H`y((uHNnKaxi~+iF;46kHW$3
zuRo1GK3~7Az=(h4d8NHqrpg&H>(m6q+d7FJm0kD!$@i74Y5@<-PahWkV>{`U=u3r{
zTHoKUxO{~D)$A)z-1c$a53ySF{Q9Sx(`&-?=l7p@{^67LmYRLK^V?59|NH5ux@~d)
z@yZg}w(LbR*X|1*lC7_qCnvVSU1eQ2=Z({y-(Tc&`^AV0ZZKne>-yN{mOa<|_Q$gv
zW+(ozo~tf*{o>5#@4Z|z-0P08t>HY<{*C{5_MrokPs&y5-1Z-5IiomdF;k8u^BdN6
z3pXEmShLChdFSEta~b~$sBO8|w^26P`dC@dTZ#WGlmE2;UoSiJ^{JCOBKt$k)gPa|
zcyp(6OoiaodFE9yda<s%i#~B37rT(^Qs)?FxAxRI-7_-MIrg<%R!?|y`Rop!>k;8W
sVU0JeGOBVM@BL7*3JR@!r}^mk+UTjJM`yp$)T(E{cc<}3vmOHj0Km1@ssI20

diff --git a/data/ZimmermannTb5.11.txt b/data/ZimmermannTb5.11.txt
deleted file mode 100644
index 1e3c3c8..0000000
--- a/data/ZimmermannTb5.11.txt
+++ /dev/null
@@ -1,485 +0,0 @@
-linha	coluna	amostra	prop	parcela
-1	1	1	0.9	2
-2	1	1	0.7368	6
-3	1	1	0.9184	3
-4	1	1	1	7
-5	1	1	0.8621	4
-6	1	1	0.88	11
-7	1	1	0.77	10
-8	1	1	0.775	5
-9	1	1	0.9091	1
-10	1	1	0.9474	8
-11	1	1	0.92	9
-1	2	1	0.913	11
-2	2	1	0.9524	3
-3	2	1	0.875	8
-4	2	1	1	9
-5	2	1	0.8525	1
-6	2	1	1	7
-7	2	1	0.8525	6
-8	2	1	0.9273	4
-9	2	1	0.8	5
-10	2	1	0.8974	2
-11	2	1	0.7647	10
-1	3	1	0.873	10
-2	3	1	0.9821	11
-3	3	1	0.8182	1
-4	3	1	1	2
-5	3	1	0.8793	6
-6	3	1	0.8298	5
-7	3	1	0.94	9
-8	3	1	0.9167	8
-9	3	1	1	7
-10	3	1	0.8615	4
-11	3	1	1	3
-1	4	1	0.9394	9
-2	4	1	0.9744	5
-3	4	1	0.7273	6
-4	4	1	0.9867	3
-5	4	1	0.9524	11
-6	4	1	0.9667	4
-7	4	1	0.8293	1
-8	4	1	0.9846	2
-9	4	1	0.8421	8
-10	4	1	0.7813	10
-11	4	1	0.9318	7
-1	5	1	0.8929	5
-2	5	1	0.9375	8
-3	5	1	0.9	9
-4	5	1	0.9556	6
-5	5	1	0.9811	10
-6	5	1	0.8421	2
-7	5	1	0.9123	11
-8	5	1	0.9583	7
-9	5	1	0.8824	4
-10	5	1	0.8983	3
-11	5	1	0.9615	1
-1	6	1	0.9149	4
-2	6	1	0.9362	2
-3	6	1	0.925	10
-4	6	1	0.9841	11
-5	6	1	0.8971	8
-6	6	1	0.8364	1
-7	6	1	0.9189	7
-8	6	1	0.9605	3
-9	6	1	1	9
-10	6	1	0.9048	5
-11	6	1	0.7059	6
-1	7	1	0.8571	6
-2	7	1	0.9556	10
-3	7	1	0.9483	11
-4	7	1	0.939	5
-5	7	1	0.8677	2
-6	7	1	0.9048	9
-7	7	1	0.9811	8
-8	7	1	0.9643	1
-9	7	1	0.9677	3
-10	7	1	0.8793	7
-11	7	1	0.9344	4
-1	8	1	0.9783	8
-2	8	1	0.962	9
-3	8	1	0.8929	2
-4	8	1	1	4
-5	8	1	0.8571	7
-6	8	1	0.8571	6
-7	8	1	0.9867	3
-8	8	1	0.963	10
-9	8	1	0.9722	11
-10	8	1	0.7931	1
-11	8	1	0.6889	5
-1	9	1	0.8	7
-2	9	1	0.9219	1
-3	9	1	0.8269	5
-4	9	1	0.8824	8
-5	9	1	1	3
-6	9	1	0.8781	10
-7	9	1	0.9702	4
-8	9	1	0.913	11
-9	9	1	0.7586	6
-10	9	1	0.8889	9
-11	9	1	0.8	2
-1	10	1	0.8387	3
-2	10	1	0.9531	4
-3	10	1	1	7
-4	10	1	0.9846	1
-5	10	1	0.9039	5
-6	10	1	0.9375	8
-7	10	1	0.8478	2
-8	10	1	0.9583	9
-9	10	1	0.9231	10
-10	10	1	0.8	6
-11	10	1	1	11
-1	11	1	0.75	1
-2	11	1	0.931	7
-3	11	1	0.9825	4
-4	11	1	0.9057	10
-5	11	1	0.95	9
-6	11	1	0.9857	3
-7	11	1	0.8864	5
-8	11	1	0.8571	6
-9	11	1	0.9048	2
-10	11	1	0.913	11
-11	11	1	1	8
-1	1	2	0.88	2
-2	1	2	0.6757	6
-3	1	2	0.94	3
-4	1	2	1	7
-5	1	2	0.9111	4
-6	1	2	0.8824	11
-7	1	2	0.64	10
-8	1	2	0.9091	5
-9	1	2	1	1
-10	1	2	0.9524	8
-11	1	2	1	9
-1	2	2	0.9024	11
-2	2	2	0.9863	3
-3	2	2	0.7593	8
-4	2	2	1	9
-5	2	2	0.8889	1
-6	2	2	1	7
-7	2	2	0.8333	6
-8	2	2	0.9524	4
-9	2	2	0.9556	5
-10	2	2	0.8636	2
-11	2	2	0.75	10
-1	3	2	1	10
-2	3	2	1	11
-3	3	2	0.8621	1
-4	3	2	0.9756	2
-5	3	2	0.9348	6
-6	3	2	0.8853	5
-7	3	2	0.8636	9
-8	3	2	0.8393	8
-9	3	2	0.9556	7
-10	3	2	0.9107	4
-11	3	2	0.8983	3
-1	4	2	1	9
-2	4	2	0.8889	5
-3	4	2	0.7381	6
-4	4	2	1	3
-5	4	2	0.9487	11
-6	4	2	0.9857	4
-7	4	2	0.9697	1
-8	4	2	0.9265	2
-9	4	2	0.8846	8
-10	4	2	0.8421	10
-11	4	2	0.9841	7
-1	5	2	0.7111	5
-2	5	2	0.7105	8
-3	5	2	0.9778	9
-4	5	2	0.8824	6
-5	5	2	0.8611	10
-6	5	2	0.8281	2
-7	5	2	0.9167	11
-8	5	2	0.9508	7
-9	5	2	0.8824	4
-10	5	2	0.85	3
-11	5	2	0.76	1
-1	6	2	0.8649	4
-2	6	2	0.9383	2
-3	6	2	0.9394	10
-4	6	2	0.9821	11
-5	6	2	1	8
-6	6	2	0.8871	1
-7	6	2	0.8667	7
-8	6	2	0.9516	3
-9	6	2	0.973	9
-10	6	2	0.9091	5
-11	6	2	0.7222	6
-1	7	2	0.8929	6
-2	7	2	0.8571	10
-3	7	2	0.9756	11
-4	7	2	0.8986	5
-5	7	2	0.9643	2
-6	7	2	0.9444	9
-7	7	2	0.9592	8
-8	7	2	0.913	1
-9	7	2	1	3
-10	7	2	0.7692	7
-11	7	2	1	4
-1	8	2	0.9524	8
-2	8	2	0.9677	9
-3	8	2	0.9778	2
-4	8	2	0.9211	4
-5	8	2	0.9492	7
-6	8	2	0.7955	6
-7	8	2	0.7353	3
-8	8	2	0.8889	10
-9	8	2	0.9032	11
-10	8	2	0.8594	1
-11	8	2	0.8	5
-1	9	2	0.7097	7
-2	9	2	0.6364	1
-3	9	2	0.8621	5
-4	9	2	0.8793	8
-5	9	2	0.9608	3
-6	9	2	0.8182	10
-7	9	2	0.9032	4
-8	9	2	1	11
-9	9	2	0.8261	6
-10	9	2	0.8409	9
-11	9	2	1	2
-1	10	2	0.9063	3
-2	10	2	0.9054	4
-3	10	2	0.963	7
-4	10	2	0.9296	1
-5	10	2	0.9787	5
-6	10	2	1	8
-7	10	2	0.8462	2
-8	10	2	0.946	9
-9	10	2	1	10
-10	10	2	0.875	6
-11	10	2	0.8387	11
-1	11	2	0.7059	1
-2	11	2	0.913	7
-3	11	2	0.9216	4
-4	11	2	0.8718	10
-5	11	2	0.9706	9
-6	11	2	0.8853	3
-7	11	2	0.9737	5
-8	11	2	0.7391	6
-9	11	2	0.9722	2
-10	11	2	0.9231	11
-11	11	2	0.9615	8
-1	1	3	0.9032	2
-2	1	3	0.64	6
-3	1	3	0.9804	3
-4	1	3	0.8788	7
-5	1	3	0.8472	4
-6	1	3	0.9118	11
-7	1	3	0.8182	10
-8	1	3	0.8333	5
-9	1	3	0.9535	1
-10	1	3	0.9787	8
-11	1	3	0.7931	9
-1	2	3	0.8333	11
-2	2	3	0.9875	3
-3	2	3	0.9444	8
-4	2	3	0.9375	9
-5	2	3	0.9057	1
-6	2	3	0.9677	7
-7	2	3	0.8235	6
-8	2	3	0.9492	4
-9	2	3	0.9333	5
-10	2	3	0.8889	2
-11	2	3	0.9333	10
-1	3	3	0.7188	10
-2	3	3	0.9702	11
-3	3	3	0.8542	1
-4	3	3	1	2
-5	3	3	0.8537	6
-6	3	3	0.9149	5
-7	3	3	0.942	9
-8	3	3	0.9722	8
-9	3	3	0.9298	7
-10	3	3	0.9756	4
-11	3	3	0.9091	3
-1	4	3	0.8983	9
-2	4	3	0.9434	5
-3	4	3	0.7759	6
-4	4	3	0.9811	3
-5	4	3	1	11
-6	4	3	0.9868	4
-7	4	3	1	1
-8	4	3	0.92	2
-9	4	3	0.8947	8
-10	4	3	0.9143	10
-11	4	3	0.9388	7
-1	5	3	0.8361	5
-2	5	3	0.918	8
-3	5	3	0.9467	9
-4	5	3	0.6154	6
-5	5	3	0.9615	10
-6	5	3	0.9403	2
-7	5	3	0.9057	11
-8	5	3	0.9348	7
-9	5	3	0.9808	4
-10	5	3	0.8667	3
-11	5	3	0.9434	1
-1	6	3	0.9365	4
-2	6	3	0.8955	2
-3	6	3	0.8462	10
-4	6	3	0.9737	11
-5	6	3	0.9138	8
-6	6	3	0.8431	1
-7	6	3	0.7872	7
-8	6	3	0.8833	3
-9	6	3	1	9
-10	6	3	0.7959	5
-11	6	3	0.9575	6
-1	7	3	0.25	6
-2	7	3	0.8421	10
-3	7	3	0.9787	11
-4	7	3	0.975	5
-5	7	3	0.9474	2
-6	7	3	0.9859	9
-7	7	3	0.9623	8
-8	7	3	0.7931	1
-9	7	3	0.9697	3
-10	7	3	0.6818	7
-11	7	3	0.9818	4
-1	8	3	0.8158	8
-2	8	3	0.9546	9
-3	8	3	0.9677	2
-4	8	3	0.9298	4
-5	8	3	0.9583	7
-6	8	3	0.9688	6
-7	8	3	0.7857	3
-8	8	3	1	10
-9	8	3	0.9815	11
-10	8	3	0.625	1
-11	8	3	0.7679	5
-1	9	3	0.9388	7
-2	9	3	0.9091	1
-3	9	3	0.8254	5
-4	9	3	0.7647	8
-5	9	3	0.9091	3
-6	9	3	0.8611	10
-7	9	3	0.9333	4
-8	9	3	0.9744	11
-9	9	3	0.8511	6
-10	9	3	0.925	9
-11	9	3	0.7679	2
-1	10	3	0.8571	3
-2	10	3	0.9623	4
-3	10	3	0.9556	7
-4	10	3	0.8548	1
-5	10	3	0.7755	5
-6	10	3	0.8571	8
-7	10	3	0.8966	2
-8	10	3	1	9
-9	10	3	0.9706	10
-10	10	3	0.8824	6
-11	10	3	0.8085	11
-1	11	3	0.65	1
-2	11	3	1	7
-3	11	3	0.9702	4
-4	11	3	0.9231	10
-5	11	3	0.95	9
-6	11	3	0.9286	3
-7	11	3	0.9583	5
-8	11	3	1	6
-9	11	3	0.8254	2
-10	11	3	0.7308	11
-11	11	3	0.9184	8
-1	1	4	0.875	2
-2	1	4	0.7895	6
-3	1	4	0.9828	3
-4	1	4	0.875	7
-5	1	4	0.8085	4
-6	1	4	0.8409	11
-7	1	4	0.7037	10
-8	1	4	0.8571	5
-9	1	4	0.9546	1
-10	1	4	1	8
-11	1	4	1	9
-1	2	4	0.7778	11
-2	2	4	0.9259	3
-3	2	4	0.9767	8
-4	2	4	0.7917	9
-5	2	4	0.9231	1
-6	2	4	0.9672	7
-7	2	4	0.8	6
-8	2	4	0.9851	4
-9	2	4	0.871	5
-10	2	4	0.9524	2
-11	2	4	0.4375	10
-1	3	4	0.8846	10
-2	3	4	0.9167	11
-3	3	4	0.9804	1
-4	3	4	1	2
-5	3	4	0.963	6
-6	3	4	0.8571	5
-7	3	4	0.9259	9
-8	3	4	0.946	8
-9	3	4	0.8833	7
-10	3	4	0.7761	4
-11	3	4	0.9091	3
-1	4	4	0.8966	9
-2	4	4	0.8226	5
-3	4	4	0.9245	6
-4	4	4	0.9722	3
-5	4	4	0.9592	11
-6	4	4	0.9683	4
-7	4	4	0.9565	1
-8	4	4	0.9167	2
-9	4	4	0.9474	8
-10	4	4	0.8214	10
-11	4	4	0.8039	7
-1	5	4	0.8	5
-2	5	4	0.9298	8
-3	5	4	1	9
-4	5	4	0.9778	6
-5	5	4	1	10
-6	5	4	0.9136	2
-7	5	4	0.9091	11
-8	5	4	0.9167	7
-9	5	4	0.9016	4
-10	5	4	0.6613	3
-11	5	4	0.8387	1
-1	6	4	0.9667	4
-2	6	4	0.8919	2
-3	6	4	0.9706	10
-4	6	4	0.9231	11
-5	6	4	0.9286	8
-6	6	4	0.9778	1
-7	6	4	0.9531	7
-8	6	4	0.9667	3
-9	6	4	0.9825	9
-10	6	4	0.8936	5
-11	6	4	0.7167	6
-1	7	4	0.6667	6
-2	7	4	0.9057	10
-3	7	4	0.9184	11
-4	7	4	0.92	5
-5	7	4	0.9302	2
-6	7	4	0.9355	9
-7	7	4	0.9362	8
-8	7	4	0.9348	1
-9	7	4	0.8163	3
-10	7	4	0.8289	7
-11	7	4	0.8636	4
-1	8	4	0.5714	8
-2	8	4	1	9
-3	8	4	0.9589	2
-4	8	4	0.9891	4
-5	8	4	0.9846	7
-6	8	4	0.907	6
-7	8	4	0.9677	3
-8	8	4	0.9268	10
-9	8	4	0.902	11
-10	8	4	0.9722	1
-11	8	4	0.7174	5
-1	9	4	0.7941	7
-2	9	4	0.7344	1
-3	9	4	0.8781	5
-4	9	4	0.9048	8
-5	9	4	0.9718	3
-6	9	4	0.946	10
-7	9	4	0.76	4
-8	9	4	0.8857	11
-9	9	4	0.9655	6
-10	9	4	0.7674	9
-11	9	4	0.7636	2
-1	10	4	0.6071	3
-2	10	4	0.9114	4
-3	10	4	0.9524	7
-4	10	4	0.9841	1
-5	10	4	0.9737	5
-6	10	4	0.9661	8
-7	10	4	0.92	2
-8	10	4	0.9365	9
-9	10	4	0.72	10
-10	10	4	0.8261	6
-11	10	4	1	11
-1	11	4	0.3529	1
-2	11	4	0.8491	7
-3	11	4	0.9273	4
-4	11	4	0.8889	10
-5	11	4	0.9697	9
-6	11	4	0.9575	3
-7	11	4	0.9375	5
-8	11	4	0.8462	6
-9	11	4	0.9016	2
-10	11	4	0.8929	11
-11	11	4	0.881	8
-- 
GitLab