From 2647d08f866ce881c90eb7e8f97966cb1c7216c5 Mon Sep 17 00:00:00 2001 From: Walmes Zeviani <walmes@ufpr.br> Date: Fri, 25 Mar 2016 16:58:33 -0300 Subject: [PATCH] Corrige resposta que estava como fator. --- R/ZimmermannTb5.11.R | 22 +- data-raw/ZimmermannTb5.11.txt | 970 +++++++++++++++++----------------- data/ZimmermannTb5.11.rda | Bin 2401 -> 2557 bytes data/ZimmermannTb5.11.txt | 485 ----------------- 4 files changed, 495 insertions(+), 982 deletions(-) delete mode 100644 data/ZimmermannTb5.11.txt diff --git a/R/ZimmermannTb5.11.R b/R/ZimmermannTb5.11.R index d173c95..98b5e40 100644 --- a/R/ZimmermannTb5.11.R +++ b/R/ZimmermannTb5.11.R @@ -1,12 +1,12 @@ #' @name ZimmermannTb5.11 -#' @title Proposrção de hastes sobreviventes ao ataque de insetos +#' @title Proporção de hastes sobreviventes ao ataque de insetos #' @description Experimento em delineamento quadrado latino onde foram -#' tomadas quatro amostras em cada uma das parcelas (tipo de -#' inseticida) no que diz respeito ao número total de hastes -#' e número de hastes mortas por cupim (\emph{Sinthermes} sp.) -#' e lagarta elasmo (\emph{Elasmopalpus} sp.). Com base -#' nestes números, a proporção de hastes sobreviventes ao -#' ataque de insetos foi calculada. +#' tomadas quatro amostras em cada uma das parcelas (tipo de +#' inseticida) no que diz respeito ao número total de hastes e +#' número de hastes mortas por cupim (\emph{Sinthermes} sp.) e +#' lagarta elasmo (\emph{Elasmopalpus} sp.). Com base nestes +#' números, a proporção de hastes sobreviventes ao ataque de insetos +#' foi calculada. #' @format Um \code{data.frame} com 484 observações e 5 variáveis #' #' \describe{ @@ -17,12 +17,12 @@ #' \item{coluna}{Fator de níveis nominais. Indica em que coluna do #' quadrado latino a unidade experimental está.} #' -#' \item{amostra}{Fator de níveis numéricos. Identifica a amostra em -#' cada unidade experimental.} -#' #' \item{inset}{Fator de níveis nominais. Indica o inseticida #' aplicado.} #' +#' \item{amostra}{Fator de níveis numéricos. Identifica a amostra em +#' cada unidade experimental.} +#' #' \item{prop}{Proporção de hastes sobreviventes ao ataque de insetos. O #' Só é conhecida a proporção amostral. Não são conhecidos o #' númerador (número hastes sobreviventes) e denominador (total de @@ -41,8 +41,6 @@ #' #' str(ZimmermannTb5.11) #' -#' ZimmermannTb5.11$prop <- as.numeric(as.character(ZimmermannTb5.11$prop)) -#' #' aux <- aggregate(prop ~ linha + coluna + inset, #' data = ZimmermannTb5.11, FUN = mean) #' str(aux) diff --git a/data-raw/ZimmermannTb5.11.txt b/data-raw/ZimmermannTb5.11.txt index 35a69f9..f85da6d 100644 --- a/data-raw/ZimmermannTb5.11.txt +++ b/data-raw/ZimmermannTb5.11.txt @@ -1,485 +1,485 @@ -linha coluna amostra prop inset -1 1 1 0.9 2 -2 1 1 0.7368 6 -3 1 1 0.9184 3 -4 1 1 1 7 -5 1 1 0.8621 4 -6 1 1 0.88 11 -7 1 1 0.77 10 -8 1 1 0.775 5 -9 1 1 0.9091 1 -10 1 1 0.9474 8 -11 1 1 0.92 9 -1 2 1 0.913 11 -2 2 1 0.9524 3 -3 2 1 0.875 8 -4 2 1 1 9 -5 2 1 0.8525 1 -6 2 1 1 7 -7 2 1 0.8525 6 -8 2 1 0.9273 4 -9 2 1 0.8 5 -10 2 1 0.8974 2 -11 2 1 0.7647 10 -1 3 1 0.873 10 -2 3 1 0.9821 11 -3 3 1 0.8182 1 -4 3 1 1 2 -5 3 1 0.8793 6 -6 3 1 0.8298 5 -7 3 1 0.94 9 -8 3 1 0.9167 8 -9 3 1 1 7 -10 3 1 0.8615 4 -11 3 1 1 3 -1 4 1 0.9394 9 -2 4 1 0.9744 5 -3 4 1 0.7273 6 -4 4 1 0.9867 3 -5 4 1 0.9524 11 -6 4 1 0.9667 4 -7 4 1 0.8293 1 -8 4 1 0.9846 2 -9 4 1 0.8421 8 -10 4 1 0.7813 10 -11 4 1 0.9318 7 -1 5 1 0.8929 5 -2 5 1 0.9375 8 -3 5 1 0.9 9 -4 5 1 0.9556 6 -5 5 1 0.9811 10 -6 5 1 0.8421 2 -7 5 1 0.9123 11 -8 5 1 0.9583 7 -9 5 1 0.8824 4 -10 5 1 0.8983 3 -11 5 1 0.9615 1 -1 6 1 0.9149 4 -2 6 1 0.9362 2 -3 6 1 0.925 10 -4 6 1 0.9841 11 -5 6 1 0.8971 8 -6 6 1 0.8364 1 -7 6 1 0.9189 7 -8 6 1 0.9605 3 -9 6 1 1 9 -10 6 1 0.9048 5 -11 6 1 0.7059 6 -1 7 1 0.8571 6 -2 7 1 0.9556 10 -3 7 1 0.9483 11 -4 7 1 0.939 5 -5 7 1 0.8677 2 -6 7 1 0.9048 9 -7 7 1 0.9811 8 -8 7 1 0.9643 1 -9 7 1 0.9677 3 -10 7 1 0.8793 7 -11 7 1 0.9344 4 -1 8 1 0.9783 8 -2 8 1 0.962 9 -3 8 1 0.8929 2 -4 8 1 1 4 -5 8 1 0.8571 7 -6 8 1 0.8571 6 -7 8 1 0.9867 3 -8 8 1 0.963 10 -9 8 1 0.9722 11 -10 8 1 0.7931 1 -11 8 1 0.6889 5 -1 9 1 0.8 7 -2 9 1 0.9219 1 -3 9 1 0.8269 5 -4 9 1 0.8824 8 -5 9 1 1 3 -6 9 1 0.8781 10 -7 9 1 0.9702 4 -8 9 1 0.913 11 -9 9 1 0.7586 6 -10 9 1 0.8889 9 -11 9 1 0.8 2 -1 10 1 0.8387 3 -2 10 1 0.9531 4 -3 10 1 1 7 -4 10 1 0.9846 1 -5 10 1 0.9039 5 -6 10 1 0.9375 8 -7 10 1 0.8478 2 -8 10 1 0.9583 9 -9 10 1 0.9231 10 -10 10 1 0.8 6 -11 10 1 1 11 -1 11 1 0.75 1 -2 11 1 0.931 7 -3 11 1 0.9825 4 -4 11 1 0.9057 10 -5 11 1 0.95 9 -6 11 1 0.9857 3 -7 11 1 0.8864 5 -8 11 1 0.8571 6 -9 11 1 0.9048 2 -10 11 1 0.913 11 -11 11 1 1 8 -1 1 2 0.88 2 -2 1 2 0.6757 6 -3 1 2 0.94 3 -4 1 2 1 7 -5 1 2 0.9111 4 -6 1 2 0.8824 11 -7 1 2 0.64 10 -8 1 2 0.9091 5 -9 1 2 1 1 -10 1 2 0.9524 8 -11 1 2 1 9 -1 2 2 0.9024 11 -2 2 2 0.9863 3 -3 2 2 0.7593 8 -4 2 2 1 9 -5 2 2 0.8889 1 -6 2 2 1 7 -7 2 2 0.8333 6 -8 2 2 0.9524 4 -9 2 2 0.9556 5 -10 2 2 0.8636 2 -11 2 2 0.75 10 -1 3 2 1 10 -2 3 2 1 11 -3 3 2 0.8621 1 -4 3 2 0.9756 2 -5 3 2 0.9348 6 -6 3 2 0.8853 5 -7 3 2 0.8636 9 -8 3 2 0.8393 8 -9 3 2 0.9556 7 -10 3 2 0.9107 4 -11 3 2 0.8983 3 -1 4 2 1 9 -2 4 2 0.8889 5 -3 4 2 0.7381 6 -4 4 2 1 3 -5 4 2 0.9487 11 -6 4 2 0.9857 4 -7 4 2 0.9697 1 -8 4 2 0.9265 2 -9 4 2 0.8846 8 -10 4 2 0.8421 10 -11 4 2 0.9841 7 -1 5 2 0.7111 5 -2 5 2 0.7105 8 -3 5 2 0.9778 9 -4 5 2 0.8824 6 -5 5 2 0.8611 10 -6 5 2 0.8281 2 -7 5 2 0.9167 11 -8 5 2 0.9508 7 -9 5 2 0.8824 4 -10 5 2 0.85 3 -11 5 2 0.76 1 -1 6 2 0.8649 4 -2 6 2 0.9383 2 -3 6 2 0.9394 10 -4 6 2 0.9821 11 -5 6 2 1 8 -6 6 2 0.8871 1 -7 6 2 0.8667 7 -8 6 2 0.9516 3 -9 6 2 0.973 9 -10 6 2 0.9091 5 -11 6 2 0.7222 6 -1 7 2 0.8929 6 -2 7 2 0.8571 10 -3 7 2 0.9756 11 -4 7 2 0.8986 5 -5 7 2 0.9643 2 -6 7 2 0.9444 9 -7 7 2 0.9592 8 -8 7 2 0.913 1 -9 7 2 1 3 -10 7 2 0.7692 7 -11 7 2 1 4 -1 8 2 0.9524 8 -2 8 2 0.9677 9 -3 8 2 0.9778 2 -4 8 2 0.9211 4 -5 8 2 0.9492 7 -6 8 2 0.7955 6 -7 8 2 0.7353 3 -8 8 2 0.8889 10 -9 8 2 0.9032 11 -10 8 2 0.8594 1 -11 8 2 0.8 5 -1 9 2 0.7097 7 -2 9 2 0.6364 1 -3 9 2 0.8621 5 -4 9 2 0.8793 8 -5 9 2 0.9608 3 -6 9 2 0.8182 10 -7 9 2 0.9032 4 -8 9 2 1 11 -9 9 2 0.8261 6 -10 9 2 0.8409 9 -11 9 2 1 2 -1 10 2 0.9063 3 -2 10 2 0.9054 4 -3 10 2 0.963 7 -4 10 2 0.9296 1 -5 10 2 0.9787 5 -6 10 2 1 8 -7 10 2 0.8462 2 -8 10 2 0.946 9 -9 10 2 1 10 -10 10 2 0.875 6 -11 10 2 0.8387 11 -1 11 2 0.7059 1 -2 11 2 0.913 7 -3 11 2 0.9216 4 -4 11 2 0.8718 10 -5 11 2 0.9706 9 -6 11 2 0.8853 3 -7 11 2 0.9737 5 -8 11 2 0.7391 6 -9 11 2 0.9722 2 -10 11 2 0.9231 11 -11 11 2 0.9615 8 -1 1 3 0.9032 2 -2 1 3 0.64 6 -3 1 3 0.9804 3 -4 1 3 0.8788 7 -5 1 3 0.8472 4 -6 1 3 0.9118 11 -7 1 3 0.8182 10 -8 1 3 0.8333 5 -9 1 3 0.9535 1 -10 1 3 0.9787 8 -11 1 3 0.7931 9 -1 2 3 0.8333 11 -2 2 3 0.9875 3 -3 2 3 0.9444 8 -4 2 3 0.9375 9 -5 2 3 0.9057 1 -6 2 3 0.9677 7 -7 2 3 0.8235 6 -8 2 3 0.9492 4 -9 2 3 0.9333 5 -10 2 3 0.8889 2 -11 2 3 0.9333 10 -1 3 3 0.7188 10 -2 3 3 0.9702 11 -3 3 3 0.8542 1 -4 3 3 1 2 -5 3 3 0.8537 6 -6 3 3 0.9149 5 -7 3 3 0.942 9 -8 3 3 0.9722 8 -9 3 3 0.9298 7 -10 3 3 0.9756 4 -11 3 3 0.9091 3 -1 4 3 0.8983 9 -2 4 3 0.9434 5 -3 4 3 0.7759 6 -4 4 3 0.9811 3 -5 4 3 1 11 -6 4 3 0.9868 4 -7 4 3 1 1 -8 4 3 0.92 2 -9 4 3 0.8947 8 -10 4 3 0.9143 10 -11 4 3 0.9388 7 -1 5 3 0.8361 5 -2 5 3 0.918 8 -3 5 3 0.9467 9 -4 5 3 0.6154 6 -5 5 3 0.9615 10 -6 5 3 0.9403 2 -7 5 3 0.9057 11 -8 5 3 0.9348 7 -9 5 3 0.9808 4 -10 5 3 0.8667 3 -11 5 3 0.9434 1 -1 6 3 0.9365 4 -2 6 3 0.8955 2 -3 6 3 0.8462 10 -4 6 3 0.9737 11 -5 6 3 0.9138 8 -6 6 3 0.8431 1 -7 6 3 0.7872 7 -8 6 3 0.8833 3 -9 6 3 1 9 -10 6 3 0.7959 5 -11 6 3 0.9575 6 -1 7 3 0.25 6 -2 7 3 0.8421 10 -3 7 3 0.9787 11 -4 7 3 0.975 5 -5 7 3 0.9474 2 -6 7 3 0.9859 9 -7 7 3 0.9623 8 -8 7 3 0.7931 1 -9 7 3 0.9697 3 -10 7 3 0.6818 7 -11 7 3 0.9818 4 -1 8 3 0.8158 8 -2 8 3 0.9546 9 -3 8 3 0.9677 2 -4 8 3 0.9298 4 -5 8 3 0.9583 7 -6 8 3 0.9688 6 -7 8 3 0.7857 3 -8 8 3 1 10 -9 8 3 0.9815 11 -10 8 3 0.625 1 -11 8 3 0.7679 5 -1 9 3 0.9388 7 -2 9 3 0.9091 1 -3 9 3 0.8254 5 -4 9 3 0.7647 8 -5 9 3 0.9091 3 -6 9 3 0.8611 10 -7 9 3 0.9333 4 -8 9 3 0.9744 11 -9 9 3 0.8511 6 -10 9 3 0.925 9 -11 9 3 0.7679 2 -1 10 3 0.8571 3 -2 10 3 0.9623 4 -3 10 3 0.9556 7 -4 10 3 0.8548 1 -5 10 3 0.7755 5 -6 10 3 0.8571 8 -7 10 3 0.8966 2 -8 10 3 1 9 -9 10 3 0.9706 10 -10 10 3 0.8824 6 -11 10 3 0.8085 11 -1 11 3 0.65 1 -2 11 3 1 7 -3 11 3 0.9702 4 -4 11 3 0.9231 10 -5 11 3 0.95 9 -6 11 3 0.9286 3 -7 11 3 0.9583 5 -8 11 3 1 6 -9 11 3 0.8254 2 -10 11 3 0.7308 11 -11 11 3 0.9184 8 -1 1 4 0.875 2 -2 1 4 0.7895 6 -3 1 4 0.9828 3 -4 1 4 0.875 7 -5 1 4 0.8085 4 -6 1 4 0.8409 11 -7 1 4 0.7037 10 -8 1 4 0.8571 5 -9 1 4 0.9546 1 -10 1 4 1 8 -11 1 4 1 9 -1 2 4 0.7778 11 -2 2 4 0.9259 3 -3 2 4 0.9767 8 -4 2 4 0.7917 9 -5 2 4 0.9231 1 -6 2 4 0.9672 7 -7 2 4 0.8 6 -8 2 4 0.9851 4 -9 2 4 0.871 5 -10 2 4 0.9524 2 -11 2 4 0.4375 10 -1 3 4 0.8846 10 -2 3 4 0.9167 11 -3 3 4 0.9804 1 -4 3 4 1 2 -5 3 4 0.963 6 -6 3 4 0.8571 5 -7 3 4 0.9259 9 -8 3 4 0.946 8 -9 3 4 0.8833 7 -10 3 4 0.7761 4 -11 3 4 0.9091 3 -1 4 4 0.8966 9 -2 4 4 0.8226 5 -3 4 4 0.9245 6 -4 4 4 0.9722 3 -5 4 4 0.9592 11 -6 4 4 0.9683 4 -7 4 4 0.9565 1 -8 4 4 0.9167 2 -9 4 4 0.9474 8 -10 4 4 0.8214 10 -11 4 4 0.8039 7 -1 5 4 0.8 5 -2 5 4 0.9298 8 -3 5 4 1 9 -4 5 4 0.9778 6 -5 5 4 1 10 -6 5 4 0.9136 2 -7 5 4 0.9091 11 -8 5 4 0.9167 7 -9 5 4 0.9016 4 -10 5 4 0.6613 3 -11 5 4 0.8387 1 -1 6 4 0.9667 4 -2 6 4 0.8919 2 -3 6 4 0.9706 10 -4 6 4 0.9231 11 -5 6 4 0.9286 8 -6 6 4 0.9778 1 -7 6 4 0.9531 7 -8 6 4 0.9667 3 -9 6 4 0.9825 9 -10 6 4 0.8936 5 -11 6 4 0.7167 6 -1 7 4 0.6667 6 -2 7 4 0.9057 10 -3 7 4 0.9184 11 -4 7 4 0.92 5 -5 7 4 0.9302 2 -6 7 4 0.9355 9 -7 7 4 0.9362 8 -8 7 4 0.9348 1 -9 7 4 0.8163 3 -10 7 4 0.8289 7 -11 7 4 0.8636 4 -1 8 4 0.5714 8 -2 8 4 1 9 -3 8 4 0.9589 2 -4 8 4 0.9891 4 -5 8 4 0.9846 7 -6 8 4 0.907 6 -7 8 4 0.9677 3 -8 8 4 0.9268 10 -9 8 4 0.902 11 -10 8 4 0.9722 1 -11 8 4 0.7174 5 -1 9 4 0.7941 7 -2 9 4 0.7344 1 -3 9 4 0.8781 5 -4 9 4 0.9048 8 -5 9 4 0.9718 3 -6 9 4 0.946 10 -7 9 4 0.76 4 -8 9 4 0.8857 11 -9 9 4 0.9655 6 -10 9 4 0.7674 9 -11 9 4 0.7636 2 -1 10 4 0.6071 3 -2 10 4 0.9114 4 -3 10 4 0.9524 7 -4 10 4 0.9841 1 -5 10 4 0.9737 5 -6 10 4 0.9661 8 -7 10 4 0.92 2 -8 10 4 0.9365 9 -9 10 4 0.72 10 -10 10 4 0.8261 6 -11 10 4 1 11 -1 11 4 0.3529 1 -2 11 4 0.8491 7 -3 11 4 0.9273 4 -4 11 4 0.8889 10 -5 11 4 0.9697 9 -6 11 4 0.9575 3 -7 11 4 0.9375 5 -8 11 4 0.8462 6 -9 11 4 0.9016 2 -10 11 4 0.8929 11 -11 11 4 0.881 8 +linha coluna inset amostra prop +1 1 2 1 0.9 +2 1 6 1 0.7368 +3 1 3 1 0.9184 +4 1 7 1 1 +5 1 4 1 0.8621 +6 1 11 1 0.88 +7 1 10 1 0.77 +8 1 5 1 0.775 +9 1 1 1 0.9091 +10 1 8 1 0.9474 +11 1 9 1 0.92 +1 2 11 1 0.913 +2 2 3 1 0.9524 +3 2 8 1 0.875 +4 2 9 1 1 +5 2 1 1 0.8525 +6 2 7 1 1 +7 2 6 1 0.8525 +8 2 4 1 0.9273 +9 2 5 1 0.8 +10 2 2 1 0.8974 +11 2 10 1 0.7647 +1 3 10 1 0.873 +2 3 11 1 0.9821 +3 3 1 1 0.8182 +4 3 2 1 1 +5 3 6 1 0.8793 +6 3 5 1 0.8298 +7 3 9 1 0.94 +8 3 8 1 0.9167 +9 3 7 1 1 +10 3 4 1 0.8615 +11 3 3 1 1 +1 4 9 1 0.9394 +2 4 5 1 0.9744 +3 4 6 1 0.7273 +4 4 3 1 0.9867 +5 4 11 1 0.9524 +6 4 4 1 0.9667 +7 4 1 1 0.8293 +8 4 2 1 0.9846 +9 4 8 1 0.8421 +10 4 10 1 0.7813 +11 4 7 1 0.9318 +1 5 5 1 0.8929 +2 5 8 1 0.9375 +3 5 9 1 0.9 +4 5 6 1 0.9556 +5 5 10 1 0.9811 +6 5 2 1 0.8421 +7 5 11 1 0.9123 +8 5 7 1 0.9583 +9 5 4 1 0.8824 +10 5 3 1 0.8983 +11 5 1 1 0.9615 +1 6 4 1 0.9149 +2 6 2 1 0.9362 +3 6 10 1 0.925 +4 6 11 1 0.9841 +5 6 8 1 0.8971 +6 6 1 1 0.8364 +7 6 7 1 0.9189 +8 6 3 1 0.9605 +9 6 9 1 1 +10 6 5 1 0.9048 +11 6 6 1 0.7059 +1 7 6 1 0.8571 +2 7 10 1 0.9556 +3 7 11 1 0.9483 +4 7 5 1 0.939 +5 7 2 1 0.8677 +6 7 9 1 0.9048 +7 7 8 1 0.9811 +8 7 1 1 0.9643 +9 7 3 1 0.9677 +10 7 7 1 0.8793 +11 7 4 1 0.9344 +1 8 8 1 0.9783 +2 8 9 1 0.962 +3 8 2 1 0.8929 +4 8 4 1 1 +5 8 7 1 0.8571 +6 8 6 1 0.8571 +7 8 3 1 0.9867 +8 8 10 1 0.963 +9 8 11 1 0.9722 +10 8 1 1 0.7931 +11 8 5 1 0.6889 +1 9 7 1 0.8 +2 9 1 1 0.9219 +3 9 5 1 0.8269 +4 9 8 1 0.8824 +5 9 3 1 1 +6 9 10 1 0.8781 +7 9 4 1 0.9702 +8 9 11 1 0.913 +9 9 6 1 0.7586 +10 9 9 1 0.8889 +11 9 2 1 0.8 +1 10 3 1 0.8387 +2 10 4 1 0.9531 +3 10 7 1 1 +4 10 1 1 0.9846 +5 10 5 1 0.9039 +6 10 8 1 0.9375 +7 10 2 1 0.8478 +8 10 9 1 0.9583 +9 10 10 1 0.9231 +10 10 6 1 0.8 +11 10 11 1 1 +1 11 1 1 0.75 +2 11 7 1 0.931 +3 11 4 1 0.9825 +4 11 10 1 0.9057 +5 11 9 1 0.95 +6 11 3 1 0.9857 +7 11 5 1 0.8864 +8 11 6 1 0.8571 +9 11 2 1 0.9048 +10 11 11 1 0.913 +11 11 8 1 1 +1 1 2 2 0.88 +2 1 6 2 0.6757 +3 1 3 2 0.94 +4 1 7 2 1 +5 1 4 2 0.9111 +6 1 11 2 0.8824 +7 1 10 2 0.64 +8 1 5 2 0.9091 +9 1 1 2 1 +10 1 8 2 0.9524 +11 1 9 2 1 +1 2 11 2 0.9024 +2 2 3 2 0.9863 +3 2 8 2 0.7593 +4 2 9 2 1 +5 2 1 2 0.8889 +6 2 7 2 1 +7 2 6 2 0.8333 +8 2 4 2 0.9524 +9 2 5 2 0.9556 +10 2 2 2 0.8636 +11 2 10 2 0.75 +1 3 10 2 1 +2 3 11 2 1 +3 3 1 2 0.8621 +4 3 2 2 0.9756 +5 3 6 2 0.9348 +6 3 5 2 0.8853 +7 3 9 2 0.8636 +8 3 8 2 0.8393 +9 3 7 2 0.9556 +10 3 4 2 0.9107 +11 3 3 2 0.8983 +1 4 9 2 1 +2 4 5 2 0.8889 +3 4 6 2 0.7381 +4 4 3 2 1 +5 4 11 2 0.9487 +6 4 4 2 0.9857 +7 4 1 2 0.9697 +8 4 2 2 0.9265 +9 4 8 2 0.8846 +10 4 10 2 0.8421 +11 4 7 2 0.9841 +1 5 5 2 0.7111 +2 5 8 2 0.7105 +3 5 9 2 0.9778 +4 5 6 2 0.8824 +5 5 10 2 0.8611 +6 5 2 2 0.8281 +7 5 11 2 0.9167 +8 5 7 2 0.9508 +9 5 4 2 0.8824 +10 5 3 2 0.85 +11 5 1 2 0.76 +1 6 4 2 0.8649 +2 6 2 2 0.9383 +3 6 10 2 0.9394 +4 6 11 2 0.9821 +5 6 8 2 1 +6 6 1 2 0.8871 +7 6 7 2 0.8667 +8 6 3 2 0.9516 +9 6 9 2 0.973 +10 6 5 2 0.9091 +11 6 6 2 0.7222 +1 7 6 2 0.8929 +2 7 10 2 0.8571 +3 7 11 2 0.9756 +4 7 5 2 0.8986 +5 7 2 2 0.9643 +6 7 9 2 0.9444 +7 7 8 2 0.9592 +8 7 1 2 0.913 +9 7 3 2 1 +10 7 7 2 0.7692 +11 7 4 2 1 +1 8 8 2 0.9524 +2 8 9 2 0.9677 +3 8 2 2 0.9778 +4 8 4 2 0.9211 +5 8 7 2 0.9492 +6 8 6 2 0.7955 +7 8 3 2 0.7353 +8 8 10 2 0.8889 +9 8 11 2 0.9032 +10 8 1 2 0.8594 +11 8 5 2 0.8 +1 9 7 2 0.7097 +2 9 1 2 0.6364 +3 9 5 2 0.8621 +4 9 8 2 0.8793 +5 9 3 2 0.9608 +6 9 10 2 0.8182 +7 9 4 2 0.9032 +8 9 11 2 1 +9 9 6 2 0.8261 +10 9 9 2 0.8409 +11 9 2 2 1 +1 10 3 2 0.9063 +2 10 4 2 0.9054 +3 10 7 2 0.963 +4 10 1 2 0.9296 +5 10 5 2 0.9787 +6 10 8 2 1 +7 10 2 2 0.8462 +8 10 9 2 0.946 +9 10 10 2 1 +10 10 6 2 0.875 +11 10 11 2 0.8387 +1 11 1 2 0.7059 +2 11 7 2 0.913 +3 11 4 2 0.9216 +4 11 10 2 0.8718 +5 11 9 2 0.9706 +6 11 3 2 0.8853 +7 11 5 2 0.9737 +8 11 6 2 0.7391 +9 11 2 2 0.9722 +10 11 11 2 0.9231 +11 11 8 2 0.9615 +1 1 2 3 0.9032 +2 1 6 3 0.64 +3 1 3 3 0.9804 +4 1 7 3 0.8788 +5 1 4 3 0.8472 +6 1 11 3 0.9118 +7 1 10 3 0.8182 +8 1 5 3 0.8333 +9 1 1 3 0.9535 +10 1 8 3 0.9787 +11 1 9 3 0.7931 +1 2 11 3 0.8333 +2 2 3 3 0.9875 +3 2 8 3 0.9444 +4 2 9 3 0.9375 +5 2 1 3 0.9057 +6 2 7 3 0.9677 +7 2 6 3 0.8235 +8 2 4 3 0.9492 +9 2 5 3 0.9333 +10 2 2 3 0.8889 +11 2 10 3 0.9333 +1 3 10 3 0.7188 +2 3 11 3 0.9702 +3 3 1 3 0.8542 +4 3 2 3 1 +5 3 6 3 0.8537 +6 3 5 3 0.9149 +7 3 9 3 0.942 +8 3 8 3 0.9722 +9 3 7 3 0.9298 +10 3 4 3 0.9756 +11 3 3 3 0.9091 +1 4 9 3 0.8983 +2 4 5 3 0.9434 +3 4 6 3 0.7759 +4 4 3 3 0.9811 +5 4 11 3 1 +6 4 4 3 0.9868 +7 4 1 3 1 +8 4 2 3 0.92 +9 4 8 3 0.8947 +10 4 10 3 0.9143 +11 4 7 3 0.9388 +1 5 5 3 0.8361 +2 5 8 3 0.918 +3 5 9 3 0.9467 +4 5 6 3 0.6154 +5 5 10 3 0.9615 +6 5 2 3 0.9403 +7 5 11 3 0.9057 +8 5 7 3 0.9348 +9 5 4 3 0.9808 +10 5 3 3 0.8667 +11 5 1 3 0.9434 +1 6 4 3 0.9365 +2 6 2 3 0.8955 +3 6 10 3 0.8462 +4 6 11 3 0.9737 +5 6 8 3 0.9138 +6 6 1 3 0.8431 +7 6 7 3 0.7872 +8 6 3 3 0.8833 +9 6 9 3 1 +10 6 5 3 0.7959 +11 6 6 3 0.9575 +1 7 6 3 0.25 +2 7 10 3 0.8421 +3 7 11 3 0.9787 +4 7 5 3 0.975 +5 7 2 3 0.9474 +6 7 9 3 0.9859 +7 7 8 3 0.9623 +8 7 1 3 0.7931 +9 7 3 3 0.9697 +10 7 7 3 0.6818 +11 7 4 3 0.9818 +1 8 8 3 0.8158 +2 8 9 3 0.9546 +3 8 2 3 0.9677 +4 8 4 3 0.9298 +5 8 7 3 0.9583 +6 8 6 3 0.9688 +7 8 3 3 0.7857 +8 8 10 3 1 +9 8 11 3 0.9815 +10 8 1 3 0.625 +11 8 5 3 0.7679 +1 9 7 3 0.9388 +2 9 1 3 0.9091 +3 9 5 3 0.8254 +4 9 8 3 0.7647 +5 9 3 3 0.9091 +6 9 10 3 0.8611 +7 9 4 3 0.9333 +8 9 11 3 0.9744 +9 9 6 3 0.8511 +10 9 9 3 0.925 +11 9 2 3 0.7679 +1 10 3 3 0.8571 +2 10 4 3 0.9623 +3 10 7 3 0.9556 +4 10 1 3 0.8548 +5 10 5 3 0.7755 +6 10 8 3 0.8571 +7 10 2 3 0.8966 +8 10 9 3 1 +9 10 10 3 0.9706 +10 10 6 3 0.8824 +11 10 11 3 0.8085 +1 11 1 3 0.65 +2 11 7 3 1 +3 11 4 3 0.9702 +4 11 10 3 0.9231 +5 11 9 3 0.95 +6 11 3 3 0.9286 +7 11 5 3 0.9583 +8 11 6 3 1 +9 11 2 3 0.8254 +10 11 11 3 0.7308 +11 11 8 3 0.9184 +1 1 2 4 0.875 +2 1 6 4 0.7895 +3 1 3 4 0.9828 +4 1 7 4 0.875 +5 1 4 4 0.8085 +6 1 11 4 0.8409 +7 1 10 4 0.7037 +8 1 5 4 0.8571 +9 1 1 4 0.9546 +10 1 8 4 1 +11 1 9 4 1 +1 2 11 4 0.7778 +2 2 3 4 0.9259 +3 2 8 4 0.9767 +4 2 9 4 0.7917 +5 2 1 4 0.9231 +6 2 7 4 0.9672 +7 2 6 4 0.8 +8 2 4 4 0.9851 +9 2 5 4 0.871 +10 2 2 4 0.9524 +11 2 10 4 0.4375 +1 3 10 4 0.8846 +2 3 11 4 0.9167 +3 3 1 4 0.9804 +4 3 2 4 1 +5 3 6 4 0.963 +6 3 5 4 0.8571 +7 3 9 4 0.9259 +8 3 8 4 0.946 +9 3 7 4 0.8833 +10 3 4 4 0.7761 +11 3 3 4 0.9091 +1 4 9 4 0.8966 +2 4 5 4 0.8226 +3 4 6 4 0.9245 +4 4 3 4 0.9722 +5 4 11 4 0.9592 +6 4 4 4 0.9683 +7 4 1 4 0.9565 +8 4 2 4 0.9167 +9 4 8 4 0.9474 +10 4 10 4 0.8214 +11 4 7 4 0.8039 +1 5 5 4 0.8 +2 5 8 4 0.9298 +3 5 9 4 1 +4 5 6 4 0.9778 +5 5 10 4 1 +6 5 2 4 0.9136 +7 5 11 4 0.9091 +8 5 7 4 0.9167 +9 5 4 4 0.9016 +10 5 3 4 0.6613 +11 5 1 4 0.8387 +1 6 4 4 0.9667 +2 6 2 4 0.8919 +3 6 10 4 0.9706 +4 6 11 4 0.9231 +5 6 8 4 0.9286 +6 6 1 4 0.9778 +7 6 7 4 0.9531 +8 6 3 4 0.9667 +9 6 9 4 0.9825 +10 6 5 4 0.8936 +11 6 6 4 0.7167 +1 7 6 4 0.6667 +2 7 10 4 0.9057 +3 7 11 4 0.9184 +4 7 5 4 0.92 +5 7 2 4 0.9302 +6 7 9 4 0.9355 +7 7 8 4 0.9362 +8 7 1 4 0.9348 +9 7 3 4 0.8163 +10 7 7 4 0.8289 +11 7 4 4 0.8636 +1 8 8 4 0.5714 +2 8 9 4 1 +3 8 2 4 0.9589 +4 8 4 4 0.9891 +5 8 7 4 0.9846 +6 8 6 4 0.907 +7 8 3 4 0.9677 +8 8 10 4 0.9268 +9 8 11 4 0.902 +10 8 1 4 0.9722 +11 8 5 4 0.7174 +1 9 7 4 0.7941 +2 9 1 4 0.7344 +3 9 5 4 0.8781 +4 9 8 4 0.9048 +5 9 3 4 0.9718 +6 9 10 4 0.946 +7 9 4 4 0.76 +8 9 11 4 0.8857 +9 9 6 4 0.9655 +10 9 9 4 0.7674 +11 9 2 4 0.7636 +1 10 3 4 0.6071 +2 10 4 4 0.9114 +3 10 7 4 0.9524 +4 10 1 4 0.9841 +5 10 5 4 0.9737 +6 10 8 4 0.9661 +7 10 2 4 0.92 +8 10 9 4 0.9365 +9 10 10 4 0.72 +10 10 6 4 0.8261 +11 10 11 4 1 +1 11 1 4 0.3529 +2 11 7 4 0.8491 +3 11 4 4 0.9273 +4 11 10 4 0.8889 +5 11 9 4 0.9697 +6 11 3 4 0.9575 +7 11 5 4 0.9375 +8 11 6 4 0.8462 +9 11 2 4 0.9016 +10 11 11 4 0.8929 +11 11 8 4 0.881 diff --git a/data/ZimmermannTb5.11.rda b/data/ZimmermannTb5.11.rda index a634d35bafa020156dffd1a12b0a79cc0e9413ff..7591eba58f5c8ae686e4bf1d101effb8c3aa5409 100644 GIT binary patch literal 2557 zcmZ>Y%CIzaj8qGbWEMz_XAq95|4#@!;P}tL!2BSO;egbfi;EnbRYOc}&GuDa!R#wH zL5jiTvcm=DD-0JGFu*{DRE7yJ0|PIE$qDwiYAe1nFx;BID&qpr${)Szi_8KzH<>M) zHLGg2TT|W2N4)-5&6ZuMlA5>JZC2I1WmhB(rE(@1^hz-<c3*LUS8jsYgcL~=_LU2& zW@Sh*E?|7gz<h<5eFej029^U1J}?Wh(Vh)V2@Go3WME>Psv^s``kV9%YgHvH&0F4O zl<U6Y;$l;_1}Q22V3X!72F6!XRqZRE+WInF_#5!mL~hoss$MBMHH{3OS-gykFELa# zyRY2JulbTc_{vw4zrmjr<^^Bjn&jbY;_MTYz;fAvmqAL3A>#rABPeJt3ov9bTwGuR zww>9nKiKzIRc}zGvRm_&Fa25VD<|$QzVdHssP?RX*F!zd23=WY#nsuiwp+?$>T;cy ztxF~@%9M6`>=6@jdzRbe`YEe+xtvUysIf#<NXIDMyG`k+B(HP8nkQF;@^ARe4gpE9 z97-{q?JT&}#D|%&<$&R%PN6PO2`?RC$%YJ(goE=NjwMK`7|ie%iSanERyeO9I>)VW zL6S~j(lI5GK$o62p~nteQVeGDxOFay37nIpXE>83P}$D#<UE}O;}hvK&Zr(^ax+%! zXPg%};k=l^jMI`FF@XtFI}W9bOYpSzB%IUO(y>@@PJ*6+@zNz~OpiGWJB~ywI;JV~ zXkq9=OSyjjf4inEt5?08*?sBNfwq;0ZmCSTwMu1D;^lSbEC+==b<1v_cyM($_oM?( zp3+sGDux#s+Y;yYm3iJwPn$chtn*g7ti{X6Kf11NUGY>acZrL1rBJJ?s8g4whH9YD zid8Mmlker5SMPr;v82UDe!u&pzJh~Nf`KZN7R_~PXAI=?o3<os@xyRGuZc<pUpbye zhiqWI(rF*u7O4>ZOtsG}kU9K@u1tFDQ$2;Kvzg`f?d&=ZzwT6B60&UBToe0Jq^N{B ze4e{_dEccd5BZk&@%Oe}ezZ(KR`Q%$k^Qpw{D$WYjy-*H$YN*I^pK9UbL<m()NiIN z(OWfh>*0sZvp$Qrb~ku_^XlQAyj<k2;pzDgI##_{6A}05+^tE=KASwc*!nJ4za!Rs zp0~p-W#2m2Up=)+aT|N0h2Do&xTRf~bz%Pfa;vE;R$c1)zVyejq+kc#fD6JKcr7>Y z*S>al&Hu=W*H#`gb7oxXoiMNbKv-G+Ir*!LqBc2X9{QoU>`uQ>lZSSQ-(|Z!X#w+D zW-TkQxmq`6(rS?>hgTm6bi7cSwberNYMS<b(JR*(8F`YHs_bp~YGQa*Ha>FkUB<~r z^f&t#7%04VZ)x1b;%>X_%4a(#zK}g)%bwSEe9EvgjJ(cQ;dg-X%qPv|Y3EZKCmXNz zKd(GBZj$x2I(GSaJpGn>oBW#?85!>Fne<ny?clrkf4|Mb7KP7=zHlY$h1VV~>ujDQ zy1m8iE(t3u4}5=IzsUP|>G!7#8M^v|r*9H^v_wIwPgL?z^Uk~-jn2Or+ulVsvTV4* zv8ai8a>VSEJ5f8Q_IW<FdYI_s!e#lOu{N}Ae(dfO@qcuA)kS}mY>+>C-TPtsO2a!T zVGLTrDsJqY>625;ll$&iWV)(~Nt^q9$~F;bkXRflocEzBV^^Y^qM_$8`@WLd8HJVq zw|(>VX1ujMBe$gGPB2IJnaJzEw=Uv3{Lf1IZF}mgqLAI2cL_3jS{oYJcyea+a2>0Q z3jTiXReRJ&-H@jWXG;68i|tV@%vkIez;`oCh(|if)5tBy(d$S27GE{JXHvUU7R0?+ zl6A~ws*&@C+@&otQOV5#B?bJ;19}>sc|7b9l#E=;`Sjj_%VD|+s|7O;M$9wHS;BqL zZNaJ;71Otiy?(tc`HF|^CS!JuZ%6B{+}aVna)#2u(4^J59QuMAmx=v}Tj2BbF3*AX zY0Vb0sw~}`_e;8(T@#f&)fL^{RV(H`dGhJ2&vwe`r5;%SRA1=hf39UF9a=)!b*Yu= z*;QRHx?Ss?PF%N>>RBRjW|=|5+V87-q*o*!_k0tU!dVvi&@CWlcVJ=Im1#+e3&ZSZ zYxAW1Or5gC%)b1o=ic;9f)mrU5C3x!R)6z$V%E+#^O7|lwOn#t_?N%fnQemZoBi#6 zjkC%wxSfn_xfANI-?_qUf!70f4X%bz>(<rXv$@v$hO9C++jx}0f1|{~lR1UVD%;CB z?Y`Pn*tUN2yS8?Q(Byk1QW1Gi>vmmzJz29`<*a0?*$IWmQy1u{hdw!4WY{W@&L+Ry zspj0Pq8H5y^Xj);Ynz!8^^3(nZ$irEPr`STtXp%$mM=8<?)EEd{lT=P=(dnG>PA~a zbV_+wa|@NdYhym%E3)m2TUPCnqSSAR_C=OPr(ATe&h%i(&=BNOvT0+L65F!!-mbbQ zUJrwM{(ftmv+rQp!OZ>q{!iD)Wo~&b6%=K~UB9&E)5c3hEoDdMwM<hAW7jfFF}TD! zA&7fYStv_j562`28^dReJMIWPl3cs=@x>|f6%KbUa9-pW6kPh#;y~V!IWY&^IT|IR zeIt3kAL86zIjNJ&KV+9Gv+73~fzx`a4>SH=%CB&DH@NoT=B*+=-eWo2B7dK_*>0Ae zvtIJoq}9^j-16jJ=e#;DFC+JO{+Zjp(}PL`p7p)`_2ggKmCXgk8cSvfp0G=3dE6$q z*I0E!#MidQ&fbcomB&}}8ma3Quy4G#eO;Y);GPE-o#vN2W-qz_INWbf#!bzg-A``C z6<uDE|J#c5!dcrHH+TBX<;hRZd&9Nr%-PwAGtQR;6>qeR6I*z0m&%K0-%D<X+*MzZ z=f}F!FK+XkEq6}kMNe7u#@bP@EOv6x=YKs6({`~o94yh!{KqQT#>}F`#wnQIm04hO zoO7mja$<W>*6Wj*rdKQ18=Nw!IwxEDedmn08S7{55<hx!ss6tBuq`!@zJ9Fw9rSIh zmYbiG<;hC#C;KuV#aC?G7(PwLymbA<nh&hs&t|Tvy}Dm(GVkoE&+=dQO^9hd5!6@{ z7*cV-TZ}PS!)bvCM`VK2!9<OaP)82NK>JG%H|a4wF?SMY^03Nke{QEyt@*Dl<Ndj- z8`AIdmK@4n>|J(0t$R*bcIji&h#OinSB9M_n3`+lbJc?9=;W}pX)!C!G&kyct<+lD zd1UKpwIfTiFB$oEyPAnzTFJK8)AXv!byubADQdeiuQsj^kp2`Terr`EXH`qZS;@?z zMUo{Oqx4j=eUl@uT|4!lXU*Dm3wNGMy|Q%6&B(}Ly_XB+1kPofwtC$+yE-k=*JsJ; qj+1+fdp7G-2>&TA&-M|y=KF9%YtsRf>i^w4mF8%8Fm@QMZvX%uHjJA9 literal 2401 zcmb2|=3oE==C@IqB_W|g@0M(4XHgVpbaa`Rdc;8@jMaNu;)GBIrw#?PNEHV$Aqxc! zAw?kx2N3}lUJHc<n>vlwC@G!T*TJOJ&E%=S{=U$}qp2MCe*1;)-S*Si_W2phqI0hg z`##^hZ~MEo>-YUy^{e$?Y;g3krN=B~`U={O@4OWFFVoji@KO1U;KL5l_g61(DlRhO zE{fT?Q}b}Nx~jUh%(+>Q>Xt}^9^GP8ye>xHZbJ9R%^HS_j&=w--<nu`<aY7fo!?@r z*V$g5mwo>4{<FMmPXB+)!Jla1EFq}ab3(u^ghSb?MNs%q2XEq$R)a^*5@kJaC2kvT zOU^m|<GlRi|4a35KRze3@W~3>cV`5<w%r18uDDd+nfX{Ra=N3fPQ3d8<M)3Kz2@&{ z(%q|4{O{MkfQJV059&AnUoLy=4sX`v?A`IwmqhlQ_CH>FCY~`aX8GO8RV&NVj4%AY zYA0o@Bfq7_GLa`Ex4LfUDGk=zq^&#i^Xj=nwj3|}zfmvo(b0F?W3#i5h1}fXz<59U z(^iQqXM>}jzOiM!$GKQuLa<us&oOIh`JLGc5|++&vBk%@y)L;|N6Go5TEA+3TmExv zyyMKhskisNYIhJ1Yt6hcFYc0IRlR@q{_E}{IXmk0<6nQ8(fzG?;+4C*SIuL$x%(*W zTb7+@PvuAZ7z@MZzZZJLmftI#+H8~@`S_ovo<W!2{JmCx)ilD@a@X9M&1`qPWApzQ z<v;&dolka;TF>^i_vu7tsjEzL&$aJ(`FXdf*jzhyw`Ygr>mRN<`FiV<>)+f&o;Ln- zJoaw>?L4Nf&MSZ2bU)v)>+^5XfI5aRw%+%4+dN3WuxqaLthh<6x3(UXm#^O_VRGbj z#mmj_^yRCVulRnvDwUtlcuJi8i}QZfrf+{X#V5JvGS?nIadQ8h+6#wXXZ>aC@5$%P zd-!*s_xc9;!lj>IuGBBF`CMf6B6QxJZ#mfv`yHw;ta`bp@7#Lt^{Z=me)XQ2ZM^^X zvBC>?y7y;ZOVpH5lUcdo{r@GkSzjOaa35#>zO?+<--@5bbJMo4F3y{t_TG06gI)Mp z^<Qf$<nMeGp2NiStTXM>5?hVO>+a_iXm=JS+h@;aXLX*XYkBI=7ccYkam=M>THkD) z`+bA0tIN(eZelN(&bZHhmuxMP9~vdkA``yf!MUaH@v^f$y!#(m9Q>BCSN#6g=H1J# zorq;&d)EEy_LH64#mrc2PuDaWe%`(II$J%{s{ms~N%2E-&z=95ST{}IwDa7a<>$8^ zyFGg~v%jHU>a*jME$S`#Cp^#j&Mq8a;1kvLxqHcsE6NS_9n!JdFYKRle>(Ah{r2Pf za##ERuIH#ypKEyQsxZ$yrdjVFu}w@`u*^nX_fu7CMO)d{wq*7*KUbPRcmJ@{W@+$g zxv1yc{#2)h&o!I=r)RyQOX7=%JQrNT?pjo_U9r;+tDjdi;q$~#C;wKSYJAjXQ;_^m z!dB&A>9Nc9%NxHih&<tb*=u);XNKwf{Ab*I{{A`oJ@+O5zpZm!+vM16y|}L3oyM2A z=jQw`za|AfxG%WP#ynH`#iVWF-UliU_z3hZX8+vssrxf$VdzEvbJxq(^Svwl>V9Eq z4_{QR^!h#TZEn7w`u+LcWBjLz4>?vRE)AHYwt)Y4+1qw+_NM$boFWy=X1BIJURX8f zwfXN=&GMh8emcDO<(=sh0+>&Aybmc4a4+f6e`$L&@!r$a^4fi|wgD|w+$T3y^jEFn z`g+?c+vs&?THDt^gC*r3#dYP>u5^e9H2?cvp4t}m<Feff?j_S(rnlLAoG!m&dcn_N zgH<P6q>ubDopnY?{T|c2smlyD&ztBsVcq2TDf5qQ*dzRP{gh^{$SF4Bf3}>PGTY-= z^Jl*mrw-lp-x$AS`j?%J6~%W>+Fz3ISv@JN+}Eclxo^4JVv9?s3zuZ`Kl0x7ihtea z3cgk0Rfj*HeXVmh^QZpe+e<H<s(xa4eYcqZ_L993;(Hc#O<A>j$Gr`5$@dR^RI{C$ zcxnyH+RIa=mUCw}=S}<Uxj^B+>B**fza7MH&i|LJzC-8ApO5^v3uL|=;hH${wxswa z<>VjxukST6IDX36X1>}H<-%PLerj!YOq2_}V;bmsG$<g&%<i6Kjc!@k)mdlQwt7FE zaDD%)!_U9ZOx0yBd9%4s_`OHJfIo9-%P+m;Yfsd8AFDUit$4Y4>GxwrcRcT(+9+@6 zR^^u_`<my}Uc>Ig$8A}Dt=a!2%0y?@W516JtkM!{YFBLT*_|{0+aBK3CBj#pE1VN? zSB>VHbMUY9UG=>xa)I}sihJJIa(Y;IOnOQ36Zz{?w<Ikz=swV0dA78unR7;I+$r}f ziTA(vr*d>TOMXkX>Ho!i%6rZ6TWOyk^l-oC`}N#0F5tgU)x+1D7HF(`SZTnO{rCCG zci$tv7uH|W{%#V?plffacd+zQb>;EvnMYL@=o+)~_V|78?z$#cGo!rb-TbP4pFQjK zU$0j5&=(Q<vqS&o56e^aYpO%Gdz43fZ~n0KucvzF@q3ex+gSuzojsM@)0}jwQu~6B z#jN6g!FMmRT6KyxwHy7-liB=A{ZsVBF9rIH_roT?2)o~2^YlleZIZ2m-NVWg>$El- z__h~$E}zj*$N#&!beYI5y))8>rdBxo4ygBdy<>i~iO#EEfASt2`~7r_{!7kJE&KHo z<JUg?F8%IxV7bVZde>8BN4MYMk9CT%@O%9`Z0<E{9-dXkH`ZqfeYHBh#wI@3?AwA_ zMK<#uKNLH*Th5<hex#pzGy7|kujlW4ziz~Q?Bnt}H`y((uHNnKaxi~+iF;46kHW$3 zuRo1GK3~7Az=(h4d8NHqrpg&H>(m6q+d7FJm0kD!$@i74Y5@<-PahWkV>{`U=u3r{ zTHoKUxO{~D)$A)z-1c$a53ySF{Q9Sx(`&-?=l7p@{^67LmYRLK^V?59|NH5ux@~d) z@yZg}w(LbR*X|1*lC7_qCnvVSU1eQ2=Z({y-(Tc&`^AV0ZZKne>-yN{mOa<|_Q$gv zW+(ozo~tf*{o>5#@4Z|z-0P08t>HY<{*C{5_MrokPs&y5-1Z-5IiomdF;k8u^BdN6 z3pXEmShLChdFSEta~b~$sBO8|w^26P`dC@dTZ#WGlmE2;UoSiJ^{JCOBKt$k)gPa| zcyp(6OoiaodFE9yda<s%i#~B37rT(^Qs)?FxAxRI-7_-MIrg<%R!?|y`Rop!>k;8W sVU0JeGOBVM@BL7*3JR@!r}^mk+UTjJM`yp$)T(E{cc<}3vmOHj0Km1@ssI20 diff --git a/data/ZimmermannTb5.11.txt b/data/ZimmermannTb5.11.txt deleted file mode 100644 index 1e3c3c8..0000000 --- a/data/ZimmermannTb5.11.txt +++ /dev/null @@ -1,485 +0,0 @@ -linha coluna amostra prop parcela -1 1 1 0.9 2 -2 1 1 0.7368 6 -3 1 1 0.9184 3 -4 1 1 1 7 -5 1 1 0.8621 4 -6 1 1 0.88 11 -7 1 1 0.77 10 -8 1 1 0.775 5 -9 1 1 0.9091 1 -10 1 1 0.9474 8 -11 1 1 0.92 9 -1 2 1 0.913 11 -2 2 1 0.9524 3 -3 2 1 0.875 8 -4 2 1 1 9 -5 2 1 0.8525 1 -6 2 1 1 7 -7 2 1 0.8525 6 -8 2 1 0.9273 4 -9 2 1 0.8 5 -10 2 1 0.8974 2 -11 2 1 0.7647 10 -1 3 1 0.873 10 -2 3 1 0.9821 11 -3 3 1 0.8182 1 -4 3 1 1 2 -5 3 1 0.8793 6 -6 3 1 0.8298 5 -7 3 1 0.94 9 -8 3 1 0.9167 8 -9 3 1 1 7 -10 3 1 0.8615 4 -11 3 1 1 3 -1 4 1 0.9394 9 -2 4 1 0.9744 5 -3 4 1 0.7273 6 -4 4 1 0.9867 3 -5 4 1 0.9524 11 -6 4 1 0.9667 4 -7 4 1 0.8293 1 -8 4 1 0.9846 2 -9 4 1 0.8421 8 -10 4 1 0.7813 10 -11 4 1 0.9318 7 -1 5 1 0.8929 5 -2 5 1 0.9375 8 -3 5 1 0.9 9 -4 5 1 0.9556 6 -5 5 1 0.9811 10 -6 5 1 0.8421 2 -7 5 1 0.9123 11 -8 5 1 0.9583 7 -9 5 1 0.8824 4 -10 5 1 0.8983 3 -11 5 1 0.9615 1 -1 6 1 0.9149 4 -2 6 1 0.9362 2 -3 6 1 0.925 10 -4 6 1 0.9841 11 -5 6 1 0.8971 8 -6 6 1 0.8364 1 -7 6 1 0.9189 7 -8 6 1 0.9605 3 -9 6 1 1 9 -10 6 1 0.9048 5 -11 6 1 0.7059 6 -1 7 1 0.8571 6 -2 7 1 0.9556 10 -3 7 1 0.9483 11 -4 7 1 0.939 5 -5 7 1 0.8677 2 -6 7 1 0.9048 9 -7 7 1 0.9811 8 -8 7 1 0.9643 1 -9 7 1 0.9677 3 -10 7 1 0.8793 7 -11 7 1 0.9344 4 -1 8 1 0.9783 8 -2 8 1 0.962 9 -3 8 1 0.8929 2 -4 8 1 1 4 -5 8 1 0.8571 7 -6 8 1 0.8571 6 -7 8 1 0.9867 3 -8 8 1 0.963 10 -9 8 1 0.9722 11 -10 8 1 0.7931 1 -11 8 1 0.6889 5 -1 9 1 0.8 7 -2 9 1 0.9219 1 -3 9 1 0.8269 5 -4 9 1 0.8824 8 -5 9 1 1 3 -6 9 1 0.8781 10 -7 9 1 0.9702 4 -8 9 1 0.913 11 -9 9 1 0.7586 6 -10 9 1 0.8889 9 -11 9 1 0.8 2 -1 10 1 0.8387 3 -2 10 1 0.9531 4 -3 10 1 1 7 -4 10 1 0.9846 1 -5 10 1 0.9039 5 -6 10 1 0.9375 8 -7 10 1 0.8478 2 -8 10 1 0.9583 9 -9 10 1 0.9231 10 -10 10 1 0.8 6 -11 10 1 1 11 -1 11 1 0.75 1 -2 11 1 0.931 7 -3 11 1 0.9825 4 -4 11 1 0.9057 10 -5 11 1 0.95 9 -6 11 1 0.9857 3 -7 11 1 0.8864 5 -8 11 1 0.8571 6 -9 11 1 0.9048 2 -10 11 1 0.913 11 -11 11 1 1 8 -1 1 2 0.88 2 -2 1 2 0.6757 6 -3 1 2 0.94 3 -4 1 2 1 7 -5 1 2 0.9111 4 -6 1 2 0.8824 11 -7 1 2 0.64 10 -8 1 2 0.9091 5 -9 1 2 1 1 -10 1 2 0.9524 8 -11 1 2 1 9 -1 2 2 0.9024 11 -2 2 2 0.9863 3 -3 2 2 0.7593 8 -4 2 2 1 9 -5 2 2 0.8889 1 -6 2 2 1 7 -7 2 2 0.8333 6 -8 2 2 0.9524 4 -9 2 2 0.9556 5 -10 2 2 0.8636 2 -11 2 2 0.75 10 -1 3 2 1 10 -2 3 2 1 11 -3 3 2 0.8621 1 -4 3 2 0.9756 2 -5 3 2 0.9348 6 -6 3 2 0.8853 5 -7 3 2 0.8636 9 -8 3 2 0.8393 8 -9 3 2 0.9556 7 -10 3 2 0.9107 4 -11 3 2 0.8983 3 -1 4 2 1 9 -2 4 2 0.8889 5 -3 4 2 0.7381 6 -4 4 2 1 3 -5 4 2 0.9487 11 -6 4 2 0.9857 4 -7 4 2 0.9697 1 -8 4 2 0.9265 2 -9 4 2 0.8846 8 -10 4 2 0.8421 10 -11 4 2 0.9841 7 -1 5 2 0.7111 5 -2 5 2 0.7105 8 -3 5 2 0.9778 9 -4 5 2 0.8824 6 -5 5 2 0.8611 10 -6 5 2 0.8281 2 -7 5 2 0.9167 11 -8 5 2 0.9508 7 -9 5 2 0.8824 4 -10 5 2 0.85 3 -11 5 2 0.76 1 -1 6 2 0.8649 4 -2 6 2 0.9383 2 -3 6 2 0.9394 10 -4 6 2 0.9821 11 -5 6 2 1 8 -6 6 2 0.8871 1 -7 6 2 0.8667 7 -8 6 2 0.9516 3 -9 6 2 0.973 9 -10 6 2 0.9091 5 -11 6 2 0.7222 6 -1 7 2 0.8929 6 -2 7 2 0.8571 10 -3 7 2 0.9756 11 -4 7 2 0.8986 5 -5 7 2 0.9643 2 -6 7 2 0.9444 9 -7 7 2 0.9592 8 -8 7 2 0.913 1 -9 7 2 1 3 -10 7 2 0.7692 7 -11 7 2 1 4 -1 8 2 0.9524 8 -2 8 2 0.9677 9 -3 8 2 0.9778 2 -4 8 2 0.9211 4 -5 8 2 0.9492 7 -6 8 2 0.7955 6 -7 8 2 0.7353 3 -8 8 2 0.8889 10 -9 8 2 0.9032 11 -10 8 2 0.8594 1 -11 8 2 0.8 5 -1 9 2 0.7097 7 -2 9 2 0.6364 1 -3 9 2 0.8621 5 -4 9 2 0.8793 8 -5 9 2 0.9608 3 -6 9 2 0.8182 10 -7 9 2 0.9032 4 -8 9 2 1 11 -9 9 2 0.8261 6 -10 9 2 0.8409 9 -11 9 2 1 2 -1 10 2 0.9063 3 -2 10 2 0.9054 4 -3 10 2 0.963 7 -4 10 2 0.9296 1 -5 10 2 0.9787 5 -6 10 2 1 8 -7 10 2 0.8462 2 -8 10 2 0.946 9 -9 10 2 1 10 -10 10 2 0.875 6 -11 10 2 0.8387 11 -1 11 2 0.7059 1 -2 11 2 0.913 7 -3 11 2 0.9216 4 -4 11 2 0.8718 10 -5 11 2 0.9706 9 -6 11 2 0.8853 3 -7 11 2 0.9737 5 -8 11 2 0.7391 6 -9 11 2 0.9722 2 -10 11 2 0.9231 11 -11 11 2 0.9615 8 -1 1 3 0.9032 2 -2 1 3 0.64 6 -3 1 3 0.9804 3 -4 1 3 0.8788 7 -5 1 3 0.8472 4 -6 1 3 0.9118 11 -7 1 3 0.8182 10 -8 1 3 0.8333 5 -9 1 3 0.9535 1 -10 1 3 0.9787 8 -11 1 3 0.7931 9 -1 2 3 0.8333 11 -2 2 3 0.9875 3 -3 2 3 0.9444 8 -4 2 3 0.9375 9 -5 2 3 0.9057 1 -6 2 3 0.9677 7 -7 2 3 0.8235 6 -8 2 3 0.9492 4 -9 2 3 0.9333 5 -10 2 3 0.8889 2 -11 2 3 0.9333 10 -1 3 3 0.7188 10 -2 3 3 0.9702 11 -3 3 3 0.8542 1 -4 3 3 1 2 -5 3 3 0.8537 6 -6 3 3 0.9149 5 -7 3 3 0.942 9 -8 3 3 0.9722 8 -9 3 3 0.9298 7 -10 3 3 0.9756 4 -11 3 3 0.9091 3 -1 4 3 0.8983 9 -2 4 3 0.9434 5 -3 4 3 0.7759 6 -4 4 3 0.9811 3 -5 4 3 1 11 -6 4 3 0.9868 4 -7 4 3 1 1 -8 4 3 0.92 2 -9 4 3 0.8947 8 -10 4 3 0.9143 10 -11 4 3 0.9388 7 -1 5 3 0.8361 5 -2 5 3 0.918 8 -3 5 3 0.9467 9 -4 5 3 0.6154 6 -5 5 3 0.9615 10 -6 5 3 0.9403 2 -7 5 3 0.9057 11 -8 5 3 0.9348 7 -9 5 3 0.9808 4 -10 5 3 0.8667 3 -11 5 3 0.9434 1 -1 6 3 0.9365 4 -2 6 3 0.8955 2 -3 6 3 0.8462 10 -4 6 3 0.9737 11 -5 6 3 0.9138 8 -6 6 3 0.8431 1 -7 6 3 0.7872 7 -8 6 3 0.8833 3 -9 6 3 1 9 -10 6 3 0.7959 5 -11 6 3 0.9575 6 -1 7 3 0.25 6 -2 7 3 0.8421 10 -3 7 3 0.9787 11 -4 7 3 0.975 5 -5 7 3 0.9474 2 -6 7 3 0.9859 9 -7 7 3 0.9623 8 -8 7 3 0.7931 1 -9 7 3 0.9697 3 -10 7 3 0.6818 7 -11 7 3 0.9818 4 -1 8 3 0.8158 8 -2 8 3 0.9546 9 -3 8 3 0.9677 2 -4 8 3 0.9298 4 -5 8 3 0.9583 7 -6 8 3 0.9688 6 -7 8 3 0.7857 3 -8 8 3 1 10 -9 8 3 0.9815 11 -10 8 3 0.625 1 -11 8 3 0.7679 5 -1 9 3 0.9388 7 -2 9 3 0.9091 1 -3 9 3 0.8254 5 -4 9 3 0.7647 8 -5 9 3 0.9091 3 -6 9 3 0.8611 10 -7 9 3 0.9333 4 -8 9 3 0.9744 11 -9 9 3 0.8511 6 -10 9 3 0.925 9 -11 9 3 0.7679 2 -1 10 3 0.8571 3 -2 10 3 0.9623 4 -3 10 3 0.9556 7 -4 10 3 0.8548 1 -5 10 3 0.7755 5 -6 10 3 0.8571 8 -7 10 3 0.8966 2 -8 10 3 1 9 -9 10 3 0.9706 10 -10 10 3 0.8824 6 -11 10 3 0.8085 11 -1 11 3 0.65 1 -2 11 3 1 7 -3 11 3 0.9702 4 -4 11 3 0.9231 10 -5 11 3 0.95 9 -6 11 3 0.9286 3 -7 11 3 0.9583 5 -8 11 3 1 6 -9 11 3 0.8254 2 -10 11 3 0.7308 11 -11 11 3 0.9184 8 -1 1 4 0.875 2 -2 1 4 0.7895 6 -3 1 4 0.9828 3 -4 1 4 0.875 7 -5 1 4 0.8085 4 -6 1 4 0.8409 11 -7 1 4 0.7037 10 -8 1 4 0.8571 5 -9 1 4 0.9546 1 -10 1 4 1 8 -11 1 4 1 9 -1 2 4 0.7778 11 -2 2 4 0.9259 3 -3 2 4 0.9767 8 -4 2 4 0.7917 9 -5 2 4 0.9231 1 -6 2 4 0.9672 7 -7 2 4 0.8 6 -8 2 4 0.9851 4 -9 2 4 0.871 5 -10 2 4 0.9524 2 -11 2 4 0.4375 10 -1 3 4 0.8846 10 -2 3 4 0.9167 11 -3 3 4 0.9804 1 -4 3 4 1 2 -5 3 4 0.963 6 -6 3 4 0.8571 5 -7 3 4 0.9259 9 -8 3 4 0.946 8 -9 3 4 0.8833 7 -10 3 4 0.7761 4 -11 3 4 0.9091 3 -1 4 4 0.8966 9 -2 4 4 0.8226 5 -3 4 4 0.9245 6 -4 4 4 0.9722 3 -5 4 4 0.9592 11 -6 4 4 0.9683 4 -7 4 4 0.9565 1 -8 4 4 0.9167 2 -9 4 4 0.9474 8 -10 4 4 0.8214 10 -11 4 4 0.8039 7 -1 5 4 0.8 5 -2 5 4 0.9298 8 -3 5 4 1 9 -4 5 4 0.9778 6 -5 5 4 1 10 -6 5 4 0.9136 2 -7 5 4 0.9091 11 -8 5 4 0.9167 7 -9 5 4 0.9016 4 -10 5 4 0.6613 3 -11 5 4 0.8387 1 -1 6 4 0.9667 4 -2 6 4 0.8919 2 -3 6 4 0.9706 10 -4 6 4 0.9231 11 -5 6 4 0.9286 8 -6 6 4 0.9778 1 -7 6 4 0.9531 7 -8 6 4 0.9667 3 -9 6 4 0.9825 9 -10 6 4 0.8936 5 -11 6 4 0.7167 6 -1 7 4 0.6667 6 -2 7 4 0.9057 10 -3 7 4 0.9184 11 -4 7 4 0.92 5 -5 7 4 0.9302 2 -6 7 4 0.9355 9 -7 7 4 0.9362 8 -8 7 4 0.9348 1 -9 7 4 0.8163 3 -10 7 4 0.8289 7 -11 7 4 0.8636 4 -1 8 4 0.5714 8 -2 8 4 1 9 -3 8 4 0.9589 2 -4 8 4 0.9891 4 -5 8 4 0.9846 7 -6 8 4 0.907 6 -7 8 4 0.9677 3 -8 8 4 0.9268 10 -9 8 4 0.902 11 -10 8 4 0.9722 1 -11 8 4 0.7174 5 -1 9 4 0.7941 7 -2 9 4 0.7344 1 -3 9 4 0.8781 5 -4 9 4 0.9048 8 -5 9 4 0.9718 3 -6 9 4 0.946 10 -7 9 4 0.76 4 -8 9 4 0.8857 11 -9 9 4 0.9655 6 -10 9 4 0.7674 9 -11 9 4 0.7636 2 -1 10 4 0.6071 3 -2 10 4 0.9114 4 -3 10 4 0.9524 7 -4 10 4 0.9841 1 -5 10 4 0.9737 5 -6 10 4 0.9661 8 -7 10 4 0.92 2 -8 10 4 0.9365 9 -9 10 4 0.72 10 -10 10 4 0.8261 6 -11 10 4 1 11 -1 11 4 0.3529 1 -2 11 4 0.8491 7 -3 11 4 0.9273 4 -4 11 4 0.8889 10 -5 11 4 0.9697 9 -6 11 4 0.9575 3 -7 11 4 0.9375 5 -8 11 4 0.8462 6 -9 11 4 0.9016 2 -10 11 4 0.8929 11 -11 11 4 0.881 8 -- GitLab