diff --git a/examples/Ultimate_Gamma_Count.Rmd b/examples/Ultimate_Gamma_Count.Rmd
new file mode 100644
index 0000000000000000000000000000000000000000..bc8e08fbb06acfd9883b967073e2ce81aa9a6206
--- /dev/null
+++ b/examples/Ultimate_Gamma_Count.Rmd
@@ -0,0 +1,1276 @@
+---
+title: "Gamma-Count na análise de dados de contagem"
+author: "Walmes Zeviani"
+output:
+  rmarkdown::html_vignette:
+    fig_width: 6
+    fig_height: 6
+    toc: true
+    toc_dep: 3
+vignette: >
+  %\VignetteIndexEntry{Análise dos dados em Pimentel-Gomes (2009)}
+  %\VignetteEngine{knitr::rmarkdown}
+  %\VignetteEncoding{UTF-8}
+---
+
+<style type="text/css">
+body, td, caption {
+    font-family: "Palatino Linotype", "Book Antiqua", Palatino, serif;
+    background-color: white;
+    font-size: 16px;
+}
+
+tt, code, pre {
+    font-family: "Inconsolata", "Andale Mono", monospace;
+}
+
+code {
+    font-size: 16px;
+}
+
+pre code {
+    font-size: 14px;
+}
+
+pre:not([class]) code {
+    background-color: #92BFB1;
+}
+pre, code {
+    background-color: #62BFB1;
+    border-radius: 3px;
+    color: #333;
+}
+
+/* R output */
+pre:not([class]) code {
+    background-color: #D4D4D4;
+}
+pre:not([class]), code {
+    background-color: #D4D4D4;
+}
+
+/* R input */
+pre, code {
+    border-radius: 3px;
+    background-color: #EDEDED;
+    color: #333;
+}
+
+img {
+    max-width: 100% !important;
+    display: block;
+    margin: auto;
+}
+
+.MathJax {
+    font-size: 80% !important;
+}
+
+</style>
+
+```{r setup, include=FALSE}
+library(knitr)
+
+opts_chunk$set(
+    dev.args=list(family="Palatino"))
+
+options(width=68)
+
+```
+
+****
+## Gamma-Count
+
+```{r, message=FALSE, error=FALSE, results="hide"}
+##----------------------------------------------------------------------
+## Carrega pacotes.
+
+library(lattice)
+library(latticeExtra)
+library(plyr)
+library(bbmle)
+library(corrplot)
+library(car)
+library(multcomp)
+library(doBy)
+
+```
+
+```{r, eval=FALSE}
+##----------------------------------------------------------------------
+## Função de probabilidade da Gamma-Count.
+
+dgcount <- function(y, alpha, beta, offset=1){
+    pgamma(offset, alpha*y, alpha*beta)-
+        pgamma(offset, alpha*y+alpha, alpha*beta)
+}
+
+y <- 0:30
+pP <- dpois(y, lambda=5)
+pGC <- dgcount(y, alpha=1, beta=5)
+
+plot(pP~y, type="h")
+points(pGC~c(y+0.2), type="h", col=2)
+
+```
+
+```{r, eval=FALSE}
+##----------------------------------------------------------------------
+## Explorando a distribuição de probabilidades.
+
+library(rpanel)
+
+draw <- function(input){
+    with(input,
+    {
+        ebeta <- exp(beta)
+        ealpha <- exp(alpha)
+        pP <- dpois(y, lambda=ebeta*off)
+        pGC <- dgcount(y, alpha=ealpha, beta=ebeta, offset=off)
+        plot(pP~y, type="h", ylim=c(0, max(c(pGC, pP))))
+        points(pGC~c(y+0.2), type="h", col=2)
+        m <- sum(y*pGC)
+        abline(v=ebeta*off, lty=2)
+        abline(v=m, col=2, lty=2)
+    })
+    return(input)
+}
+
+panel <- rp.control(y=0:100)
+rp.slider(panel, variable=alpha, from=-5, to=5, initval=0,
+          showvalue=TRUE, resolution=0.1, action=draw)
+rp.slider(panel, variable=beta, from=-5, to=8, initval=3,
+          showvalue=TRUE, resolution=0.1, action=draw)
+rp.doublebutton(panel, variable=off, range=c(0, 3), initval=1,
+                showvalue=TRUE, step=0.1, action=draw)
+
+```
+
+****
+## Reprodução de nematóides em cultivo de soja
+
+Nesse conjunto de dados, a contagem tem um *offset* que precisa ser
+considerado.
+
+### Análise exploratória
+
+```{r}
+##----------------------------------------------------------------------
+## Carrega os dados.
+
+nematodeSoybean1 <- read.table(
+    "nematodeSoybean1.csv",
+    header=TRUE, sep=";")
+nematodeSoybean1$count <- with(nematodeSoybean1, count1+count2)
+str(nematodeSoybean1)
+
+##----------------------------------------------------------------------
+
+xyplot(count1+count2~log2(inipop)|factor(das),
+       data=nematodeSoybean1,
+       type=c("p", "smooth"), jitter.x=TRUE,
+       ylab=expression(Nematodes~by~unit~volume),
+       xlab=expression(Initial~nematode~density))
+
+xyplot(count~log2(inipop)|factor(das), data=nematodeSoybean1,
+       type=c("p", "smooth"), jitter.x=TRUE,
+       ylab=expression(Nematodes~by~unit~volume),
+       xlab=expression(Initial~nematode~density))
+
+xyplot(count/(2*volume)~log2(inipop)|factor(das), data=nematodeSoybean1,
+       type=c("p", "smooth"), jitter.x=TRUE,
+       ylab=expression(Nematodes~by~unit~volume),
+       xlab=expression(Initial~nematode~density))
+
+##----------------------------------------------------------------------
+## Relação média-variância.
+
+da <- subset(nematodeSoybean1, inipop>0)
+
+mv <- ddply(.data=da,
+            .variables=.(inipop, das),
+            .fun=summarise,
+            m=mean(count, na.rm=TRUE),
+            v=var(count, na.rm=TRUE))
+
+xyplot(v~m, data=mv, scales="free", type=c("p", "r"))+
+    layer(panel.abline(a=0, b=1, lty=2))
+
+```
+
+### Inclusão de offset no modelo Gamma-Count
+
+```{r}
+##----------------------------------------------------------------------
+## Simulando um conjunto de dados para ver como acomodar o offset na
+## Gamma-Count.
+
+y <- rpois(100, lambda=5) ## Contagem.
+o <- rep(2, length(y))    ## Offset.
+
+n0 <- glm(y~1, family=poisson)
+## predict(n0, type="response"); exp(coef(n0))
+## logLik(n0)
+
+n1 <- glm(y~offset(log(o))+1, family=poisson)
+## predict(n1, type="response"); exp(coef(n1))*o
+## logLik(n1)
+
+ll <- function(theta, y, X, offset){
+    ## theta: parameter vector;
+    ##   theta[1]: dispersion parameter;
+    ##   theta[-1]: location parameters;
+    ## y: response vector (counts);
+    ## X: model matrix;
+    ## offset: upper limit of the intergral;
+    eXb <- exp(X%*%theta[-1])
+    alpha <- exp(theta[1])
+    alpha.eXb <- alpha*eXb
+    alpha.y <- alpha*y
+    ## returns the log-likelihood.
+    -sum(log(
+         pgamma(offset, alpha.y, alpha.eXb)-
+             pgamma(offset, alpha.y+alpha, alpha.eXb)
+     ))
+}
+
+start <- c(alpha=1, lambda=coef(n1))
+parnames(ll) <- names(start)
+L <- list(y=y, offset=o, X=cbind(rep(1, length(y))))
+
+n2 <- mle2(ll, start=start, fixed=list(alpha=0),
+           vecpar=TRUE, data=L)
+
+n3 <- mle2(ll, start=start,
+           vecpar=TRUE, data=L)
+
+## Log-verossimilhaça.
+cbind(logLik(n0), logLik(n1), logLik(n2), logLik(n3))
+
+## Estimativas dos parâmetros.
+cbind(coef(n0), coef(n1), coef(n2)[-1], coef(n3)[-1])
+
+```
+
+### Ajuste dos modelos
+
+```{r}
+##----------------------------------------------------------------------
+## Ajuste do Poisson e Quasi-Poisson.
+
+da <- transform(da, IP=factor(inipop), DAS=factor(das))
+
+## Modelo Poisson para ter referência.
+m0 <- glm(count~offset(log(volume))+IP*DAS, data=da, family=poisson)
+summary(m0)
+anova(m0, test="Chisq")
+
+## Modelo quasi Poisson para usar os valores iniciais.
+## m1 <- glm(count/volume~IP*DAS, data=da, family=quasipoisson)
+m1 <- glm(count~offset(log(volume))+IP*DAS,
+          data=da, family=quasipoisson)
+summary(m1)
+anova(m1, test="F")
+
+par(mfrow=c(2,2)); plot(m1); layout(1)
+cbind(coef(m0), coef(m1))
+
+##----------------------------------------------------------------------
+## Ajuste do Gamma-Count.
+
+start <- c("alpha"=log(1), coef(m0))
+parnames(ll) <- names(start)
+
+## y <- with(da, count/vol)
+y <- with(da, count/volume)
+X <- model.matrix(~IP*DAS, data=da)
+
+L <- with(da,
+          list(y=count, offset=volume,
+               X=model.matrix(~IP*DAS)))
+
+m2 <- mle2(ll, start=start, fixed=list(alpha=0),
+           data=L, vecpar=TRUE)
+
+m3 <- mle2(ll, start=start,
+           data=L, vecpar=TRUE)
+
+```
+
+### Comparação dos ajustes
+
+```{r}
+##----------------------------------------------------------------------
+
+## Log-verossimilhaça.
+cbind(logLik(m0), logLik(m1), logLik(m2), logLik(m3))
+
+## Estimativas dos parâmetros.
+cbind(coef(m0), coef(m1), coef(m2)[-1], coef(m3)[-1])
+
+## Estimativa do parâmetro de dispersão.
+exp(coef(m3)[1])
+
+## Perfil de log-verossmilhança.
+plot(profile(m3, which=1))
+
+## Teste para o parâmetro de dispersão.
+anova(m3, m2)
+
+## Teste para interação (Wald).
+a <- c(0, attr(model.matrix(m0), "assign"))
+ai <- a==3
+L <- t(replicate(sum(ai), rbind(coef(m3)*0), simplify="matrix"))
+L[,ai] <- diag(sum(ai))
+
+## Teste de Wald explicito.
+## t(L%*%coef(m3))%*%
+##     solve(L%*%vcov(m3)%*%t(L))%*%
+##     (L%*%coef(m3))
+crossprod(L%*%coef(m3), solve(L%*%vcov(m3)%*%t(L), L%*%coef(m3)))
+
+## Teste de Wald para interação (poderia ser LRT, claro).
+linearHypothesis(model=m0, ## É necessário um objeto glm.
+                 hypothesis.matrix=L,
+                 vcov.=vcov(m3),
+                 coef.=coef(m3))
+
+## Teste pelo modelo quasi Poisson.
+anova(m1, test="Chisq")
+anova(m1, test="F")
+
+##----------------------------------------------------------------------
+## Ortogonalidade entre dispersão e locação.
+
+V <- cov2cor(vcov(m3))
+corrplot.mixed(V, upper="ellipse", col="gray50")
+dev.off()
+
+V[1,-1]
+sum(abs(V[1,-1]))
+
+```
+
+### Predição
+
+```{r}
+##----------------------------------------------------------------------
+## Predição das médias com IC.
+
+pred <- expand.grid(IP=levels(da$IP),
+                    DAS=levels(da$DAS),
+                    volume=100,
+                    KEEP.OUT.ATTRS=FALSE)
+pred <- list(pois=pred, quasi=pred, cg=pred)
+
+## Quantil normal.
+qn <- qnorm(0.975)*c(lwr=-1, fit=0, upr=1)
+
+## Preditos pela Poisson.
+aux <- predict(m0, newdata=pred$pois, se.fit=TRUE)
+aux <- exp(aux$fit+outer(aux$se.fit, qn, FUN="*"))
+pred$pois <- cbind(pred$pois, aux)
+str(pred$pois)
+
+aux <- predict(m1, newdata=pred$quasi, se.fit=TRUE)
+aux <- exp(aux$fit+outer(aux$se.fit, qn, FUN="*"))
+pred$quasi <- cbind(pred$quasi, aux)
+
+alpha <- coef(m3)[1]  ## Locação.
+theta <- coef(m3)[-1] ## Dispersão.
+
+## Preditor linear.
+X <- model.matrix(~IP*DAS, data=pred$cg)
+pred$cg$eta <- c(X%*%theta)
+
+## Matrix de covariância completa.
+V <- vcov(m3)
+
+## Marginal em theta.
+Vm <- V[-1,-1]
+
+## Condicional.
+Vc <- V[-1,-1]-V[-1,1]%*%solve(V[1,1])%*%V[1,-1]
+
+max(abs(Vm-Vc))
+
+## Preditos pela Gamma-count.
+U <- chol(Vm)
+aux <- sqrt(apply(X%*%t(U), MARGIN=1,
+                  FUN=function(x){ sum(x^2) }))
+
+## Para calcular a média de uma Gamma-Count pelo preditor linear.
+eta2mean <- function(eta, offset, alpha, tol=1e-5){
+    stopifnot(length(eta)==1L)
+    stopifnot(length(offset)==1L)
+    stopifnot(length(alpha)==1L)
+    change <- 1
+    S <- 0; x <- 1; p <- 1
+    while (p>tol){
+        p <- pgamma(offset,
+                    shape=exp(alpha)*x,
+                    rate=exp(alpha)*exp(eta))
+        S <- S+p
+        x <- x+1
+    }
+    return(S)
+}
+
+aux <- pred$cg$eta+outer(aux, qn, FUN="*")
+aux <- apply(aux, MARGIN=2,
+             FUN=function(col){
+                 sapply(col, FUN=eta2mean,
+                        offset=pred$cg$volume[1], alpha=alpha)
+             })
+pred$cg <- cbind(pred$cg, aux)
+
+##----------------------------------------------------------------------
+
+pred <- ldply(pred, .id="modelo")
+pred <- arrange(pred, DAS, IP, modelo)
+str(pred)
+
+source("http://git.leg.ufpr.br/leg/legTools/raw/devel/R/panel.segplot.by.R")
+
+segplot(IP~lwr+upr|DAS, centers=fit, data=pred,
+        draw=FALSE, scales=list(x="free"),
+        panel=panel.segplot.by, groups=pred$modelo, f=0.1,
+        pch=pred$modelo, layout=c(1, NA), as.table=TRUE, 
+        key=list(type="o", divide=1,
+                 lines=list(pch=1:nlevels(pred$modelo), lty=1, col=1),
+                 text=list(c("Poisson", "Quasi-Poisson",
+                             "Gamma-Count"))))
+
+```
+
+****
+## Número de vagens viáveis em soja
+
+Nesse conjunto de dados, **o efeito de bloco pode ser aleatório**. Teria
+que implementar uma versão da Gamma-Count para acomodar termos de efeito
+aleatório.
+
+### Análise exploratória
+
+```{r}
+##----------------------------------------------------------------------
+## Carrega os dados.
+
+db <- read.table("http://www.leg.ufpr.br/~walmes/data/soja.txt",
+                 header=TRUE, sep="\t", dec=",")
+names(db)[1:2] <- c("k", "a")
+db <- db[-74,c(1:3, 8, 10)]
+str(db)
+
+xyplot(nv~k|a, data=db)
+xyplot(ts~k|a, data=db)
+
+##----------------------------------------------------------------------
+## Gráfico de média-variância não é possível pois não existem repetições
+## com o mesmo preditor.
+
+```
+
+### Ajuste dos modelos
+
+```{r}
+##----------------------------------------------------------------------
+## Ajuste do Poisson e Quasi-Poisson.
+
+db <- transform(db, A=factor(a), K=factor(k))
+
+## Modelo Poisson para ter referência.
+m0 <- glm(nv~bloco+A*K, data=db, family=poisson)
+summary(m0)
+anova(m0, test="Chisq")
+
+## Modelo quasi Poisson para usar os valores iniciais.
+## m1 <- glm(count/volume~IP*DAS, data=da, family=quasipoisson)
+m1 <- update(m0, family=quasipoisson)
+summary(m1)
+anova(m1, test="F")
+
+par(mfrow=c(2,2)); plot(m1); layout(1)
+cbind(coef(m0), coef(m1))
+
+##----------------------------------------------------------------------
+## Ajuste do Gamma-Count.
+
+start <- c("alpha"=log(1), coef(m0))
+parnames(ll) <- names(start)
+
+y <- with(db, nv)
+X <- model.matrix(~bloco+A*K, data=db)
+
+L <- with(db,
+          list(y=nv, offset=1,
+               X=model.matrix(~bloco+A*K)))
+
+m2 <- mle2(ll, start=start, fixed=list(alpha=0),
+           data=L, vecpar=TRUE)
+
+m3 <- mle2(ll, start=start,
+           data=L, vecpar=TRUE)
+
+```
+
+### Comparação dos ajustes
+
+```{r}
+##----------------------------------------------------------------------
+
+## Log-verossimilhaça.
+cbind(logLik(m0), logLik(m1), logLik(m2), logLik(m3))
+
+## Estimativas dos parâmetros.
+cbind(coef(m0), coef(m1), coef(m2)[-1], coef(m3)[-1])
+
+## Estimativa do parâmetro de dispersão.
+exp(coef(m3)[1])
+
+## Perfil de log-verossmilhança.
+plot(profile(m3, which=1))
+
+## Teste para o parâmetro de dispersão.
+anova(m3, m2)
+
+## Teste para interação (Wald).
+a <- c(0, attr(model.matrix(m0), "assign"))
+ai <- a==4
+L <- t(replicate(sum(ai), rbind(coef(m3)*0), simplify="matrix"))
+L[,ai] <- diag(sum(ai))
+
+## Teste de Wald explicito.
+## t(L%*%coef(m3))%*%
+##     solve(L%*%vcov(m3)%*%t(L))%*%
+##     (L%*%coef(m3))
+crossprod(L%*%coef(m3), solve(L%*%vcov(m3)%*%t(L), L%*%coef(m3)))
+
+## Teste de Wald para interação (poderia ser LRT, claro).
+linearHypothesis(model=m0, ## É necessário um objeto glm.
+                 hypothesis.matrix=L,
+                 vcov.=vcov(m3),
+                 coef.=coef(m3))
+
+## Teste pelo modelo quasi Poisson.
+anova(m1, test="Chisq")
+anova(m1, test="F")
+
+##----------------------------------------------------------------------
+## Ortogonalidade entre dispersão e locação.
+
+V <- vcov(m3)
+corrplot.mixed(V, upper="ellipse", col="gray50")
+dev.off()
+
+V[1,-1]
+sum(abs(V[1,-1]))
+
+```
+
+### Predição
+
+```{r}
+##----------------------------------------------------------------------
+## Predição das médias com IC.
+
+pred <- expand.grid(A=levels(db$A),
+                    K=levels(db$K),
+                    bloco=factor("I", levels=levels(db$bloco)),
+                    KEEP.OUT.ATTRS=FALSE)
+pred <- list(pois=pred, quasi=pred, cg=pred)
+
+## Quantil normal.
+qn <- qnorm(0.975)*c(lwr=-1, fit=0, upr=1)
+
+## Preditor linear que considera o efeito médio dos blocos.
+X <- LSmatrix(m0, effect=c("A", "K"))
+
+## Preditos pela Poisson.
+## aux <- predict(m0, newdata=pred$pois, se.fit=TRUE)
+## aux <- exp(aux$fit+outer(aux$se.fit, qn, FUN="*"))
+## pred$pois <- cbind(pred$pois, aux)
+aux <- confint(glht(m0, linfct=X), calpha=univariate_calpha())$confint
+colnames(aux)[1] <- "fit"
+pred$pois <- cbind(pred$pois, exp(aux))
+
+## aux <- predict(m1, newdata=pred$quasi, se.fit=TRUE)
+## aux <- exp(aux$fit+outer(aux$se.fit, qn, FUN="*"))
+## pred$quasi <- cbind(pred$quasi, aux)
+aux <- confint(glht(m1, linfct=X), calpha=univariate_calpha())$confint
+colnames(aux)[1] <- "fit"
+pred$quasi <- cbind(pred$quasi, exp(aux))
+
+alpha <- coef(m3)[1]  ## Locação.
+theta <- coef(m3)[-1] ## Dispersão.
+
+## Preditor linear.
+pred$cg$eta <- c(X%*%theta)
+
+## Matrix de covariância completa.
+V <- vcov(m3)
+
+## Marginal em theta.
+Vm <- V[-1,-1]
+
+## Condicional.
+Vc <- V[-1,-1]-V[-1,1]%*%solve(V[1,1])%*%V[1,-1]
+
+max(abs(Vm-Vc))
+
+## Preditos pela Gamma-count.
+U <- chol(Vm)
+aux <- sqrt(apply(X%*%t(U), MARGIN=1,
+                  FUN=function(x){ sum(x^2) }))
+
+aux <- pred$cg$eta+outer(aux, qn, FUN="*")
+aux <- apply(aux, MARGIN=2,
+             FUN=function(col){
+                 sapply(col, FUN=eta2mean,
+                        offset=1, alpha=alpha)
+             })
+pred$cg <- cbind(pred$cg, aux)
+
+##----------------------------------------------------------------------
+
+pred <- ldply(pred, .id="modelo")
+pred <- arrange(pred, A, K, modelo)
+str(pred)
+
+xyplot(nv~K|A, data=db, layout=c(NA, 1), as.table=TRUE,
+       col=1, cex=0.7, pch=19)+
+    as.layer(
+        segplot(K~lwr+upr|A, centers=fit, data=pred,
+                draw=FALSE, horizontal=FALSE, ## scales=list(x="free"),
+                panel=panel.segplot.by, groups=pred$modelo, f=0.15,
+                pch=pred$modelo, layout=c(NA, 1), as.table=TRUE, 
+                key=list(type="o", divide=1,
+                         lines=list(pch=1:nlevels(pred$modelo),
+                                    lty=1, col=1),
+                         text=list(c("Poisson", "Quasi-Poisson",
+                                     "Gamma-Count"))))
+    )
+
+```
+
+## Ocorrência de mosca branca
+
+<http://www.leg.ufpr.br/~walmes/data/ninfas.txt>
+
+### Análise exploratória
+
+```{r}
+##----------------------------------------------------------------------
+## Análise exploratória.
+
+dc <- read.table("moscaBranca.txt", header=TRUE, sep="\t")
+dc <- transform(dc,
+                data=as.Date(dc$data),
+                bloc=factor(bloc),
+                tot=inf+med+sup,
+                off=100)
+dc$aval <- with(dc, c(data-min(data)))
+dc$Aval <- factor(dc$aval)
+names(dc)[2:3] <- c("Vari","Bloc")
+dc <- droplevels(subset(dc, grepl("BRS", x=Vari)))
+str(dc)
+
+## xyplot(sup+med+inf~data, groups=Vari, outer=TRUE, data=dc)
+xyplot(tot~data|Vari, data=dc)
+
+```
+
+### Ajuste dos modelos
+
+```{r}
+##----------------------------------------------------------------------
+## Ajuste do Poisson e Quasi-Poisson.
+
+## IMPORTANT: Foi usado um offset de 100 por problemas de
+## over/underflow. O problema não é com a Poisson mas com a
+## Gamma-Count. Todas as análises consideram um offset de 100, portanto,
+## permanecem comparáveis e igualmente interpretáveis.
+
+## Modelo Poisson para ter referência.
+m0 <- glm(tot~offset(log(off))+Bloc+Vari*Aval,
+          data=dc, family=poisson)
+summary(m0)
+anova(m0, test="Chisq")
+
+## Modelo quasi Poisson para usar os valores iniciais.
+## m1 <- glm(count/volume~IP*DAS, data=da, family=quasipoisson)
+m1 <- update(m0, family=quasipoisson)
+summary(m1)
+anova(m1, test="F")
+
+par(mfrow=c(2,2)); plot(m1); layout(1)
+anova(m1, test="F")
+
+##----------------------------------------------------------------------
+## Ajuste do Gamma-Count.
+
+start <- c("alpha"=log(0.05), coef(m0))
+parnames(ll) <- names(start)
+
+y <- with(dc, tot)
+X <- model.matrix(~Bloc+Vari*Aval, data=dc)
+
+L <- with(dc, list(y=tot, offset=100, X=X))
+
+m3 <- mle2(ll, start=start,
+           data=L, vecpar=TRUE)
+## summary(m3)
+
+```
+
+### Comparação dos ajustes
+
+```{r}
+##----------------------------------------------------------------------
+
+## Log-verossimilhaça.
+cbind(logLik(m0), logLik(m1), logLik(m3))
+
+## Estimativas dos parâmetros.
+cbind(coef(m0), coef(m1), coef(m3)[-1])
+
+## Estimativa do parâmetro de dispersão.
+exp(coef(m3)[1])
+
+## Perfil de log-verossmilhança.
+plot(profile(m3, which=1))
+
+a <- c(0, attr(model.matrix(m0), "assign"))
+ai <- a==4
+L <- t(replicate(sum(ai), rbind(coef(m3)*0), simplify="matrix"))
+L[,ai] <- diag(sum(ai))
+
+## Teste de Wald explicito.
+## t(L%*%coef(m3))%*%
+##     solve(L%*%vcov(m3)%*%t(L))%*%
+##     (L%*%coef(m3))
+crossprod(L%*%coef(m3), solve(L%*%vcov(m3)%*%t(L), L%*%coef(m3)))
+
+## Teste de Wald para interação (poderia ser LRT, claro).
+linearHypothesis(model=m0, ## É necessário um objeto glm.
+                 hypothesis.matrix=L,
+                 vcov.=vcov(m3),
+                 coef.=coef(m3))
+
+## Teste pelo modelo quasi Poisson.
+anova(m1, test="Chisq")
+anova(m1, test="F")
+
+##----------------------------------------------------------------------
+## Ortogonalidade entre dispersão e locação.
+
+V <- cov2cor(vcov(m3))
+corrplot.mixed(V, upper="ellipse", col="gray50")
+dev.off()
+
+```
+
+### Predição
+
+```{r}
+##----------------------------------------------------------------------
+## Predição das médias com IC.
+
+pred <- expand.grid(Vari=levels(dc$Vari),
+                    Aval=unique(dc$Aval),
+                    Bloc=factor("1", levels=levels(dc$Bloc)),
+                    off=100,
+                    KEEP.OUT.ATTRS=FALSE)
+pred <- list(pois=pred, quasi=pred, cg=pred)
+
+## Quantil normal.
+qn <- qnorm(0.975)*c(lwr=-1, fit=0, upr=1)
+
+X <- LSmatrix(lm(tot~Bloc+Vari*Aval, dc), effect=c("Vari", "Aval"))
+
+## Preditos pela Poisson.
+## aux <- predict(m0, newdata=pred$pois, se.fit=TRUE)
+## aux <- exp(aux$fit+outer(aux$se.fit, qn, FUN="*"))
+## pred$pois <- cbind(pred$pois, aux)
+aux <- confint(glht(m0, linfct=X), calpha=univariate_calpha())$confint
+colnames(aux)[1] <- "fit"
+pred$pois <- cbind(pred$pois, 100*exp(aux))
+
+## aux <- predict(m1, newdata=pred$quasi, se.fit=TRUE)
+## aux <- exp(aux$fit+outer(aux$se.fit, qn, FUN="*"))
+## pred$quasi <- cbind(pred$quasi, aux)
+aux <- confint(glht(m1, linfct=X), calpha=univariate_calpha())$confint
+colnames(aux)[1] <- "fit"
+pred$quasi <- cbind(pred$quasi, 100*exp(aux))
+
+alpha <- coef(m3)[1]  ## Locação.
+theta <- coef(m3)[-1] ## Dispersão.
+
+## Preditor linear.
+pred$cg$eta <- c(X%*%theta)
+
+## Matrix de covariância completa.
+V <- vcov(m3)
+
+## Marginal em theta.
+Vm <- V[-1,-1]
+
+## Condicional.
+Vc <- V[-1,-1]-V[-1,1]%*%solve(V[1,1])%*%V[1,-1]
+
+max(abs(Vm-Vc))
+
+## Preditos pela Gamma-count.
+U <- chol(Vm)
+aux <- sqrt(apply(X%*%t(U), MARGIN=1,
+                  FUN=function(x){ sum(x^2) }))
+
+aux <- pred$cg$eta+outer(aux, qn, FUN="*")
+aux <- apply(aux, MARGIN=2,
+             FUN=function(col){
+                 sapply(col, FUN=eta2mean,
+                        offset=100, alpha=alpha)
+             })
+pred$cg <- cbind(pred$cg, aux)
+
+##----------------------------------------------------------------------
+
+pred <- ldply(pred, .id="modelo")
+pred <- arrange(pred, Aval, Vari, modelo)
+str(pred)
+
+## source("http://git.leg.ufpr.br/leg/legTools/raw/devel/R/panel.segplot.by.R")
+
+xyplot(tot~Aval|Vari, data=dc, layout=c(NA, 1), as.table=TRUE,
+       col=1, cex=0.7, pch=19)+
+    as.layer(
+        segplot(Aval~lwr+upr|Vari, centers=fit, data=pred,
+                horizontal=FALSE,
+                draw=FALSE,
+                panel=panel.segplot.by, groups=pred$modelo, f=0.15,
+                pch=pred$modelo, layout=c(NA, 1), as.table=TRUE, 
+                key=list(type="o", divide=1,
+                         lines=list(pch=1:nlevels(pred$modelo),
+                                    lty=1, col=1),
+                         text=list(c("Poisson", "Quasi-Poisson",
+                                     "Gamma-Count"))))
+    )
+
+```
+
+****
+## Produção de ovos
+
+### Análise exploratória
+
+```{r}
+##----------------------------------------------------------------------
+
+dd <- read.table("ovos.txt", header=TRUE, sep="\t")
+str(dd)
+
+ftable(xtabs(~periodo+luz+box, data=dd))
+
+## Cada box tem 6 gaiolas. Cada gaiola tem 10 aves.
+## Modelar a produção por ave dia usando o total de por gaiola em duas
+## semanas. O offset é 10*14=140.
+
+useOuterStrips(
+    xyplot(ovos~dia|luz+periodo, data=dd, jitter.x=TRUE,
+           groups=gaiola,
+           type=c("p", "smooth")))
+
+useOuterStrips(
+    xyplot(massa~dia|luz+periodo, data=dd, jitter.x=TRUE,
+           groups=gaiola,
+           type=c("p", "smooth")))
+
+## Agregar para o total quinzenal.
+dd <- aggregate(ovos~periodo+box+luz+gaiola, data=dd, FUN=sum)
+str(dd)
+
+xyplot(ovos~periodo, groups=luz, data=dd, jitter.x=TRUE,
+       ## groups=gaiola,
+       type=c("p", "smooth"))
+
+```
+
+### Ajuste dos modelos
+
+```{r}
+##----------------------------------------------------------------------
+## Ajuste do Poisson e Quasi-Poisson.
+
+## IMPORTANT: Foi usado um offset de 10*14=140.
+
+dd <- transform(dd,
+                off=10*14, ## 10 aves por gaiola, soma de 14 dias.
+                Per=factor(periodo),
+                Box=factor(box))
+names(dd)[3] <- "Luz"
+
+## WARNING: Esta sendo negligenciada a variância de gaiolas. Isso requer
+## um modelo de efeitos aleatórios que ainda não dispomos.
+
+## Modelo Poisson para ter referência.
+m0 <- glm(ovos~offset(log(off))+Per+Box+Luz,
+          data=dd, family=poisson)
+summary(m0)
+anova(m0, test="Chisq")
+
+## Modelo quasi Poisson para usar os valores iniciais.
+## m1 <- glm(count/volume~IP*DAS, data=da, family=quasipoisson)
+m1 <- update(m0, family=quasipoisson)
+summary(m1)
+anova(m1, test="F")
+
+par(mfrow=c(2,2)); plot(m1); layout(1)
+
+##----------------------------------------------------------------------
+## Ajuste do Gamma-Count.
+
+start <- c("alpha"=log(1), coef(m0))
+parnames(ll) <- names(start)
+
+y <- with(dd, ovos)
+X <- model.matrix(~Per+Box+Luz, data=dd)
+
+L <- list(y=y, offset=140, X=X)
+
+m3 <- mle2(ll, start=start,
+           data=L, vecpar=TRUE)
+## summary(m3)
+
+```
+
+### Comparação dos ajustes
+
+```{r}
+##----------------------------------------------------------------------
+
+## Log-verossimilhaça.
+cbind(logLik(m0), logLik(m1), logLik(m3))
+
+## Estimativas dos parâmetros.
+cbind(coef(m0), coef(m1), coef(m3)[-1])
+
+## Estimativa do parâmetro de dispersão.
+exp(coef(m3)[1])
+
+## Perfil de log-verossmilhança.
+plot(profile(m3, which=1))
+
+a <- c(0, attr(model.matrix(m0), "assign"))
+ai <- a==3
+L <- t(replicate(sum(ai), rbind(coef(m3)*0), simplify="matrix"))
+L[,ai] <- diag(sum(ai))
+
+## Teste de Wald explicito.
+## t(L%*%coef(m3))%*%
+##     solve(L%*%vcov(m3)%*%t(L))%*%
+##     (L%*%coef(m3))
+crossprod(L%*%coef(m3), solve(L%*%vcov(m3)%*%t(L), L%*%coef(m3)))
+
+## Teste de Wald para interação (poderia ser LRT, claro).
+linearHypothesis(model=m0, ## É necessário um objeto glm.
+                 hypothesis.matrix=L,
+                 vcov.=vcov(m3),
+                 coef.=coef(m3))
+
+## Teste pelo modelo quasi Poisson.
+anova(m1, test="Chisq")
+anova(m1, test="F")
+
+##----------------------------------------------------------------------
+## Ortogonalidade entre dispersão e locação.
+
+V <- cov2cor(vcov(m3))
+corrplot.mixed(V, upper="ellipse", col="gray50")
+dev.off()
+
+```
+
+### Predição
+
+```{r}
+##----------------------------------------------------------------------
+## Predição das médias com IC.
+
+pred <- expand.grid(Per=factor(levels(dd$Per)[1],
+                               levels=levels(dd$Per)),
+                    Box=factor(levels(dd$Box)[1],
+                               levels=levels(dd$Box)),
+                    Luz=levels(dd$Luz),
+                    off=10*14,
+                    KEEP.OUT.ATTRS=FALSE)
+pred <- list(pois=pred, quasi=pred, cg=pred)
+
+## Quantil normal.
+qn <- qnorm(0.975)*c(lwr=-1, fit=0, upr=1)
+
+X <- LSmatrix(lm(ovos~Per+Box+Luz, dd), effect=c("Luz"))
+
+## Preditos pela Poisson.
+## aux <- predict(m0, newdata=pred$pois, se.fit=TRUE)
+## aux <- exp(aux$fit+outer(aux$se.fit, qn, FUN="*"))
+## pred$pois <- cbind(pred$pois, aux)
+aux <- confint(glht(m0, linfct=X), calpha=univariate_calpha())$confint
+colnames(aux)[1] <- "fit"
+pred$pois <- cbind(pred$pois, 140*exp(aux))
+
+## aux <- predict(m1, newdata=pred$quasi, se.fit=TRUE)
+## aux <- exp(aux$fit+outer(aux$se.fit, qn, FUN="*"))
+## pred$quasi <- cbind(pred$quasi, aux)
+aux <- confint(glht(m1, linfct=X), calpha=univariate_calpha())$confint
+colnames(aux)[1] <- "fit"
+pred$quasi <- cbind(pred$quasi, 140*exp(aux))
+
+alpha <- coef(m3)[1]  ## Locação.
+theta <- coef(m3)[-1] ## Dispersão.
+
+## Preditor linear.
+pred$cg$eta <- c(X%*%theta)
+
+## Matrix de covariância completa.
+V <- vcov(m3)
+
+## Marginal em theta.
+Vm <- V[-1,-1]
+
+## Condicional.
+Vc <- V[-1,-1]-V[-1,1]%*%solve(V[1,1])%*%V[1,-1]
+
+max(abs(Vm-Vc))
+
+## Preditos pela Gamma-count.
+U <- chol(Vm)
+aux <- sqrt(apply(X%*%t(U), MARGIN=1,
+                  FUN=function(x){ sum(x^2) }))
+
+aux <- pred$cg$eta+outer(aux, qn, FUN="*")
+aux <- apply(aux, MARGIN=2,
+             FUN=function(col){
+                 sapply(col, FUN=eta2mean,
+                        offset=140, alpha=alpha)
+             })
+pred$cg <- cbind(pred$cg, aux)
+
+##----------------------------------------------------------------------
+
+pred <- ldply(pred, .id="modelo")
+pred <- arrange(pred, Luz, modelo)
+str(pred)
+
+## source("http://git.leg.ufpr.br/leg/legTools/raw/devel/R/panel.segplot.by.R")
+
+segplot(Luz~lwr+upr, centers=fit, data=pred,
+        horizontal=FALSE,
+        draw=FALSE,
+        panel=panel.segplot.by, groups=pred$modelo, f=0.15,
+        pch=pred$modelo, layout=c(NA, 1), as.table=TRUE, 
+        key=list(type="o", divide=1,
+                 lines=list(pch=1:nlevels(pred$modelo),
+                            lty=1, col=1),
+                 text=list(c("Poisson", "Quasi-Poisson",
+                             "Gamma-Count"))))
+
+```
+
+****
+## Capulhos no algodão em função da pressão da mosca branca
+
+<http://www.leg.ufpr.br/~walmes/data/mosca_algodao_prod.txt>
+
+### Análise exploratória
+
+```{r}
+##----------------------------------------------------------------------
+
+da <- read.table(
+    "http://www.leg.ufpr.br/~walmes/data/mosca_algodao_prod.txt",
+    header=TRUE, sep="\t")
+## da <- aggregate(ncapu~vaso+dexp, data=da, FUN=sum)
+str(da)
+
+xyplot(ncapu~dexp, data=da, jitter.x=TRUE,
+       type=c("p", "smooth"))
+
+```
+
+### Ajuste dos modelos
+
+```{r}
+##----------------------------------------------------------------------
+## Ajuste do Poisson e Quasi-Poisson.
+
+## da <- transform(da, Dexp=factor(dexp))
+da <- transform(da, dexp=dexp-mean(range(dexp)))
+
+## WARNING: Esta sendo negligenciada a variância entre vasos. Isso
+## requer um modelo de efeitos aleatórios que ainda não dispomos.
+
+## Modelo Poisson para ter referência.
+m0 <- glm(ncapu~dexp+I(dexp^2), data=da, family=poisson)
+summary(m0)
+anova(m0, test="Chisq")
+
+## Modelo quasi Poisson para usar os valores iniciais.
+m1 <- update(m0, family=quasipoisson)
+summary(m1)
+anova(m1, test="F")
+
+par(mfrow=c(2,2)); plot(m1); layout(1)
+
+##----------------------------------------------------------------------
+## Ajuste do Gamma-Count.
+
+start <- c("alpha"=log(2), coef(m0))
+parnames(ll) <- names(start)
+
+y <- with(da, ncapu)
+X <- model.matrix(m0)
+
+L <- list(y=y, offset=1, X=X)
+
+m3 <- mle2(ll, start=start,
+           data=L, vecpar=TRUE)
+summary(m3)
+
+```
+
+### Comparação dos ajustes
+
+```{r}
+##----------------------------------------------------------------------
+
+## Log-verossimilhaça.
+cbind(logLik(m0), logLik(m1), logLik(m3))
+
+## Estimativas dos parâmetros.
+cbind(coef(m0), coef(m1), coef(m3)[-1])
+
+## Estimativa do parâmetro de dispersão.
+exp(coef(m3)[1])
+
+## Perfil de log-verossmilhança.
+plot(profile(m3, which=1))
+
+a <- c(0, attr(model.matrix(m0), "assign"))
+ai <- a!=0
+L <- t(replicate(sum(ai), rbind(coef(m3)*0), simplify="matrix"))
+L[,ai] <- diag(sum(ai))
+
+## Teste de Wald explicito.
+## t(L%*%coef(m3))%*%
+##     solve(L%*%vcov(m3)%*%t(L))%*%
+##     (L%*%coef(m3))
+crossprod(L%*%coef(m3), solve(L%*%vcov(m3)%*%t(L), L%*%coef(m3)))
+
+## Teste de Wald para interação (poderia ser LRT, claro).
+linearHypothesis(model=m0, ## É necessário um objeto glm.
+                 hypothesis.matrix=L,
+                 vcov.=vcov(m3),
+                 coef.=coef(m3))
+
+## Teste pelo modelo quasi Poisson.
+anova(m1, test="Chisq")
+anova(m1, test="F")
+
+##----------------------------------------------------------------------
+## Ortogonalidade entre dispersão e locação.
+
+V <- cov2cor(vcov(m3))
+corrplot.mixed(V, upper="ellipse", col="gray50")
+dev.off()
+
+```
+
+### Predição
+
+```{r}
+##----------------------------------------------------------------------
+## Predição das médias com IC.
+
+pred <- data.frame(dexp=with(da, seq(min(dexp), max(dexp), l=30)))
+pred <- list(pois=pred, quasi=pred, cg=pred)
+
+## Quantil normal.
+qn <- qnorm(0.975)*c(lwr=-1, fit=0, upr=1)
+
+X <- model.matrix(formula(m0)[-2], data=pred$cg)
+
+## Preditos pela Poisson.
+## aux <- predict(m0, newdata=pred$pois, se.fit=TRUE)
+## aux <- exp(aux$fit+outer(aux$se.fit, qn, FUN="*"))
+## pred$pois <- cbind(pred$pois, aux)
+aux <- confint(glht(m0, linfct=X), calpha=univariate_calpha())$confint
+colnames(aux)[1] <- "fit"
+pred$pois <- cbind(pred$pois, exp(aux))
+
+## aux <- predict(m1, newdata=pred$quasi, se.fit=TRUE)
+## aux <- exp(aux$fit+outer(aux$se.fit, qn, FUN="*"))
+## pred$quasi <- cbind(pred$quasi, aux)
+aux <- confint(glht(m1, linfct=X), calpha=univariate_calpha())$confint
+colnames(aux)[1] <- "fit"
+pred$quasi <- cbind(pred$quasi, exp(aux))
+
+alpha <- coef(m3)[1]  ## Locação.
+theta <- coef(m3)[-1] ## Dispersão.
+
+## Preditor linear.
+pred$cg$eta <- c(X%*%theta)
+
+## Matrix de covariância completa.
+V <- vcov(m3)
+
+## Marginal em theta.
+Vm <- V[-1,-1]
+
+## Condicional.
+Vc <- V[-1,-1]-V[-1,1]%*%solve(V[1,1])%*%V[1,-1]
+
+max(abs(Vm-Vc))
+
+## Preditos pela Gamma-count.
+U <- chol(Vm)
+aux <- sqrt(apply(X%*%t(U), MARGIN=1,
+                  FUN=function(x){ sum(x^2) }))
+
+aux <- pred$cg$eta+outer(aux, qn, FUN="*")
+aux <- apply(aux, MARGIN=2,
+             FUN=function(col){
+                 sapply(col, FUN=eta2mean,
+                        offset=1, alpha=alpha)
+             })
+pred$cg <- cbind(pred$cg, aux)
+
+##----------------------------------------------------------------------
+
+pred <- ldply(pred, .id="modelo")
+pred <- arrange(pred, dexp)
+str(pred)
+
+source("https://raw.githubusercontent.com/walmes/wzRfun/master/R/prepanel.cbH.R")
+source("https://raw.githubusercontent.com/walmes/wzRfun/master/R/panel.cbH.R")
+
+xyplot(ncapu~dexp, data=da, jitter.x=TRUE, pch=19, col=1)+
+    as.layer(
+        under=TRUE,
+        xyplot(fit~dexp, data=pred, groups=modelo, type="l",
+               ly=pred$lwr, uy=pred$upr, cty="bands",
+               ## fill="gray90",
+               alpha=0.5,
+               prepanel=prepanel.cbH,
+               panel.groups=panel.cbH,
+               panel=panel.superpose)
+    )
+
+```
+
+
+****
+## Mais dados para se considerar
+
+* http://www.leg.ufpr.br/~walmes/data/banana_culttecido.txt
+* http://www.leg.ufpr.br/~walmes/data/frango_comportamento.txt
+* http://www.leg.ufpr.br/~walmes/data/mosca_algodao_aval.txt
diff --git a/examples/Ultimate_Gamma_Count.html b/examples/Ultimate_Gamma_Count.html
new file mode 100644
index 0000000000000000000000000000000000000000..8a54cf9c182ef6787deaae7560e3245d4fa28e95
--- /dev/null
+++ b/examples/Ultimate_Gamma_Count.html
@@ -0,0 +1,2378 @@
+<!DOCTYPE html>
+
+<html xmlns="http://www.w3.org/1999/xhtml">
+
+<head>
+
+<meta charset="utf-8">
+<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+<meta name="generator" content="pandoc" />
+
+<meta name="author" content="Walmes Zeviani" />
+
+
+<title>Gamma-Count na análise de dados de contagem</title>
+
+
+
+<style type="text/css">code{white-space: pre;}</style>
+<style type="text/css">
+table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
+  margin: 0; padding: 0; vertical-align: baseline; border: none; }
+table.sourceCode { width: 100%; line-height: 100%; }
+td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
+td.sourceCode { padding-left: 5px; }
+code > span.kw { color: #007020; font-weight: bold; }
+code > span.dt { color: #902000; }
+code > span.dv { color: #40a070; }
+code > span.bn { color: #40a070; }
+code > span.fl { color: #40a070; }
+code > span.ch { color: #4070a0; }
+code > span.st { color: #4070a0; }
+code > span.co { color: #60a0b0; font-style: italic; }
+code > span.ot { color: #007020; }
+code > span.al { color: #ff0000; font-weight: bold; }
+code > span.fu { color: #06287e; }
+code > span.er { color: #ff0000; font-weight: bold; }
+</style>
+<style type="text/css">
+  pre:not([class]) {
+    background-color: white;
+  }
+</style>
+
+
+<link href="data:text/css,body%20%7B%0A%20%20background%2Dcolor%3A%20%23fff%3B%0A%20%20margin%3A%201em%20auto%3B%0A%20%20max%2Dwidth%3A%20700px%3B%0A%20%20overflow%3A%20visible%3B%0A%20%20padding%2Dleft%3A%202em%3B%0A%20%20padding%2Dright%3A%202em%3B%0A%20%20font%2Dfamily%3A%20%22Open%20Sans%22%2C%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0A%20%20font%2Dsize%3A%2014px%3B%0A%20%20line%2Dheight%3A%201%2E35%3B%0A%7D%0A%0A%23header%20%7B%0A%20%20text%2Dalign%3A%20center%3B%0A%7D%0A%0A%23TOC%20%7B%0A%20%20clear%3A%20both%3B%0A%20%20margin%3A%200%200%2010px%2010px%3B%0A%20%20padding%3A%204px%3B%0A%20%20width%3A%20400px%3B%0A%20%20border%3A%201px%20solid%20%23CCCCCC%3B%0A%20%20border%2Dradius%3A%205px%3B%0A%0A%20%20background%2Dcolor%3A%20%23f6f6f6%3B%0A%20%20font%2Dsize%3A%2013px%3B%0A%20%20line%2Dheight%3A%201%2E3%3B%0A%7D%0A%20%20%23TOC%20%2Etoctitle%20%7B%0A%20%20%20%20font%2Dweight%3A%20bold%3B%0A%20%20%20%20font%2Dsize%3A%2015px%3B%0A%20%20%20%20margin%2Dleft%3A%205px%3B%0A%20%20%7D%0A%0A%20%20%23TOC%20ul%20%7B%0A%20%20%20%20padding%2Dleft%3A%2040px%3B%0A%20%20%20%20margin%2Dleft%3A%20%2D1%2E5em%3B%0A%20%20%20%20margin%2Dtop%3A%205px%3B%0A%20%20%20%20margin%2Dbottom%3A%205px%3B%0A%20%20%7D%0A%20%20%23TOC%20ul%20ul%20%7B%0A%20%20%20%20margin%2Dleft%3A%20%2D2em%3B%0A%20%20%7D%0A%20%20%23TOC%20li%20%7B%0A%20%20%20%20line%2Dheight%3A%2016px%3B%0A%20%20%7D%0A%0Atable%20%7B%0A%20%20margin%3A%201em%20auto%3B%0A%20%20border%2Dwidth%3A%201px%3B%0A%20%20border%2Dcolor%3A%20%23DDDDDD%3B%0A%20%20border%2Dstyle%3A%20outset%3B%0A%20%20border%2Dcollapse%3A%20collapse%3B%0A%7D%0Atable%20th%20%7B%0A%20%20border%2Dwidth%3A%202px%3B%0A%20%20padding%3A%205px%3B%0A%20%20border%2Dstyle%3A%20inset%3B%0A%7D%0Atable%20td%20%7B%0A%20%20border%2Dwidth%3A%201px%3B%0A%20%20border%2Dstyle%3A%20inset%3B%0A%20%20line%2Dheight%3A%2018px%3B%0A%20%20padding%3A%205px%205px%3B%0A%7D%0Atable%2C%20table%20th%2C%20table%20td%20%7B%0A%20%20border%2Dleft%2Dstyle%3A%20none%3B%0A%20%20border%2Dright%2Dstyle%3A%20none%3B%0A%7D%0Atable%20thead%2C%20table%20tr%2Eeven%20%7B%0A%20%20background%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0A%0Ap%20%7B%0A%20%20margin%3A%200%2E5em%200%3B%0A%7D%0A%0Ablockquote%20%7B%0A%20%20background%2Dcolor%3A%20%23f6f6f6%3B%0A%20%20padding%3A%200%2E25em%200%2E75em%3B%0A%7D%0A%0Ahr%20%7B%0A%20%20border%2Dstyle%3A%20solid%3B%0A%20%20border%3A%20none%3B%0A%20%20border%2Dtop%3A%201px%20solid%20%23777%3B%0A%20%20margin%3A%2028px%200%3B%0A%7D%0A%0Adl%20%7B%0A%20%20margin%2Dleft%3A%200%3B%0A%7D%0A%20%20dl%20dd%20%7B%0A%20%20%20%20margin%2Dbottom%3A%2013px%3B%0A%20%20%20%20margin%2Dleft%3A%2013px%3B%0A%20%20%7D%0A%20%20dl%20dt%20%7B%0A%20%20%20%20font%2Dweight%3A%20bold%3B%0A%20%20%7D%0A%0Aul%20%7B%0A%20%20margin%2Dtop%3A%200%3B%0A%7D%0A%20%20ul%20li%20%7B%0A%20%20%20%20list%2Dstyle%3A%20circle%20outside%3B%0A%20%20%7D%0A%20%20ul%20ul%20%7B%0A%20%20%20%20margin%2Dbottom%3A%200%3B%0A%20%20%7D%0A%0Apre%2C%20code%20%7B%0A%20%20background%2Dcolor%3A%20%23f7f7f7%3B%0A%20%20border%2Dradius%3A%203px%3B%0A%20%20color%3A%20%23333%3B%0A%7D%0Apre%20%7B%0A%20%20white%2Dspace%3A%20pre%2Dwrap%3B%20%20%20%20%2F%2A%20Wrap%20long%20lines%20%2A%2F%0A%20%20border%2Dradius%3A%203px%3B%0A%20%20margin%3A%205px%200px%2010px%200px%3B%0A%20%20padding%3A%2010px%3B%0A%7D%0Apre%3Anot%28%5Bclass%5D%29%20%7B%0A%20%20background%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0A%0Acode%20%7B%0A%20%20font%2Dfamily%3A%20Consolas%2C%20Monaco%2C%20%27Courier%20New%27%2C%20monospace%3B%0A%20%20font%2Dsize%3A%2085%25%3B%0A%7D%0Ap%20%3E%20code%2C%20li%20%3E%20code%20%7B%0A%20%20padding%3A%202px%200px%3B%0A%7D%0A%0Adiv%2Efigure%20%7B%0A%20%20text%2Dalign%3A%20center%3B%0A%7D%0Aimg%20%7B%0A%20%20background%2Dcolor%3A%20%23FFFFFF%3B%0A%20%20padding%3A%202px%3B%0A%20%20border%3A%201px%20solid%20%23DDDDDD%3B%0A%20%20border%2Dradius%3A%203px%3B%0A%20%20border%3A%201px%20solid%20%23CCCCCC%3B%0A%20%20margin%3A%200%205px%3B%0A%7D%0A%0Ah1%20%7B%0A%20%20margin%2Dtop%3A%200%3B%0A%20%20font%2Dsize%3A%2035px%3B%0A%20%20line%2Dheight%3A%2040px%3B%0A%7D%0A%0Ah2%20%7B%0A%20%20border%2Dbottom%3A%204px%20solid%20%23f7f7f7%3B%0A%20%20padding%2Dtop%3A%2010px%3B%0A%20%20padding%2Dbottom%3A%202px%3B%0A%20%20font%2Dsize%3A%20145%25%3B%0A%7D%0A%0Ah3%20%7B%0A%20%20border%2Dbottom%3A%202px%20solid%20%23f7f7f7%3B%0A%20%20padding%2Dtop%3A%2010px%3B%0A%20%20font%2Dsize%3A%20120%25%3B%0A%7D%0A%0Ah4%20%7B%0A%20%20border%2Dbottom%3A%201px%20solid%20%23f7f7f7%3B%0A%20%20margin%2Dleft%3A%208px%3B%0A%20%20font%2Dsize%3A%20105%25%3B%0A%7D%0A%0Ah5%2C%20h6%20%7B%0A%20%20border%2Dbottom%3A%201px%20solid%20%23ccc%3B%0A%20%20font%2Dsize%3A%20105%25%3B%0A%7D%0A%0Aa%20%7B%0A%20%20color%3A%20%230033dd%3B%0A%20%20text%2Ddecoration%3A%20none%3B%0A%7D%0A%20%20a%3Ahover%20%7B%0A%20%20%20%20color%3A%20%236666ff%3B%20%7D%0A%20%20a%3Avisited%20%7B%0A%20%20%20%20color%3A%20%23800080%3B%20%7D%0A%20%20a%3Avisited%3Ahover%20%7B%0A%20%20%20%20color%3A%20%23BB00BB%3B%20%7D%0A%20%20a%5Bhref%5E%3D%22http%3A%22%5D%20%7B%0A%20%20%20%20text%2Ddecoration%3A%20underline%3B%20%7D%0A%20%20a%5Bhref%5E%3D%22https%3A%22%5D%20%7B%0A%20%20%20%20text%2Ddecoration%3A%20underline%3B%20%7D%0A%0A%2F%2A%20Class%20described%20in%20https%3A%2F%2Fbenjeffrey%2Ecom%2Fposts%2Fpandoc%2Dsyntax%2Dhighlighting%2Dcss%0A%20%20%20Colours%20from%20https%3A%2F%2Fgist%2Egithub%2Ecom%2Frobsimmons%2F1172277%20%2A%2F%0A%0Acode%20%3E%20span%2Ekw%20%7B%20color%3A%20%23555%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%2F%2A%20Keyword%20%2A%2F%0Acode%20%3E%20span%2Edt%20%7B%20color%3A%20%23902000%3B%20%7D%20%2F%2A%20DataType%20%2A%2F%0Acode%20%3E%20span%2Edv%20%7B%20color%3A%20%2340a070%3B%20%7D%20%2F%2A%20DecVal%20%28decimal%20values%29%20%2A%2F%0Acode%20%3E%20span%2Ebn%20%7B%20color%3A%20%23d14%3B%20%7D%20%2F%2A%20BaseN%20%2A%2F%0Acode%20%3E%20span%2Efl%20%7B%20color%3A%20%23d14%3B%20%7D%20%2F%2A%20Float%20%2A%2F%0Acode%20%3E%20span%2Ech%20%7B%20color%3A%20%23d14%3B%20%7D%20%2F%2A%20Char%20%2A%2F%0Acode%20%3E%20span%2Est%20%7B%20color%3A%20%23d14%3B%20%7D%20%2F%2A%20String%20%2A%2F%0Acode%20%3E%20span%2Eco%20%7B%20color%3A%20%23888888%3B%20font%2Dstyle%3A%20italic%3B%20%7D%20%2F%2A%20Comment%20%2A%2F%0Acode%20%3E%20span%2Eot%20%7B%20color%3A%20%23007020%3B%20%7D%20%2F%2A%20OtherToken%20%2A%2F%0Acode%20%3E%20span%2Eal%20%7B%20color%3A%20%23ff0000%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%2F%2A%20AlertToken%20%2A%2F%0Acode%20%3E%20span%2Efu%20%7B%20color%3A%20%23900%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%2F%2A%20Function%20calls%20%2A%2F%20%0Acode%20%3E%20span%2Eer%20%7B%20color%3A%20%23a61717%3B%20background%2Dcolor%3A%20%23e3d2d2%3B%20%7D%20%2F%2A%20ErrorTok%20%2A%2F%0A%0A" rel="stylesheet" type="text/css" />
+
+</head>
+
+<body>
+
+
+
+<div id="header">
+<h1 class="title">Gamma-Count na análise de dados de contagem</h1>
+<h4 class="author"><em>Walmes Zeviani</em></h4>
+</div>
+
+<div id="TOC">
+<ul>
+<li><a href="#gamma-count">Gamma-Count</a></li>
+<li><a href="#reproducao-de-nematoides-em-cultivo-de-soja">Reprodução de nematóides em cultivo de soja</a><ul>
+<li><a href="#analise-exploratoria">Análise exploratória</a></li>
+<li><a href="#inclusao-de-offset-no-modelo-gamma-count">Inclusão de offset no modelo Gamma-Count</a></li>
+<li><a href="#ajuste-dos-modelos">Ajuste dos modelos</a></li>
+<li><a href="#comparacao-dos-ajustes">Comparação dos ajustes</a></li>
+<li><a href="#predicao">Predição</a></li>
+</ul></li>
+<li><a href="#numero-de-vagens-viaveis-em-soja">Número de vagens viáveis em soja</a><ul>
+<li><a href="#analise-exploratoria-1">Análise exploratória</a></li>
+<li><a href="#ajuste-dos-modelos-1">Ajuste dos modelos</a></li>
+<li><a href="#comparacao-dos-ajustes-1">Comparação dos ajustes</a></li>
+<li><a href="#predicao-1">Predição</a></li>
+</ul></li>
+<li><a href="#ocorrencia-de-mosca-branca">Ocorrência de mosca branca</a><ul>
+<li><a href="#analise-exploratoria-2">Análise exploratória</a></li>
+<li><a href="#ajuste-dos-modelos-2">Ajuste dos modelos</a></li>
+<li><a href="#comparacao-dos-ajustes-2">Comparação dos ajustes</a></li>
+<li><a href="#predicao-2">Predição</a></li>
+</ul></li>
+<li><a href="#producao-de-ovos">Produção de ovos</a><ul>
+<li><a href="#analise-exploratoria-3">Análise exploratória</a></li>
+<li><a href="#ajuste-dos-modelos-3">Ajuste dos modelos</a></li>
+<li><a href="#comparacao-dos-ajustes-3">Comparação dos ajustes</a></li>
+<li><a href="#predicao-3">Predição</a></li>
+</ul></li>
+<li><a href="#capulhos-no-algodao-em-funcao-da-pressao-da-mosca-branca">Capulhos no algodão em função da pressão da mosca branca</a><ul>
+<li><a href="#analise-exploratoria-4">Análise exploratória</a></li>
+<li><a href="#ajuste-dos-modelos-4">Ajuste dos modelos</a></li>
+<li><a href="#comparacao-dos-ajustes-4">Comparação dos ajustes</a></li>
+<li><a href="#predicao-4">Predição</a></li>
+</ul></li>
+<li><a href="#mais-dados-para-se-considerar">Mais dados para se considerar</a></li>
+</ul>
+</div>
+
+<style type="text/css">
+body, td, caption {
+    font-family: "Palatino Linotype", "Book Antiqua", Palatino, serif;
+    background-color: white;
+    font-size: 16px;
+}
+
+tt, code, pre {
+    font-family: "Inconsolata", "Andale Mono", monospace;
+}
+
+code {
+    font-size: 16px;
+}
+
+pre code {
+    font-size: 14px;
+}
+
+pre:not([class]) code {
+    background-color: #92BFB1;
+}
+pre, code {
+    background-color: #62BFB1;
+    border-radius: 3px;
+    color: #333;
+}
+
+/* R output */
+pre:not([class]) code {
+    background-color: #D4D4D4;
+}
+pre:not([class]), code {
+    background-color: #D4D4D4;
+}
+
+/* R input */
+pre, code {
+    border-radius: 3px;
+    background-color: #EDEDED;
+    color: #333;
+}
+
+img {
+    max-width: 100% !important;
+    display: block;
+    margin: auto;
+}
+
+.MathJax {
+    font-size: 80% !important;
+}
+
+</style>
+<hr />
+<div id="gamma-count" class="section level2">
+<h2>Gamma-Count</h2>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Carrega pacotes.
+
+<span class="kw">library</span>(lattice)
+<span class="kw">library</span>(latticeExtra)
+<span class="kw">library</span>(plyr)
+<span class="kw">library</span>(bbmle)
+<span class="kw">library</span>(corrplot)
+<span class="kw">library</span>(car)
+<span class="kw">library</span>(multcomp)
+<span class="kw">library</span>(doBy)</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Função de probabilidade da Gamma-Count.
+
+dgcount &lt;-<span class="st"> </span>function(y, alpha, beta, <span class="dt">offset=</span><span class="dv">1</span>){
+    <span class="kw">pgamma</span>(offset, alpha*y, alpha*beta)-
+<span class="st">        </span><span class="kw">pgamma</span>(offset, alpha*y+alpha, alpha*beta)
+}
+
+y &lt;-<span class="st"> </span><span class="dv">0</span>:<span class="dv">30</span>
+pP &lt;-<span class="st"> </span><span class="kw">dpois</span>(y, <span class="dt">lambda=</span><span class="dv">5</span>)
+pGC &lt;-<span class="st"> </span><span class="kw">dgcount</span>(y, <span class="dt">alpha=</span><span class="dv">1</span>, <span class="dt">beta=</span><span class="dv">5</span>)
+
+<span class="kw">plot</span>(pP~y, <span class="dt">type=</span><span class="st">&quot;h&quot;</span>)
+<span class="kw">points</span>(pGC~<span class="kw">c</span>(y<span class="fl">+0.2</span>), <span class="dt">type=</span><span class="st">&quot;h&quot;</span>, <span class="dt">col=</span><span class="dv">2</span>)</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Explorando a distribuição de probabilidades.
+
+<span class="kw">library</span>(rpanel)
+
+draw &lt;-<span class="st"> </span>function(input){
+    <span class="kw">with</span>(input,
+    {
+        ebeta &lt;-<span class="st"> </span><span class="kw">exp</span>(beta)
+        ealpha &lt;-<span class="st"> </span><span class="kw">exp</span>(alpha)
+        pP &lt;-<span class="st"> </span><span class="kw">dpois</span>(y, <span class="dt">lambda=</span>ebeta*off)
+        pGC &lt;-<span class="st"> </span><span class="kw">dgcount</span>(y, <span class="dt">alpha=</span>ealpha, <span class="dt">beta=</span>ebeta, <span class="dt">offset=</span>off)
+        <span class="kw">plot</span>(pP~y, <span class="dt">type=</span><span class="st">&quot;h&quot;</span>, <span class="dt">ylim=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="kw">max</span>(<span class="kw">c</span>(pGC, pP))))
+        <span class="kw">points</span>(pGC~<span class="kw">c</span>(y<span class="fl">+0.2</span>), <span class="dt">type=</span><span class="st">&quot;h&quot;</span>, <span class="dt">col=</span><span class="dv">2</span>)
+        <span class="kw">abline</span>(<span class="dt">v=</span>ebeta, <span class="dt">lty=</span><span class="dv">2</span>)
+        m &lt;-<span class="st"> </span><span class="kw">sum</span>(y*pGC)
+        <span class="kw">abline</span>(<span class="dt">v=</span>ebeta*off, <span class="dt">lty=</span><span class="dv">2</span>)
+        <span class="kw">abline</span>(<span class="dt">v=</span>m, <span class="dt">col=</span><span class="dv">2</span>, <span class="dt">lty=</span><span class="dv">2</span>)
+    })
+    <span class="kw">return</span>(input)
+}
+
+panel &lt;-<span class="st"> </span><span class="kw">rp.control</span>(<span class="dt">y=</span><span class="dv">0</span>:<span class="dv">100</span>)
+<span class="kw">rp.slider</span>(panel, <span class="dt">variable=</span>alpha, <span class="dt">from=</span>-<span class="dv">5</span>, <span class="dt">to=</span><span class="dv">5</span>, <span class="dt">initval=</span><span class="dv">0</span>,
+          <span class="dt">showvalue=</span><span class="ot">TRUE</span>, <span class="dt">resolution=</span><span class="fl">0.1</span>, <span class="dt">action=</span>draw)
+<span class="kw">rp.slider</span>(panel, <span class="dt">variable=</span>beta, <span class="dt">from=</span>-<span class="dv">5</span>, <span class="dt">to=</span><span class="dv">8</span>, <span class="dt">initval=</span><span class="dv">3</span>,
+          <span class="dt">showvalue=</span><span class="ot">TRUE</span>, <span class="dt">resolution=</span><span class="fl">0.1</span>, <span class="dt">action=</span>draw)
+<span class="kw">rp.doublebutton</span>(panel, <span class="dt">variable=</span>off, <span class="dt">range=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">3</span>), <span class="dt">initval=</span><span class="dv">1</span>,
+                <span class="dt">showvalue=</span><span class="ot">TRUE</span>, <span class="dt">step=</span><span class="fl">0.1</span>, <span class="dt">action=</span>draw)</code></pre>
+<hr />
+</div>
+<div id="reproducao-de-nematoides-em-cultivo-de-soja" class="section level2">
+<h2>Reprodução de nematóides em cultivo de soja</h2>
+<p>Nesse conjunto de dados, a contagem tem um <em>offset</em> que precisa ser considerado.</p>
+<div id="analise-exploratoria" class="section level3">
+<h3>Análise exploratória</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Carrega os dados.
+
+nematodeSoybean1 &lt;-<span class="st"> </span><span class="kw">read.table</span>(
+    <span class="st">&quot;~/GitLab/legTools/data-raw/nematodeSoybean1.csv&quot;</span>,
+    <span class="dt">header=</span><span class="ot">TRUE</span>, <span class="dt">sep=</span><span class="st">&quot;;&quot;</span>)
+nematodeSoybean1$count &lt;-<span class="st"> </span><span class="kw">with</span>(nematodeSoybean1, count1+count2)
+<span class="kw">str</span>(nematodeSoybean1)</code></pre>
+<pre><code>## 'data.frame':    60 obs. of  15 variables:
+##  $ inipop : num  0 0 0 0 0 0.0625 0.0625 0.0625 0.0625 0.0625 ...
+##  $ rept   : int  21 22 23 24 25 21 22 23 24 25 ...
+##  $ das    : int  30 30 30 30 30 30 30 30 30 30 ...
+##  $ upfm   : num  191 168 167 207 223 ...
+##  $ updm   : num  75.3 69.9 73.7 85 88.9 ...
+##  $ rfm    : num  92.9 94.7 145.9 121.4 133.6 ...
+##  $ count1 : int  NA NA NA NA NA 61 101 97 72 84 ...
+##  $ count2 : int  NA NA NA NA NA 74 94 86 81 77 ...
+##  $ volume : int  NA NA NA NA NA 80 100 100 100 100 ...
+##  $ finpop : int  NA NA NA NA NA 10800 19500 18300 15300 16100 ...
+##  $ rf     : num  NA NA NA NA NA ...
+##  $ nemaden: num  NA NA NA NA NA ...
+##  $ gweight: num  NA NA NA NA NA NA NA NA NA NA ...
+##  $ yield  : num  NA NA NA NA NA NA NA NA NA NA ...
+##  $ count  : int  NA NA NA NA NA 135 195 183 153 161 ...</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+
+<span class="kw">xyplot</span>(count1+count2~<span class="kw">log2</span>(inipop)|<span class="kw">factor</span>(das),
+       <span class="dt">data=</span>nematodeSoybean1,
+       <span class="dt">type=</span><span class="kw">c</span>(<span class="st">&quot;p&quot;</span>, <span class="st">&quot;smooth&quot;</span>), <span class="dt">jitter.x=</span><span class="ot">TRUE</span>,
+       <span class="dt">ylab=</span><span class="kw">expression</span>(Nematodes~by~unit~volume),
+       <span class="dt">xlab=</span><span class="kw">expression</span>(Initial~nematode~density))</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">xyplot</span>(count~<span class="kw">log2</span>(inipop)|<span class="kw">factor</span>(das), <span class="dt">data=</span>nematodeSoybean1,
+       <span class="dt">type=</span><span class="kw">c</span>(<span class="st">&quot;p&quot;</span>, <span class="st">&quot;smooth&quot;</span>), <span class="dt">jitter.x=</span><span class="ot">TRUE</span>,
+       <span class="dt">ylab=</span><span class="kw">expression</span>(Nematodes~by~unit~volume),
+       <span class="dt">xlab=</span><span class="kw">expression</span>(Initial~nematode~density))</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">xyplot</span>(count/(<span class="dv">2</span>*volume)~<span class="kw">log2</span>(inipop)|<span class="kw">factor</span>(das), <span class="dt">data=</span>nematodeSoybean1,
+       <span class="dt">type=</span><span class="kw">c</span>(<span class="st">&quot;p&quot;</span>, <span class="st">&quot;smooth&quot;</span>), <span class="dt">jitter.x=</span><span class="ot">TRUE</span>,
+       <span class="dt">ylab=</span><span class="kw">expression</span>(Nematodes~by~unit~volume),
+       <span class="dt">xlab=</span><span class="kw">expression</span>(Initial~nematode~density))</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Relação média-variância.
+
+da &lt;-<span class="st"> </span><span class="kw">subset</span>(nematodeSoybean1, inipop&gt;<span class="dv">0</span>)
+
+mv &lt;-<span class="st"> </span><span class="kw">ddply</span>(<span class="dt">.data=</span>da,
+            <span class="dt">.variables=</span>.(inipop, das),
+            <span class="dt">.fun=</span>summarise,
+            <span class="dt">m=</span><span class="kw">mean</span>(count, <span class="dt">na.rm=</span><span class="ot">TRUE</span>),
+            <span class="dt">v=</span><span class="kw">var</span>(count, <span class="dt">na.rm=</span><span class="ot">TRUE</span>))
+
+<span class="kw">xyplot</span>(v~m, <span class="dt">data=</span>mv, <span class="dt">scales=</span><span class="st">&quot;free&quot;</span>, <span class="dt">type=</span><span class="kw">c</span>(<span class="st">&quot;p&quot;</span>, <span class="st">&quot;r&quot;</span>))+
+<span class="st">    </span><span class="kw">layer</span>(<span class="kw">panel.abline</span>(<span class="dt">a=</span><span class="dv">0</span>, <span class="dt">b=</span><span class="dv">1</span>, <span class="dt">lty=</span><span class="dv">2</span>))</code></pre>
+<p><img src="" /></p>
+</div>
+<div id="inclusao-de-offset-no-modelo-gamma-count" class="section level3">
+<h3>Inclusão de offset no modelo Gamma-Count</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Simulando um conjunto de dados para ver como acomodar o offset na
+## Gamma-Count.
+
+y &lt;-<span class="st"> </span><span class="kw">rpois</span>(<span class="dv">100</span>, <span class="dt">lambda=</span><span class="dv">5</span>) ## Contagem.
+o &lt;-<span class="st"> </span><span class="kw">rep</span>(<span class="dv">2</span>, <span class="kw">length</span>(y))    ## Offset.
+
+n0 &lt;-<span class="st"> </span><span class="kw">glm</span>(y~<span class="dv">1</span>, <span class="dt">family=</span>poisson)
+## predict(n0, type=&quot;response&quot;); exp(coef(n0))
+## logLik(n0)
+
+n1 &lt;-<span class="st"> </span><span class="kw">glm</span>(y~<span class="kw">offset</span>(<span class="kw">log</span>(o))+<span class="dv">1</span>, <span class="dt">family=</span>poisson)
+## predict(n1, type=&quot;response&quot;); exp(coef(n1))*o
+## logLik(n1)
+
+ll &lt;-<span class="st"> </span>function(theta, y, X, offset){
+    ## theta: parameter vector;
+    ##   theta[1]: dispersion parameter;
+    ##   theta[-1]: location parameters;
+    ## y: response vector (counts);
+    ## X: model matrix;
+    ## offset: upper limit of the intergral;
+    eXb &lt;-<span class="st"> </span><span class="kw">exp</span>(X%*%theta[-<span class="dv">1</span>])
+    alpha &lt;-<span class="st"> </span><span class="kw">exp</span>(theta[<span class="dv">1</span>])
+    alpha.eXb &lt;-<span class="st"> </span>alpha*eXb
+    alpha.y &lt;-<span class="st"> </span>alpha*y
+    ## returns the log-likelihood.
+    -<span class="kw">sum</span>(<span class="kw">log</span>(
+         <span class="kw">pgamma</span>(offset, alpha.y, alpha.eXb)-
+<span class="st">             </span><span class="kw">pgamma</span>(offset, alpha.y+alpha, alpha.eXb)
+     ))
+}
+
+start &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="dt">alpha=</span><span class="dv">1</span>, <span class="dt">lambda=</span><span class="kw">coef</span>(n1))
+<span class="kw">parnames</span>(ll) &lt;-<span class="st"> </span><span class="kw">names</span>(start)
+L &lt;-<span class="st"> </span><span class="kw">list</span>(<span class="dt">y=</span>y, <span class="dt">offset=</span>o, <span class="dt">X=</span><span class="kw">cbind</span>(<span class="kw">rep</span>(<span class="dv">1</span>, <span class="kw">length</span>(y))))
+
+n2 &lt;-<span class="st"> </span><span class="kw">mle2</span>(ll, <span class="dt">start=</span>start, <span class="dt">fixed=</span><span class="kw">list</span>(<span class="dt">alpha=</span><span class="dv">0</span>),
+           <span class="dt">vecpar=</span><span class="ot">TRUE</span>, <span class="dt">data=</span>L)
+
+n3 &lt;-<span class="st"> </span><span class="kw">mle2</span>(ll, <span class="dt">start=</span>start,
+           <span class="dt">vecpar=</span><span class="ot">TRUE</span>, <span class="dt">data=</span>L)
+
+## Log-verossimilhaça.
+<span class="kw">cbind</span>(<span class="kw">logLik</span>(n0), <span class="kw">logLik</span>(n1), <span class="kw">logLik</span>(n2), <span class="kw">logLik</span>(n3))</code></pre>
+<pre><code>##           [,1]      [,2]      [,3]      [,4]
+## [1,] -217.0543 -217.0543 -217.0543 -216.9172</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Estimativas dos parâmetros.
+<span class="kw">cbind</span>(<span class="kw">coef</span>(n0), <span class="kw">coef</span>(n1), <span class="kw">coef</span>(n2)[-<span class="dv">1</span>], <span class="kw">coef</span>(n3)[-<span class="dv">1</span>])</code></pre>
+<pre><code>##                [,1]      [,2]      [,3]     [,4]
+## (Intercept) 1.60543 0.9122827 0.9122827 0.920382</code></pre>
+</div>
+<div id="ajuste-dos-modelos" class="section level3">
+<h3>Ajuste dos modelos</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ajuste do Poisson e Quasi-Poisson.
+
+da &lt;-<span class="st"> </span><span class="kw">transform</span>(da, <span class="dt">IP=</span><span class="kw">factor</span>(inipop), <span class="dt">DAS=</span><span class="kw">factor</span>(das))
+
+## Modelo Poisson para ter referência.
+m0 &lt;-<span class="st"> </span><span class="kw">glm</span>(count~<span class="kw">offset</span>(<span class="kw">log</span>(volume))+IP*DAS, <span class="dt">data=</span>da, <span class="dt">family=</span>poisson)
+<span class="kw">summary</span>(m0)</code></pre>
+<pre><code>## 
+## Call:
+## glm(formula = count ~ offset(log(volume)) + IP * DAS, family = poisson, 
+##     data = da)
+## 
+## Deviance Residuals: 
+##     Min       1Q   Median       3Q      Max  
+## -7.7014  -1.9945   0.0103   1.2140   9.0435  
+## 
+## Coefficients:
+##                Estimate Std. Error z value Pr(&gt;|z|)    
+## (Intercept)     0.54402    0.03477  15.645  &lt; 2e-16 ***
+## IP0.125         0.55925    0.04328  12.923  &lt; 2e-16 ***
+## IP0.25         -0.22355    0.05053  -4.424 9.69e-06 ***
+## IP0.5           0.06575    0.04792   1.372    0.170    
+## IP1            -0.85824    0.06045 -14.198  &lt; 2e-16 ***
+## DAS110         -1.83814    0.08659 -21.227  &lt; 2e-16 ***
+## IP0.125:DAS110 -1.01243    0.12984  -7.798 6.30e-15 ***
+## IP0.25:DAS110  -0.04809    0.13187  -0.365    0.715    
+## IP0.5:DAS110   -0.67992    0.14079  -4.829 1.37e-06 ***
+## IP1:DAS110      0.11214    0.15088   0.743    0.457    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for poisson family taken to be 1)
+## 
+##     Null deviance: 5375.55  on 49  degrees of freedom
+## Residual deviance:  486.87  on 40  degrees of freedom
+## AIC: 800.72
+## 
+## Number of Fisher Scoring iterations: 4</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m0, <span class="dt">test=</span><span class="st">&quot;Chisq&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: poisson, link: log
+## 
+## Response: count
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##        Df Deviance Resid. Df Resid. Dev  Pr(&gt;Chi)    
+## NULL                      49     5375.6              
+## IP      4    662.9        45     4712.6 &lt; 2.2e-16 ***
+## DAS     1   4124.8        44      587.8 &lt; 2.2e-16 ***
+## IP:DAS  4    100.9        40      486.9 &lt; 2.2e-16 ***
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Modelo quasi Poisson para usar os valores iniciais.
+## m1 &lt;- glm(count/volume~IP*DAS, data=da, family=quasipoisson)
+m1 &lt;-<span class="st"> </span><span class="kw">glm</span>(count~<span class="kw">offset</span>(<span class="kw">log</span>(volume))+IP*DAS,
+          <span class="dt">data=</span>da, <span class="dt">family=</span>quasipoisson)
+<span class="kw">summary</span>(m1)</code></pre>
+<pre><code>## 
+## Call:
+## glm(formula = count ~ offset(log(volume)) + IP * DAS, family = quasipoisson, 
+##     data = da)
+## 
+## Deviance Residuals: 
+##     Min       1Q   Median       3Q      Max  
+## -7.7014  -1.9945   0.0103   1.2140   9.0435  
+## 
+## Coefficients:
+##                Estimate Std. Error t value Pr(&gt;|t|)    
+## (Intercept)     0.54402    0.12509   4.349 9.16e-05 ***
+## IP0.125         0.55925    0.15567   3.592 0.000887 ***
+## IP0.25         -0.22355    0.18177  -1.230 0.225947    
+## IP0.5           0.06575    0.17238   0.381 0.704912    
+## IP1            -0.85824    0.21745  -3.947 0.000312 ***
+## DAS110         -1.83814    0.31150  -5.901 6.51e-07 ***
+## IP0.125:DAS110 -1.01243    0.46706  -2.168 0.036192 *  
+## IP0.25:DAS110  -0.04809    0.47437  -0.101 0.919754    
+## IP0.5:DAS110   -0.67992    0.50646  -1.343 0.187003    
+## IP1:DAS110      0.11214    0.54275   0.207 0.837353    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for quasipoisson family taken to be 12.94054)
+## 
+##     Null deviance: 5375.55  on 49  degrees of freedom
+## Residual deviance:  486.87  on 40  degrees of freedom
+## AIC: NA
+## 
+## Number of Fisher Scoring iterations: 4</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;F&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: count
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##        Df Deviance Resid. Df Resid. Dev        F    Pr(&gt;F)    
+## NULL                      49     5375.6                       
+## IP      4    662.9        45     4712.6  12.8076 8.431e-07 ***
+## DAS     1   4124.8        44      587.8 318.7506 &lt; 2.2e-16 ***
+## IP:DAS  4    100.9        40      486.9   1.9499    0.1209    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">par</span>(<span class="dt">mfrow=</span><span class="kw">c</span>(<span class="dv">2</span>,<span class="dv">2</span>)); <span class="kw">plot</span>(m1); <span class="kw">layout</span>(<span class="dv">1</span>)</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">cbind</span>(<span class="kw">coef</span>(m0), <span class="kw">coef</span>(m1))</code></pre>
+<pre><code>##                       [,1]        [,2]
+## (Intercept)     0.54401859  0.54401859
+## IP0.125         0.55924951  0.55924951
+## IP0.25         -0.22354670 -0.22354670
+## IP0.5           0.06574698  0.06574698
+## IP1            -0.85824022 -0.85824022
+## DAS110         -1.83814249 -1.83814249
+## IP0.125:DAS110 -1.01243332 -1.01243332
+## IP0.25:DAS110  -0.04809225 -0.04809225
+## IP0.5:DAS110   -0.67991637 -0.67991637
+## IP1:DAS110      0.11214329  0.11214329</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ajuste do Gamma-Count.
+
+start &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="st">&quot;alpha&quot;</span>=<span class="kw">log</span>(<span class="dv">1</span>), <span class="kw">coef</span>(m0))
+<span class="kw">parnames</span>(ll) &lt;-<span class="st"> </span><span class="kw">names</span>(start)
+
+## y &lt;- with(da, count/vol)
+y &lt;-<span class="st"> </span><span class="kw">with</span>(da, count/volume)
+X &lt;-<span class="st"> </span><span class="kw">model.matrix</span>(~IP*DAS, <span class="dt">data=</span>da)
+
+L &lt;-<span class="st"> </span><span class="kw">with</span>(da,
+          <span class="kw">list</span>(<span class="dt">y=</span>count, <span class="dt">offset=</span>volume,
+               <span class="dt">X=</span><span class="kw">model.matrix</span>(~IP*DAS)))
+
+m2 &lt;-<span class="st"> </span><span class="kw">mle2</span>(ll, <span class="dt">start=</span>start, <span class="dt">fixed=</span><span class="kw">list</span>(<span class="dt">alpha=</span><span class="dv">0</span>),
+           <span class="dt">data=</span>L, <span class="dt">vecpar=</span><span class="ot">TRUE</span>)</code></pre>
+<pre><code>## Warning in mle2(ll, start = start, fixed = list(alpha = 0), data =
+## L, vecpar = TRUE): couldn't invert Hessian</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">m3 &lt;-<span class="st"> </span><span class="kw">mle2</span>(ll, <span class="dt">start=</span>start,
+           <span class="dt">data=</span>L, <span class="dt">vecpar=</span><span class="ot">TRUE</span>)</code></pre>
+</div>
+<div id="comparacao-dos-ajustes" class="section level3">
+<h3>Comparação dos ajustes</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+
+## Log-verossimilhaça.
+<span class="kw">cbind</span>(<span class="kw">logLik</span>(m0), <span class="kw">logLik</span>(m1), <span class="kw">logLik</span>(m2), <span class="kw">logLik</span>(m3))</code></pre>
+<pre><code>##           [,1] [,2]      [,3]      [,4]
+## [1,] -390.3592   NA -390.3366 -227.2373</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Estimativas dos parâmetros.
+<span class="kw">cbind</span>(<span class="kw">coef</span>(m0), <span class="kw">coef</span>(m1), <span class="kw">coef</span>(m2)[-<span class="dv">1</span>], <span class="kw">coef</span>(m3)[-<span class="dv">1</span>])</code></pre>
+<pre><code>##                       [,1]        [,2]        [,3]        [,4]
+## (Intercept)     0.54401859  0.54401859  0.54393739  0.51310439
+## IP0.125         0.55924951  0.55924951  0.55964189  0.57308855
+## IP0.25         -0.22354670 -0.22354670 -0.22366867 -0.22717158
+## IP0.5           0.06574698  0.06574698  0.06560404  0.06860458
+## IP1            -0.85824022 -0.85824022 -0.85830921 -0.89167062
+## DAS110         -1.83814249 -1.83814249 -1.83823781 -1.97733430
+## IP0.125:DAS110 -1.01243332 -1.01243332 -1.01246587 -1.09033430
+## IP0.25:DAS110  -0.04809225 -0.04809225 -0.04810883 -0.10442588
+## IP0.5:DAS110   -0.67991637 -0.67991637 -0.67992897 -0.82075570
+## IP1:DAS110      0.11214329  0.11214329  0.11213224 -0.04105420</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Estimativa do parâmetro de dispersão.
+<span class="kw">exp</span>(<span class="kw">coef</span>(m3)[<span class="dv">1</span>])</code></pre>
+<pre><code>##      alpha 
+## 0.08983008</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Perfil de log-verossmilhança.
+<span class="kw">plot</span>(<span class="kw">profile</span>(m3, <span class="dt">which=</span><span class="dv">1</span>))</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste para o parâmetro de dispersão.
+<span class="kw">anova</span>(m3, m2)</code></pre>
+<pre><code>## Likelihood Ratio Tests
+## Model 1: m3, [ll]: alpha+(Intercept)+IP0.125+IP0.25+IP0.5+IP1+
+##           DAS110+IP0.125:DAS110+IP0.25:DAS110+IP0.5:DAS110+
+##           IP1:DAS110
+## Model 2: m2, [ll]: (Intercept)+IP0.125+IP0.25+IP0.5+IP1+
+##           DAS110+IP0.125:DAS110+IP0.25:DAS110+IP0.5:DAS110+
+##           IP1:DAS110
+##   Tot Df Deviance Chisq Df Pr(&gt;Chisq)    
+## 1     11   454.47                        
+## 2     10   780.67 326.2  1  &lt; 2.2e-16 ***
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste para interação (Wald).
+a &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="dv">0</span>, <span class="kw">attr</span>(<span class="kw">model.matrix</span>(m0), <span class="st">&quot;assign&quot;</span>))
+ai &lt;-<span class="st"> </span>a==<span class="dv">3</span>
+L &lt;-<span class="st"> </span><span class="kw">t</span>(<span class="kw">replicate</span>(<span class="kw">sum</span>(ai), <span class="kw">rbind</span>(<span class="kw">coef</span>(m3)*<span class="dv">0</span>), <span class="dt">simplify=</span><span class="st">&quot;matrix&quot;</span>))
+L[,ai] &lt;-<span class="st"> </span><span class="kw">diag</span>(<span class="kw">sum</span>(ai))
+
+## Teste de Wald explicito.
+## t(L%*%coef(m3))%*%
+##     solve(L%*%vcov(m3)%*%t(L))%*%
+##     (L%*%coef(m3))
+<span class="kw">crossprod</span>(L%*%<span class="kw">coef</span>(m3), <span class="kw">solve</span>(L%*%<span class="kw">vcov</span>(m3)%*%<span class="kw">t</span>(L), L%*%<span class="kw">coef</span>(m3)))</code></pre>
+<pre><code>##         [,1]
+## [1,] 7.85688</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste de Wald para interação (poderia ser LRT, claro).
+<span class="kw">linearHypothesis</span>(<span class="dt">model=</span>m0, ## É necessário um objeto glm.
+                 <span class="dt">hypothesis.matrix=</span>L,
+                 <span class="dt">vcov.=</span><span class="kw">vcov</span>(m3),
+                 <span class="dt">coef.=</span><span class="kw">coef</span>(m3))</code></pre>
+<pre><code>## Linear hypothesis test
+## 
+## Hypothesis:
+## IP0.125:DAS110 = 0
+## IP0.25:DAS110 = 0
+## IP0.5:DAS110 = 0
+## IP1:DAS110 = 0
+## 
+## Model 1: restricted model
+## Model 2: count ~ offset(log(volume)) + IP * DAS
+## 
+## Note: Coefficient covariance matrix supplied.
+## 
+##   Res.Df Df  Chisq Pr(&gt;Chisq)  
+## 1     44                       
+## 2     40  4 7.8569    0.09696 .
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste pelo modelo quasi Poisson.
+<span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;Chisq&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: count
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##        Df Deviance Resid. Df Resid. Dev  Pr(&gt;Chi)    
+## NULL                      49     5375.6              
+## IP      4    662.9        45     4712.6 1.998e-10 ***
+## DAS     1   4124.8        44      587.8 &lt; 2.2e-16 ***
+## IP:DAS  4    100.9        40      486.9    0.0992 .  
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;F&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: count
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##        Df Deviance Resid. Df Resid. Dev        F    Pr(&gt;F)    
+## NULL                      49     5375.6                       
+## IP      4    662.9        45     4712.6  12.8076 8.431e-07 ***
+## DAS     1   4124.8        44      587.8 318.7506 &lt; 2.2e-16 ***
+## IP:DAS  4    100.9        40      486.9   1.9499    0.1209    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ortogonalidade entre dispersão e locação.
+
+V &lt;-<span class="st"> </span><span class="kw">cov2cor</span>(<span class="kw">vcov</span>(m3))
+<span class="kw">corrplot.mixed</span>(V, <span class="dt">upper=</span><span class="st">&quot;ellipse&quot;</span>, <span class="dt">col=</span><span class="st">&quot;gray50&quot;</span>)</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">dev.off</span>()</code></pre>
+<pre><code>## null device 
+##           1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">V[<span class="dv">1</span>,-<span class="dv">1</span>]</code></pre>
+<pre><code>##    (Intercept)        IP0.125         IP0.25          IP0.5 
+##    0.067375821   -0.024481873    0.005491339   -0.004596027 
+##            IP1         DAS110 IP0.125:DAS110  IP0.25:DAS110 
+##    0.042363354    0.120976452    0.046012475    0.033451032 
+##   IP0.5:DAS110     IP1:DAS110 
+##    0.076770198    0.078610834</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">sum</span>(<span class="kw">abs</span>(V[<span class="dv">1</span>,-<span class="dv">1</span>]))</code></pre>
+<pre><code>## [1] 0.5001294</code></pre>
+</div>
+<div id="predicao" class="section level3">
+<h3>Predição</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Predição das médias com IC.
+
+pred &lt;-<span class="st"> </span><span class="kw">expand.grid</span>(<span class="dt">IP=</span><span class="kw">levels</span>(da$IP),
+                    <span class="dt">DAS=</span><span class="kw">levels</span>(da$DAS),
+                    <span class="dt">volume=</span><span class="dv">100</span>,
+                    <span class="dt">KEEP.OUT.ATTRS=</span><span class="ot">FALSE</span>)
+pred &lt;-<span class="st"> </span><span class="kw">list</span>(<span class="dt">pois=</span>pred, <span class="dt">quasi=</span>pred, <span class="dt">cg=</span>pred)
+
+## Quantil normal.
+qn &lt;-<span class="st"> </span><span class="kw">qnorm</span>(<span class="fl">0.975</span>)*<span class="kw">c</span>(<span class="dt">lwr=</span>-<span class="dv">1</span>, <span class="dt">fit=</span><span class="dv">0</span>, <span class="dt">upr=</span><span class="dv">1</span>)
+
+## Preditos pela Poisson.
+aux &lt;-<span class="st"> </span><span class="kw">predict</span>(m0, <span class="dt">newdata=</span>pred$pois, <span class="dt">se.fit=</span><span class="ot">TRUE</span>)
+aux &lt;-<span class="st"> </span><span class="kw">exp</span>(aux$fit+<span class="kw">outer</span>(aux$se.fit, qn, <span class="dt">FUN=</span><span class="st">&quot;*&quot;</span>))
+pred$pois &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$pois, aux)
+<span class="kw">str</span>(pred$pois)</code></pre>
+<pre><code>## 'data.frame':    10 obs. of  6 variables:
+##  $ IP    : Factor w/ 5 levels &quot;0.0625&quot;,&quot;0.125&quot;,..: 1 2 3 4 5 1 2 3 4 5
+##  $ DAS   : Factor w/ 2 levels &quot;30&quot;,&quot;110&quot;: 1 1 1 1 1 2 2 2 2 2
+##  $ volume: num  100 100 100 100 100 100 100 100 100 100
+##  $ lwr   : num  160.9 286.6 128.2 172.5 66.3 ...
+##  $ fit   : num  172 301 138 184 73 ...
+##  $ upr   : num  184.4 317 148 196.3 80.5 ...</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">aux &lt;-<span class="st"> </span><span class="kw">predict</span>(m1, <span class="dt">newdata=</span>pred$quasi, <span class="dt">se.fit=</span><span class="ot">TRUE</span>)
+aux &lt;-<span class="st"> </span><span class="kw">exp</span>(aux$fit+<span class="kw">outer</span>(aux$se.fit, qn, <span class="dt">FUN=</span><span class="st">&quot;*&quot;</span>))
+pred$quasi &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$quasi, aux)
+
+alpha &lt;-<span class="st"> </span><span class="kw">coef</span>(m3)[<span class="dv">1</span>]  ## Locação.
+theta &lt;-<span class="st"> </span><span class="kw">coef</span>(m3)[-<span class="dv">1</span>] ## Dispersão.
+
+## Preditor linear.
+X &lt;-<span class="st"> </span><span class="kw">model.matrix</span>(~IP*DAS, <span class="dt">data=</span>pred$cg)
+pred$cg$eta &lt;-<span class="st"> </span><span class="kw">c</span>(X%*%theta)
+
+## Matrix de covariância completa.
+V &lt;-<span class="st"> </span><span class="kw">vcov</span>(m3)
+
+## Marginal em theta.
+Vm &lt;-<span class="st"> </span>V[-<span class="dv">1</span>,-<span class="dv">1</span>]
+
+## Condicional.
+Vc &lt;-<span class="st"> </span>V[-<span class="dv">1</span>,-<span class="dv">1</span>]-V[-<span class="dv">1</span>,<span class="dv">1</span>]%*%<span class="kw">solve</span>(V[<span class="dv">1</span>,<span class="dv">1</span>])%*%V[<span class="dv">1</span>,-<span class="dv">1</span>]
+
+<span class="kw">max</span>(<span class="kw">abs</span>(Vm-Vc))</code></pre>
+<pre><code>## [1] 0.001924182</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Preditos pela Gamma-count.
+U &lt;-<span class="st"> </span><span class="kw">chol</span>(Vm)
+aux &lt;-<span class="st"> </span><span class="kw">sqrt</span>(<span class="kw">apply</span>(X%*%<span class="kw">t</span>(U), <span class="dt">MARGIN=</span><span class="dv">1</span>,
+                  <span class="dt">FUN=</span>function(x){ <span class="kw">sum</span>(x^<span class="dv">2</span>) }))
+
+## Para calcular a média de uma Gamma-Count pelo preditor linear.
+eta2mean &lt;-<span class="st"> </span>function(eta, offset, alpha, <span class="dt">tol=</span><span class="fl">1e-5</span>){
+    <span class="kw">stopifnot</span>(<span class="kw">length</span>(eta)==1L)
+    <span class="kw">stopifnot</span>(<span class="kw">length</span>(offset)==1L)
+    <span class="kw">stopifnot</span>(<span class="kw">length</span>(alpha)==1L)
+    change &lt;-<span class="st"> </span><span class="dv">1</span>
+    S &lt;-<span class="st"> </span><span class="dv">0</span>; x &lt;-<span class="st"> </span><span class="dv">1</span>; p &lt;-<span class="st"> </span><span class="dv">1</span>
+    while (p&gt;tol){
+        p &lt;-<span class="st"> </span><span class="kw">pgamma</span>(offset,
+                    <span class="dt">shape=</span><span class="kw">exp</span>(alpha)*x,
+                    <span class="dt">rate=</span><span class="kw">exp</span>(alpha)*<span class="kw">exp</span>(eta))
+        S &lt;-<span class="st"> </span>S+p
+        x &lt;-<span class="st"> </span>x<span class="dv">+1</span>
+    }
+    <span class="kw">return</span>(S)
+}
+
+aux &lt;-<span class="st"> </span>pred$cg$eta+<span class="kw">outer</span>(aux, qn, <span class="dt">FUN=</span><span class="st">&quot;*&quot;</span>)
+aux &lt;-<span class="st"> </span><span class="kw">apply</span>(aux, <span class="dt">MARGIN=</span><span class="dv">2</span>,
+             <span class="dt">FUN=</span>function(col){
+                 <span class="kw">sapply</span>(col, <span class="dt">FUN=</span>eta2mean,
+                        <span class="dt">offset=</span>pred$cg$volume[<span class="dv">1</span>], <span class="dt">alpha=</span>alpha)
+             })
+pred$cg &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$cg, aux)
+
+##----------------------------------------------------------------------
+
+pred &lt;-<span class="st"> </span><span class="kw">ldply</span>(pred, <span class="dt">.id=</span><span class="st">&quot;modelo&quot;</span>)
+pred &lt;-<span class="st"> </span><span class="kw">arrange</span>(pred, DAS, IP, modelo)
+<span class="kw">str</span>(pred)</code></pre>
+<pre><code>## 'data.frame':    30 obs. of  8 variables:
+##  $ modelo: Factor w/ 3 levels &quot;pois&quot;,&quot;quasi&quot;,..: 1 2 3 1 2 3 1 2 3 1 ...
+##  $ IP    : Factor w/ 5 levels &quot;0.0625&quot;,&quot;0.125&quot;,..: 1 1 1 2 2 2 3 3 3 4 ...
+##  $ DAS   : Factor w/ 2 levels &quot;30&quot;,&quot;110&quot;: 1 1 1 1 1 1 1 1 1 1 ...
+##  $ volume: num  100 100 100 100 100 100 100 100 100 100 ...
+##  $ lwr   : num  161 135 138 287 251 ...
+##  $ fit   : num  172 172 172 301 301 ...
+##  $ upr   : num  184 220 215 317 361 ...
+##  $ eta   : num  NA NA 0.513 NA NA ...</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">source</span>(<span class="st">&quot;http://git.leg.ufpr.br/leg/legTools/raw/devel/R/panel.segplot.by.R&quot;</span>)
+
+<span class="kw">segplot</span>(IP~lwr+upr|DAS, <span class="dt">centers=</span>fit, <span class="dt">data=</span>pred,
+        <span class="dt">draw=</span><span class="ot">FALSE</span>, <span class="dt">scales=</span><span class="kw">list</span>(<span class="dt">x=</span><span class="st">&quot;free&quot;</span>),
+        <span class="dt">panel=</span>panel.segplot.by, <span class="dt">groups=</span>pred$modelo, <span class="dt">f=</span><span class="fl">0.1</span>,
+        <span class="dt">pch=</span>pred$modelo, <span class="dt">layout=</span><span class="kw">c</span>(<span class="dv">1</span>, <span class="ot">NA</span>), <span class="dt">as.table=</span><span class="ot">TRUE</span>, 
+        <span class="dt">key=</span><span class="kw">list</span>(<span class="dt">type=</span><span class="st">&quot;o&quot;</span>, <span class="dt">divide=</span><span class="dv">1</span>,
+                 <span class="dt">lines=</span><span class="kw">list</span>(<span class="dt">pch=</span><span class="dv">1</span>:<span class="kw">nlevels</span>(pred$modelo), <span class="dt">lty=</span><span class="dv">1</span>, <span class="dt">col=</span><span class="dv">1</span>),
+                 <span class="dt">text=</span><span class="kw">list</span>(<span class="kw">c</span>(<span class="st">&quot;Poisson&quot;</span>, <span class="st">&quot;Quasi-Poisson&quot;</span>,
+                             <span class="st">&quot;Gamma-Count&quot;</span>))))</code></pre>
+<p><img src="" /></p>
+<hr />
+</div>
+</div>
+<div id="numero-de-vagens-viaveis-em-soja" class="section level2">
+<h2>Número de vagens viáveis em soja</h2>
+<p>Nesse conjunto de dados, <strong>o efeito de bloco pode ser aleatório</strong>. Teria que implementar uma versão da Gamma-Count para acomodar termos de efeito aleatório.</p>
+<div id="analise-exploratoria-1" class="section level3">
+<h3>Análise exploratória</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Carrega os dados.
+
+db &lt;-<span class="st"> </span><span class="kw">read.table</span>(<span class="st">&quot;http://www.leg.ufpr.br/~walmes/data/soja.txt&quot;</span>,
+                 <span class="dt">header=</span><span class="ot">TRUE</span>, <span class="dt">sep=</span><span class="st">&quot;</span><span class="ch">\t</span><span class="st">&quot;</span>, <span class="dt">dec=</span><span class="st">&quot;,&quot;</span>)
+<span class="kw">names</span>(db)[<span class="dv">1</span>:<span class="dv">2</span>] &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="st">&quot;k&quot;</span>, <span class="st">&quot;a&quot;</span>)
+db &lt;-<span class="st"> </span>db[-<span class="dv">74</span>,<span class="kw">c</span>(<span class="dv">1</span>:<span class="dv">3</span>, <span class="dv">8</span>, <span class="dv">10</span>)]
+<span class="kw">str</span>(db)</code></pre>
+<pre><code>## 'data.frame':    74 obs. of  5 variables:
+##  $ k    : int  0 30 60 120 180 0 30 60 120 180 ...
+##  $ a    : num  37.5 37.5 37.5 37.5 37.5 50 50 50 50 50 ...
+##  $ bloco: Factor w/ 5 levels &quot;I&quot;,&quot;II&quot;,&quot;III&quot;,..: 1 1 1 1 1 1 1 1 1 1 ...
+##  $ ts   : int  136 159 156 171 190 140 193 200 208 237 ...
+##  $ nv   : int  56 62 66 68 82 63 86 94 86 97 ...</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">xyplot</span>(nv~k|a, <span class="dt">data=</span>db)</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">xyplot</span>(ts~k|a, <span class="dt">data=</span>db)</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Gráfico de média-variância não é possível pois não existem repetições
+## com o mesmo preditor.</code></pre>
+</div>
+<div id="ajuste-dos-modelos-1" class="section level3">
+<h3>Ajuste dos modelos</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ajuste do Poisson e Quasi-Poisson.
+
+db &lt;-<span class="st"> </span><span class="kw">transform</span>(db, <span class="dt">A=</span><span class="kw">factor</span>(a), <span class="dt">K=</span><span class="kw">factor</span>(k))
+
+## Modelo Poisson para ter referência.
+m0 &lt;-<span class="st"> </span><span class="kw">glm</span>(nv~bloco+A*K, <span class="dt">data=</span>db, <span class="dt">family=</span>poisson)
+<span class="kw">summary</span>(m0)</code></pre>
+<pre><code>## 
+## Call:
+## glm(formula = nv ~ bloco + A * K, family = poisson, data = db)
+## 
+## Deviance Residuals: 
+##     Min       1Q   Median       3Q      Max  
+## -1.9681  -0.6393  -0.0195   0.4854   2.3306  
+## 
+## Coefficients:
+##             Estimate Std. Error z value Pr(&gt;|z|)    
+## (Intercept)  3.95369    0.06892  57.363  &lt; 2e-16 ***
+## blocoII     -0.02928    0.04091  -0.716  0.47414    
+## blocoIII    -0.07265    0.04136  -1.756  0.07902 .  
+## blocoIV     -0.12544    0.04194  -2.991  0.00278 ** 
+## blocoV      -0.10795    0.04297  -2.512  0.01199 *  
+## A50          0.13404    0.08765   1.529  0.12619    
+## A62.5        0.21656    0.08602   2.518  0.01181 *  
+## K30          0.27427    0.08493   3.229  0.00124 ** 
+## K60          0.30797    0.08432   3.652  0.00026 ***
+## K120         0.32883    0.08395   3.917 8.97e-05 ***
+## K180         0.25540    0.08528   2.995  0.00275 ** 
+## A50:K30      0.06322    0.11557   0.547  0.58433    
+## A62.5:K30   -0.10747    0.11536  -0.932  0.35152    
+## A50:K60      0.16561    0.11370   1.457  0.14521    
+## A62.5:K60    0.10735    0.11220   0.957  0.33869    
+## A50:K120     0.14920    0.11338   1.316  0.18818    
+## A62.5:K120   0.11839    0.11404   1.038  0.29922    
+## A50:K180     0.30370    0.11361   2.673  0.00751 ** 
+## A62.5:K180   0.19838    0.11256   1.762  0.07800 .  
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for poisson family taken to be 1)
+## 
+##     Null deviance: 322.684  on 73  degrees of freedom
+## Residual deviance:  65.278  on 55  degrees of freedom
+## AIC: 557.23
+## 
+## Number of Fisher Scoring iterations: 4</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m0, <span class="dt">test=</span><span class="st">&quot;Chisq&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: poisson, link: log
+## 
+## Response: nv
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##       Df Deviance Resid. Df Resid. Dev  Pr(&gt;Chi)    
+## NULL                     73     322.68              
+## bloco  4   14.284        69     308.40  0.006442 ** 
+## A      2   92.911        67     215.49 &lt; 2.2e-16 ***
+## K      4  136.060        63      79.43 &lt; 2.2e-16 ***
+## A:K    8   14.150        55      65.28  0.077926 .  
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Modelo quasi Poisson para usar os valores iniciais.
+## m1 &lt;- glm(count/volume~IP*DAS, data=da, family=quasipoisson)
+m1 &lt;-<span class="st"> </span><span class="kw">update</span>(m0, <span class="dt">family=</span>quasipoisson)
+<span class="kw">summary</span>(m1)</code></pre>
+<pre><code>## 
+## Call:
+## glm(formula = nv ~ bloco + A * K, family = quasipoisson, data = db)
+## 
+## Deviance Residuals: 
+##     Min       1Q   Median       3Q      Max  
+## -1.9681  -0.6393  -0.0195   0.4854   2.3306  
+## 
+## Coefficients:
+##             Estimate Std. Error t value Pr(&gt;|t|)    
+## (Intercept)  3.95369    0.07547  52.389  &lt; 2e-16 ***
+## blocoII     -0.02928    0.04479  -0.654 0.516036    
+## blocoIII    -0.07265    0.04529  -1.604 0.114420    
+## blocoIV     -0.12544    0.04592  -2.732 0.008457 ** 
+## blocoV      -0.10795    0.04705  -2.294 0.025606 *  
+## A50          0.13404    0.09597   1.397 0.168117    
+## A62.5        0.21656    0.09418   2.299 0.025303 *  
+## K30          0.27427    0.09300   2.949 0.004670 ** 
+## K60          0.30797    0.09233   3.336 0.001530 ** 
+## K120         0.32883    0.09192   3.577 0.000734 ***
+## K180         0.25540    0.09338   2.735 0.008376 ** 
+## A50:K30      0.06322    0.12654   0.500 0.619324    
+## A62.5:K30   -0.10747    0.12631  -0.851 0.398532    
+## A50:K60      0.16561    0.12449   1.330 0.188897    
+## A62.5:K60    0.10735    0.12286   0.874 0.386028    
+## A50:K120     0.14920    0.12414   1.202 0.234563    
+## A62.5:K120   0.11839    0.12487   0.948 0.347229    
+## A50:K180     0.30370    0.12439   2.441 0.017873 *  
+## A62.5:K180   0.19838    0.12325   1.610 0.113208    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for quasipoisson family taken to be 1.198902)
+## 
+##     Null deviance: 322.684  on 73  degrees of freedom
+## Residual deviance:  65.278  on 55  degrees of freedom
+## AIC: NA
+## 
+## Number of Fisher Scoring iterations: 4</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;F&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: nv
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##       Df Deviance Resid. Df Resid. Dev       F    Pr(&gt;F)    
+## NULL                     73     322.68                      
+## bloco  4   14.284        69     308.40  2.9785   0.02684 *  
+## A      2   92.911        67     215.49 38.7485 3.157e-11 ***
+## K      4  136.060        63      79.43 28.3719 8.316e-13 ***
+## A:K    8   14.150        55      65.28  1.4754   0.18750    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">par</span>(<span class="dt">mfrow=</span><span class="kw">c</span>(<span class="dv">2</span>,<span class="dv">2</span>)); <span class="kw">plot</span>(m1); <span class="kw">layout</span>(<span class="dv">1</span>)</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">cbind</span>(<span class="kw">coef</span>(m0), <span class="kw">coef</span>(m1))</code></pre>
+<pre><code>##                    [,1]        [,2]
+## (Intercept)  3.95368724  3.95368724
+## blocoII     -0.02927854 -0.02927854
+## blocoIII    -0.07265048 -0.07265048
+## blocoIV     -0.12543798 -0.12543798
+## blocoV      -0.10794857 -0.10794857
+## A50          0.13404356  0.13404356
+## A62.5        0.21656458  0.21656458
+## K30          0.27427290  0.27427290
+## K60          0.30796674  0.30796674
+## K120         0.32883188  0.32883188
+## K180         0.25540441  0.25540441
+## A50:K30      0.06322288  0.06322288
+## A62.5:K30   -0.10747272 -0.10747272
+## A50:K60      0.16561471  0.16561471
+## A62.5:K60    0.10735066  0.10735066
+## A50:K120     0.14920392  0.14920392
+## A62.5:K120   0.11838578  0.11838578
+## A50:K180     0.30369921  0.30369921
+## A62.5:K180   0.19837927  0.19837927</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ajuste do Gamma-Count.
+
+start &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="st">&quot;alpha&quot;</span>=<span class="kw">log</span>(<span class="dv">1</span>), <span class="kw">coef</span>(m0))
+<span class="kw">parnames</span>(ll) &lt;-<span class="st"> </span><span class="kw">names</span>(start)
+
+y &lt;-<span class="st"> </span><span class="kw">with</span>(db, nv)
+X &lt;-<span class="st"> </span><span class="kw">model.matrix</span>(~bloco+A*K, <span class="dt">data=</span>db)
+
+L &lt;-<span class="st"> </span><span class="kw">with</span>(db,
+          <span class="kw">list</span>(<span class="dt">y=</span>nv, <span class="dt">offset=</span><span class="dv">1</span>,
+               <span class="dt">X=</span><span class="kw">model.matrix</span>(~bloco+A*K)))
+
+m2 &lt;-<span class="st"> </span><span class="kw">mle2</span>(ll, <span class="dt">start=</span>start, <span class="dt">fixed=</span><span class="kw">list</span>(<span class="dt">alpha=</span><span class="dv">0</span>),
+           <span class="dt">data=</span>L, <span class="dt">vecpar=</span><span class="ot">TRUE</span>)
+
+m3 &lt;-<span class="st"> </span><span class="kw">mle2</span>(ll, <span class="dt">start=</span>start,
+           <span class="dt">data=</span>L, <span class="dt">vecpar=</span><span class="ot">TRUE</span>)</code></pre>
+</div>
+<div id="comparacao-dos-ajustes-1" class="section level3">
+<h3>Comparação dos ajustes</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+
+## Log-verossimilhaça.
+<span class="kw">cbind</span>(<span class="kw">logLik</span>(m0), <span class="kw">logLik</span>(m1), <span class="kw">logLik</span>(m2), <span class="kw">logLik</span>(m3))</code></pre>
+<pre><code>##           [,1] [,2]      [,3]      [,4]
+## [1,] -259.6165   NA -259.6165 -259.3264</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Estimativas dos parâmetros.
+<span class="kw">cbind</span>(<span class="kw">coef</span>(m0), <span class="kw">coef</span>(m1), <span class="kw">coef</span>(m2)[-<span class="dv">1</span>], <span class="kw">coef</span>(m3)[-<span class="dv">1</span>])</code></pre>
+<pre><code>##                    [,1]        [,2]        [,3]        [,4]
+## (Intercept)  3.95368724  3.95368724  3.95368723  3.95487435
+## blocoII     -0.02927854 -0.02927854 -0.02927855 -0.02925363
+## blocoIII    -0.07265048 -0.07265048 -0.07265048 -0.07259276
+## blocoIV     -0.12543798 -0.12543798 -0.12543798 -0.12534177
+## blocoV      -0.10794857 -0.10794857 -0.10794857 -0.10785674
+## A50          0.13404356  0.13404356  0.13404356  0.13388357
+## A62.5        0.21656458  0.21656458  0.21656458  0.21632039
+## K30          0.27427290  0.27427290  0.27427290  0.27397250
+## K60          0.30796674  0.30796674  0.30796674  0.30763762
+## K120         0.32883188  0.32883188  0.32883188  0.32848139
+## K180         0.25540441  0.25540441  0.25540441  0.25512492
+## A50:K30      0.06322288  0.06322288  0.06322288  0.06321988
+## A62.5:K30   -0.10747272 -0.10747272 -0.10747272 -0.10732539
+## A50:K60      0.16561471  0.16561471  0.16561471  0.16553912
+## A62.5:K60    0.10735066  0.10735066  0.10735066  0.10734196
+## A50:K120     0.14920392  0.14920392  0.14920392  0.14914452
+## A62.5:K120   0.11838578  0.11838578  0.11838578  0.11838048
+## A50:K180     0.30369921  0.30369921  0.30369921  0.30351780
+## A62.5:K180   0.19837927  0.19837927  0.19837927  0.19829595</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Estimativa do parâmetro de dispersão.
+<span class="kw">exp</span>(<span class="kw">coef</span>(m3)[<span class="dv">1</span>])</code></pre>
+<pre><code>##    alpha 
+## 1.137415</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Perfil de log-verossmilhança.
+<span class="kw">plot</span>(<span class="kw">profile</span>(m3, <span class="dt">which=</span><span class="dv">1</span>))</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste para o parâmetro de dispersão.
+<span class="kw">anova</span>(m3, m2)</code></pre>
+<pre><code>## Likelihood Ratio Tests
+## Model 1: m3, [ll]: alpha+(Intercept)+blocoII+blocoIII+blocoIV+
+##           blocoV+A50+A62.5+K30+K60+K120+K180+A50:K30+
+##           A62.5:K30+A50:K60+A62.5:K60+A50:K120+A62.5:K120+
+##           A50:K180+A62.5:K180
+## Model 2: m2, [ll]: (Intercept)+blocoII+blocoIII+blocoIV+blocoV+
+##           A50+A62.5+K30+K60+K120+K180+A50:K30+A62.5:K30+
+##           A50:K60+A62.5:K60+A50:K120+A62.5:K120+A50:K180+
+##           A62.5:K180
+##   Tot Df Deviance  Chisq Df Pr(&gt;Chisq)
+## 1     20   518.65                     
+## 2     19   519.23 0.5802  1     0.4462</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste para interação (Wald).
+a &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="dv">0</span>, <span class="kw">attr</span>(<span class="kw">model.matrix</span>(m0), <span class="st">&quot;assign&quot;</span>))
+ai &lt;-<span class="st"> </span>a==<span class="dv">4</span>
+L &lt;-<span class="st"> </span><span class="kw">t</span>(<span class="kw">replicate</span>(<span class="kw">sum</span>(ai), <span class="kw">rbind</span>(<span class="kw">coef</span>(m3)*<span class="dv">0</span>), <span class="dt">simplify=</span><span class="st">&quot;matrix&quot;</span>))
+L[,ai] &lt;-<span class="st"> </span><span class="kw">diag</span>(<span class="kw">sum</span>(ai))
+
+## Teste de Wald explicito.
+## t(L%*%coef(m3))%*%
+##     solve(L%*%vcov(m3)%*%t(L))%*%
+##     (L%*%coef(m3))
+<span class="kw">crossprod</span>(L%*%<span class="kw">coef</span>(m3), <span class="kw">solve</span>(L%*%<span class="kw">vcov</span>(m3)%*%<span class="kw">t</span>(L), L%*%<span class="kw">coef</span>(m3)))</code></pre>
+<pre><code>##          [,1]
+## [1,] 15.96558</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste de Wald para interação (poderia ser LRT, claro).
+<span class="kw">linearHypothesis</span>(<span class="dt">model=</span>m0, ## É necessário um objeto glm.
+                 <span class="dt">hypothesis.matrix=</span>L,
+                 <span class="dt">vcov.=</span><span class="kw">vcov</span>(m3),
+                 <span class="dt">coef.=</span><span class="kw">coef</span>(m3))</code></pre>
+<pre><code>## Linear hypothesis test
+## 
+## Hypothesis:
+## A50:K30 = 0
+## A62.5:K30 = 0
+## A50:K60 = 0
+## A62.5:K60 = 0
+## A50:K120 = 0
+## A62.5:K120 = 0
+## A50:K180 = 0
+## A62.5:K180 = 0
+## 
+## Model 1: restricted model
+## Model 2: nv ~ bloco + A * K
+## 
+## Note: Coefficient covariance matrix supplied.
+## 
+##   Res.Df Df  Chisq Pr(&gt;Chisq)  
+## 1     63                       
+## 2     55  8 15.966    0.04288 *
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste pelo modelo quasi Poisson.
+<span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;Chisq&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: nv
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##       Df Deviance Resid. Df Resid. Dev Pr(&gt;Chi)    
+## NULL                     73     322.68             
+## bloco  4   14.284        69     308.40   0.0180 *  
+## A      2   92.911        67     215.49   &lt;2e-16 ***
+## K      4  136.060        63      79.43   &lt;2e-16 ***
+## A:K    8   14.150        55      65.28   0.1602    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;F&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: nv
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##       Df Deviance Resid. Df Resid. Dev       F    Pr(&gt;F)    
+## NULL                     73     322.68                      
+## bloco  4   14.284        69     308.40  2.9785   0.02684 *  
+## A      2   92.911        67     215.49 38.7485 3.157e-11 ***
+## K      4  136.060        63      79.43 28.3719 8.316e-13 ***
+## A:K    8   14.150        55      65.28  1.4754   0.18750    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ortogonalidade entre dispersão e locação.
+
+V &lt;-<span class="st"> </span><span class="kw">vcov</span>(m3)
+<span class="kw">corrplot.mixed</span>(V, <span class="dt">upper=</span><span class="st">&quot;ellipse&quot;</span>, <span class="dt">col=</span><span class="st">&quot;gray50&quot;</span>)</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">dev.off</span>()</code></pre>
+<pre><code>## null device 
+##           1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">V[<span class="dv">1</span>,-<span class="dv">1</span>]</code></pre>
+<pre><code>##   (Intercept)       blocoII      blocoIII       blocoIV 
+##  2.365324e-04  5.001425e-06  1.151560e-05  1.911075e-05 
+##        blocoV           A50         A62.5           K30 
+##  1.837628e-05 -3.193628e-05 -4.869315e-05 -5.989025e-05 
+##           K60          K120          K180       A50:K30 
+## -6.558486e-05 -6.987732e-05 -5.568224e-05 -4.608388e-07 
+##     A62.5:K30       A50:K60     A62.5:K60      A50:K120 
+##  2.939089e-05 -1.498535e-05 -1.705038e-06 -1.175731e-05 
+##    A62.5:K120      A50:K180    A62.5:K180 
+## -9.755547e-07 -3.610277e-05 -1.658983e-05</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">sum</span>(<span class="kw">abs</span>(V[<span class="dv">1</span>,-<span class="dv">1</span>]))</code></pre>
+<pre><code>## [1] 0.0007341682</code></pre>
+</div>
+<div id="predicao-1" class="section level3">
+<h3>Predição</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Predição das médias com IC.
+
+pred &lt;-<span class="st"> </span><span class="kw">expand.grid</span>(<span class="dt">A=</span><span class="kw">levels</span>(db$A),
+                    <span class="dt">K=</span><span class="kw">levels</span>(db$K),
+                    <span class="dt">bloco=</span><span class="kw">factor</span>(<span class="st">&quot;I&quot;</span>, <span class="dt">levels=</span><span class="kw">levels</span>(db$bloco)),
+                    <span class="dt">KEEP.OUT.ATTRS=</span><span class="ot">FALSE</span>)
+pred &lt;-<span class="st"> </span><span class="kw">list</span>(<span class="dt">pois=</span>pred, <span class="dt">quasi=</span>pred, <span class="dt">cg=</span>pred)
+
+## Quantil normal.
+qn &lt;-<span class="st"> </span><span class="kw">qnorm</span>(<span class="fl">0.975</span>)*<span class="kw">c</span>(<span class="dt">lwr=</span>-<span class="dv">1</span>, <span class="dt">fit=</span><span class="dv">0</span>, <span class="dt">upr=</span><span class="dv">1</span>)
+
+## Preditor linear que considera o efeito médio dos blocos.
+X &lt;-<span class="st"> </span><span class="kw">LSmatrix</span>(m0, <span class="dt">effect=</span><span class="kw">c</span>(<span class="st">&quot;A&quot;</span>, <span class="st">&quot;K&quot;</span>))
+
+## Preditos pela Poisson.
+## aux &lt;- predict(m0, newdata=pred$pois, se.fit=TRUE)
+## aux &lt;- exp(aux$fit+outer(aux$se.fit, qn, FUN=&quot;*&quot;))
+## pred$pois &lt;- cbind(pred$pois, aux)
+aux &lt;-<span class="st"> </span><span class="kw">confint</span>(<span class="kw">glht</span>(m0, <span class="dt">linfct=</span>X), <span class="dt">calpha=</span><span class="kw">univariate_calpha</span>())$confint
+<span class="kw">colnames</span>(aux)[<span class="dv">1</span>] &lt;-<span class="st"> &quot;fit&quot;</span>
+pred$pois &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$pois, <span class="kw">exp</span>(aux))
+
+## aux &lt;- predict(m1, newdata=pred$quasi, se.fit=TRUE)
+## aux &lt;- exp(aux$fit+outer(aux$se.fit, qn, FUN=&quot;*&quot;))
+## pred$quasi &lt;- cbind(pred$quasi, aux)
+aux &lt;-<span class="st"> </span><span class="kw">confint</span>(<span class="kw">glht</span>(m1, <span class="dt">linfct=</span>X), <span class="dt">calpha=</span><span class="kw">univariate_calpha</span>())$confint
+<span class="kw">colnames</span>(aux)[<span class="dv">1</span>] &lt;-<span class="st"> &quot;fit&quot;</span>
+pred$quasi &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$quasi, <span class="kw">exp</span>(aux))
+
+alpha &lt;-<span class="st"> </span><span class="kw">coef</span>(m3)[<span class="dv">1</span>]  ## Locação.
+theta &lt;-<span class="st"> </span><span class="kw">coef</span>(m3)[-<span class="dv">1</span>] ## Dispersão.
+
+## Preditor linear.
+pred$cg$eta &lt;-<span class="st"> </span><span class="kw">c</span>(X%*%theta)
+
+## Matrix de covariância completa.
+V &lt;-<span class="st"> </span><span class="kw">vcov</span>(m3)
+
+## Marginal em theta.
+Vm &lt;-<span class="st"> </span>V[-<span class="dv">1</span>,-<span class="dv">1</span>]
+
+## Condicional.
+Vc &lt;-<span class="st"> </span>V[-<span class="dv">1</span>,-<span class="dv">1</span>]-V[-<span class="dv">1</span>,<span class="dv">1</span>]%*%<span class="kw">solve</span>(V[<span class="dv">1</span>,<span class="dv">1</span>])%*%V[<span class="dv">1</span>,-<span class="dv">1</span>]
+
+<span class="kw">max</span>(<span class="kw">abs</span>(Vm-Vc))</code></pre>
+<pre><code>## [1] 2.043359e-06</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Preditos pela Gamma-count.
+U &lt;-<span class="st"> </span><span class="kw">chol</span>(Vm)
+aux &lt;-<span class="st"> </span><span class="kw">sqrt</span>(<span class="kw">apply</span>(X%*%<span class="kw">t</span>(U), <span class="dt">MARGIN=</span><span class="dv">1</span>,
+                  <span class="dt">FUN=</span>function(x){ <span class="kw">sum</span>(x^<span class="dv">2</span>) }))
+
+aux &lt;-<span class="st"> </span>pred$cg$eta+<span class="kw">outer</span>(aux, qn, <span class="dt">FUN=</span><span class="st">&quot;*&quot;</span>)
+aux &lt;-<span class="st"> </span><span class="kw">apply</span>(aux, <span class="dt">MARGIN=</span><span class="dv">2</span>,
+             <span class="dt">FUN=</span>function(col){
+                 <span class="kw">sapply</span>(col, <span class="dt">FUN=</span>eta2mean,
+                        <span class="dt">offset=</span><span class="dv">1</span>, <span class="dt">alpha=</span>alpha)
+             })
+pred$cg &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$cg, aux)
+
+##----------------------------------------------------------------------
+
+pred &lt;-<span class="st"> </span><span class="kw">ldply</span>(pred, <span class="dt">.id=</span><span class="st">&quot;modelo&quot;</span>)
+pred &lt;-<span class="st"> </span><span class="kw">arrange</span>(pred, A, K, modelo)
+<span class="kw">str</span>(pred)</code></pre>
+<pre><code>## 'data.frame':    45 obs. of  8 variables:
+##  $ modelo: Factor w/ 3 levels &quot;pois&quot;,&quot;quasi&quot;,..: 1 2 3 1 2 3 1 2 3 1 ...
+##  $ A     : Factor w/ 3 levels &quot;37.5&quot;,&quot;50&quot;,&quot;62.5&quot;: 1 1 1 1 1 1 1 1 1 1 ...
+##  $ K     : Factor w/ 5 levels &quot;0&quot;,&quot;30&quot;,&quot;60&quot;,..: 1 1 1 2 2 2 3 3 3 4 ...
+##  $ bloco : Factor w/ 5 levels &quot;I&quot;,&quot;II&quot;,&quot;III&quot;,..: 1 1 1 1 1 1 1 1 1 1 ...
+##  $ fit   : num  48.7 48.7 48.7 64.1 64.1 ...
+##  $ lwr   : num  43 42.5 43.3 57.5 56.9 ...
+##  $ upr   : num  55.3 55.9 54.8 71.5 72.3 ...
+##  $ eta   : num  NA NA 3.89 NA NA ...</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">xyplot</span>(nv~K|A, <span class="dt">data=</span>db, <span class="dt">layout=</span><span class="kw">c</span>(<span class="ot">NA</span>, <span class="dv">1</span>), <span class="dt">as.table=</span><span class="ot">TRUE</span>,
+       <span class="dt">col=</span><span class="dv">1</span>, <span class="dt">cex=</span><span class="fl">0.7</span>, <span class="dt">pch=</span><span class="dv">19</span>)+
+<span class="st">    </span><span class="kw">as.layer</span>(
+        <span class="kw">segplot</span>(K~lwr+upr|A, <span class="dt">centers=</span>fit, <span class="dt">data=</span>pred,
+                <span class="dt">draw=</span><span class="ot">FALSE</span>, <span class="dt">horizontal=</span><span class="ot">FALSE</span>, ## scales=list(x=&quot;free&quot;),
+                <span class="dt">panel=</span>panel.segplot.by, <span class="dt">groups=</span>pred$modelo, <span class="dt">f=</span><span class="fl">0.15</span>,
+                <span class="dt">pch=</span>pred$modelo, <span class="dt">layout=</span><span class="kw">c</span>(<span class="ot">NA</span>, <span class="dv">1</span>), <span class="dt">as.table=</span><span class="ot">TRUE</span>, 
+                <span class="dt">key=</span><span class="kw">list</span>(<span class="dt">type=</span><span class="st">&quot;o&quot;</span>, <span class="dt">divide=</span><span class="dv">1</span>,
+                         <span class="dt">lines=</span><span class="kw">list</span>(<span class="dt">pch=</span><span class="dv">1</span>:<span class="kw">nlevels</span>(pred$modelo),
+                                    <span class="dt">lty=</span><span class="dv">1</span>, <span class="dt">col=</span><span class="dv">1</span>),
+                         <span class="dt">text=</span><span class="kw">list</span>(<span class="kw">c</span>(<span class="st">&quot;Poisson&quot;</span>, <span class="st">&quot;Quasi-Poisson&quot;</span>,
+                                     <span class="st">&quot;Gamma-Count&quot;</span>))))
+    )</code></pre>
+<p><img src="" /></p>
+</div>
+</div>
+<div id="ocorrencia-de-mosca-branca" class="section level2">
+<h2>Ocorrência de mosca branca</h2>
+<p><a href="http://www.leg.ufpr.br/~walmes/data/ninfas.txt" class="uri">http://www.leg.ufpr.br/~walmes/data/ninfas.txt</a></p>
+<div id="analise-exploratoria-2" class="section level3">
+<h3>Análise exploratória</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Análise exploratória.
+
+dc &lt;-<span class="st"> </span><span class="kw">read.table</span>(<span class="st">&quot;moscaBranca.txt&quot;</span>, <span class="dt">header=</span><span class="ot">TRUE</span>, <span class="dt">sep=</span><span class="st">&quot;</span><span class="ch">\t</span><span class="st">&quot;</span>)
+dc &lt;-<span class="st"> </span><span class="kw">transform</span>(dc,
+                <span class="dt">data=</span><span class="kw">as.Date</span>(dc$data),
+                <span class="dt">bloc=</span><span class="kw">factor</span>(bloc),
+                <span class="dt">tot=</span>inf+med+sup,
+                <span class="dt">off=</span><span class="dv">100</span>)
+dc$aval &lt;-<span class="st"> </span><span class="kw">with</span>(dc, <span class="kw">c</span>(data-<span class="kw">min</span>(data)))
+dc$Aval &lt;-<span class="st"> </span><span class="kw">factor</span>(dc$aval)
+<span class="kw">names</span>(dc)[<span class="dv">2</span>:<span class="dv">3</span>] &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="st">&quot;Vari&quot;</span>,<span class="st">&quot;Bloc&quot;</span>)
+dc &lt;-<span class="st"> </span><span class="kw">droplevels</span>(<span class="kw">subset</span>(dc, <span class="kw">grepl</span>(<span class="st">&quot;BRS&quot;</span>, <span class="dt">x=</span>Vari)))
+<span class="kw">str</span>(dc)</code></pre>
+<pre><code>## 'data.frame':    96 obs. of  10 variables:
+##  $ data: Date, format: &quot;2009-12-11&quot; ...
+##  $ Vari: Factor w/ 4 levels &quot;BRS 239&quot;,&quot;BRS 243 RR&quot;,..: 3 3 3 3 2 2 2 2 4 4 ...
+##  $ Bloc: Factor w/ 4 levels &quot;1&quot;,&quot;2&quot;,&quot;3&quot;,&quot;4&quot;: 1 2 3 4 1 2 3 4 1 2 ...
+##  $ sup : int  168 30 28 6 31 4 3 48 100 54 ...
+##  $ med : int  71 46 36 1 22 6 12 76 50 15 ...
+##  $ inf : int  39 22 7 31 28 10 27 13 34 7 ...
+##  $ tot : int  278 98 71 38 81 20 42 137 184 76 ...
+##  $ off : num  100 100 100 100 100 100 100 100 100 100 ...
+##  $ aval: num  0 0 0 0 0 0 0 0 0 0 ...
+##  $ Aval: Factor w/ 6 levels &quot;0&quot;,&quot;8&quot;,&quot;13&quot;,&quot;22&quot;,..: 1 1 1 1 1 1 1 1 1 1 ...</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## xyplot(sup+med+inf~data, groups=Vari, outer=TRUE, data=dc)
+<span class="kw">xyplot</span>(tot~data|Vari, <span class="dt">data=</span>dc)</code></pre>
+<p><img src="" /></p>
+</div>
+<div id="ajuste-dos-modelos-2" class="section level3">
+<h3>Ajuste dos modelos</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ajuste do Poisson e Quasi-Poisson.
+
+## IMPORTANT: Foi usado um offset de 100 por problemas de
+## over/underflow. O problema não é com a Poisson mas com a
+## Gamma-Count. Todas as análises consideram um offset de 100, portanto,
+## permanecem comparáveis e igualmente interpretáveis.
+
+## Modelo Poisson para ter referência.
+m0 &lt;-<span class="st"> </span><span class="kw">glm</span>(tot~<span class="kw">offset</span>(<span class="kw">log</span>(off))+Bloc+Vari*Aval,
+          <span class="dt">data=</span>dc, <span class="dt">family=</span>poisson)
+<span class="kw">summary</span>(m0)</code></pre>
+<pre><code>## 
+## Call:
+## glm(formula = tot ~ offset(log(off)) + Bloc + Vari * Aval, family = poisson, 
+##     data = dc)
+## 
+## Deviance Residuals: 
+##      Min        1Q    Median        3Q       Max  
+## -12.9723   -2.7083   -0.9217    1.8305   11.3713  
+## 
+## Coefficients:
+##                        Estimate Std. Error z value Pr(&gt;|z|)    
+## (Intercept)            0.616222   0.049692  12.401  &lt; 2e-16 ***
+## Bloc2                 -0.520193   0.032281 -16.114  &lt; 2e-16 ***
+## Bloc3                 -0.812680   0.035555 -22.857  &lt; 2e-16 ***
+## Bloc4                 -0.993601   0.037919 -26.204  &lt; 2e-16 ***
+## VariBRS 243 RR        -0.465529   0.076247  -6.106 1.02e-09 ***
+## VariBRS 245 RR         0.083830   0.065605   1.278 0.201320    
+## VariBRS 246 RR        -0.250994   0.071582  -3.506 0.000454 ***
+## Aval8                  0.289922   0.062610   4.631 3.65e-06 ***
+## Aval13                 0.423243   0.060915   6.948 3.70e-12 ***
+## Aval22                -0.711247   0.082513  -8.620  &lt; 2e-16 ***
+## Aval31                -2.881443   0.205529 -14.020  &lt; 2e-16 ***
+## Aval38                -3.155880   0.234176 -13.477  &lt; 2e-16 ***
+## VariBRS 243 RR:Aval8  -0.204400   0.103779  -1.970 0.048889 *  
+## VariBRS 245 RR:Aval8  -0.243589   0.089165  -2.732 0.006297 ** 
+## VariBRS 246 RR:Aval8   0.067329   0.093904   0.717 0.473373    
+## VariBRS 243 RR:Aval13 -0.536572   0.106217  -5.052 4.38e-07 ***
+## VariBRS 245 RR:Aval13 -0.489295   0.089303  -5.479 4.28e-08 ***
+## VariBRS 246 RR:Aval13  0.005953   0.092025   0.065 0.948419    
+## VariBRS 243 RR:Aval22 -0.136051   0.136796  -0.995 0.319954    
+## VariBRS 245 RR:Aval22 -0.620871   0.129162  -4.807 1.53e-06 ***
+## VariBRS 246 RR:Aval22 -0.094652   0.127050  -0.745 0.456272    
+## VariBRS 243 RR:Aval31  0.137025   0.318385   0.430 0.666922    
+## VariBRS 245 RR:Aval31  0.334880   0.265744   1.260 0.207611    
+## VariBRS 246 RR:Aval31  0.364323   0.284321   1.281 0.200060    
+## VariBRS 243 RR:Aval38  0.160147   0.360325   0.444 0.656716    
+## VariBRS 245 RR:Aval38  0.555250   0.290995   1.908 0.056377 .  
+## VariBRS 246 RR:Aval38  0.196927   0.336557   0.585 0.558466    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for poisson family taken to be 1)
+## 
+##     Null deviance: 7106.3  on 95  degrees of freedom
+## Residual deviance: 1283.8  on 69  degrees of freedom
+## AIC: 1812.5
+## 
+## Number of Fisher Scoring iterations: 5</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m0, <span class="dt">test=</span><span class="st">&quot;Chisq&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: poisson, link: log
+## 
+## Response: tot
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##           Df Deviance Resid. Df Resid. Dev  Pr(&gt;Chi)    
+## NULL                         95     7106.3              
+## Bloc       3    948.6        92     6157.7 &lt; 2.2e-16 ***
+## Vari       3    354.2        89     5803.5 &lt; 2.2e-16 ***
+## Aval       5   4432.2        84     1371.3 &lt; 2.2e-16 ***
+## Vari:Aval 15     87.5        69     1283.8 2.897e-12 ***
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Modelo quasi Poisson para usar os valores iniciais.
+## m1 &lt;- glm(count/volume~IP*DAS, data=da, family=quasipoisson)
+m1 &lt;-<span class="st"> </span><span class="kw">update</span>(m0, <span class="dt">family=</span>quasipoisson)
+<span class="kw">summary</span>(m1)</code></pre>
+<pre><code>## 
+## Call:
+## glm(formula = tot ~ offset(log(off)) + Bloc + Vari * Aval, family = quasipoisson, 
+##     data = dc)
+## 
+## Deviance Residuals: 
+##      Min        1Q    Median        3Q       Max  
+## -12.9723   -2.7083   -0.9217    1.8305   11.3713  
+## 
+## Coefficients:
+##                        Estimate Std. Error t value Pr(&gt;|t|)    
+## (Intercept)            0.616222   0.216765   2.843 0.005877 ** 
+## Bloc2                 -0.520193   0.140816  -3.694 0.000438 ***
+## Bloc3                 -0.812680   0.155096  -5.240 1.66e-06 ***
+## Bloc4                 -0.993601   0.165406  -6.007 7.93e-08 ***
+## VariBRS 243 RR        -0.465529   0.332600  -1.400 0.166092    
+## VariBRS 245 RR         0.083830   0.286178   0.293 0.770455    
+## VariBRS 246 RR        -0.250994   0.312251  -0.804 0.424261    
+## Aval8                  0.289922   0.273114   1.062 0.292145    
+## Aval13                 0.423243   0.265718   1.593 0.115770    
+## Aval22                -0.711247   0.359933  -1.976 0.052148 .  
+## Aval31                -2.881443   0.896547  -3.214 0.001992 ** 
+## Aval38                -3.155880   1.021509  -3.089 0.002890 ** 
+## VariBRS 243 RR:Aval8  -0.204400   0.452700  -0.452 0.653036    
+## VariBRS 245 RR:Aval8  -0.243589   0.388950  -0.626 0.533202    
+## VariBRS 246 RR:Aval8   0.067329   0.409623   0.164 0.869921    
+## VariBRS 243 RR:Aval13 -0.536572   0.463333  -1.158 0.250828    
+## VariBRS 245 RR:Aval13 -0.489295   0.389554  -1.256 0.213338    
+## VariBRS 246 RR:Aval13  0.005953   0.401426   0.015 0.988210    
+## VariBRS 243 RR:Aval22 -0.136051   0.596723  -0.228 0.820324    
+## VariBRS 245 RR:Aval22 -0.620871   0.563421  -1.102 0.274305    
+## VariBRS 246 RR:Aval22 -0.094652   0.554212  -0.171 0.864891    
+## VariBRS 243 RR:Aval31  0.137025   1.388842   0.099 0.921693    
+## VariBRS 245 RR:Aval31  0.334880   1.159213   0.289 0.773535    
+## VariBRS 246 RR:Aval31  0.364323   1.240248   0.294 0.769831    
+## VariBRS 243 RR:Aval38  0.160147   1.571791   0.102 0.919141    
+## VariBRS 245 RR:Aval38  0.555250   1.269361   0.437 0.663170    
+## VariBRS 246 RR:Aval38  0.196927   1.468109   0.134 0.893685    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for quasipoisson family taken to be 19.02829)
+## 
+##     Null deviance: 7106.3  on 95  degrees of freedom
+## Residual deviance: 1283.8  on 69  degrees of freedom
+## AIC: NA
+## 
+## Number of Fisher Scoring iterations: 5</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;F&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: tot
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##           Df Deviance Resid. Df Resid. Dev       F    Pr(&gt;F)    
+## NULL                         95     7106.3                      
+## Bloc       3    948.6        92     6157.7 16.6171  3.15e-08 ***
+## Vari       3    354.2        89     5803.5  6.2056 0.0008548 ***
+## Aval       5   4432.2        84     1371.3 46.5852 &lt; 2.2e-16 ***
+## Vari:Aval 15     87.5        69     1283.8  0.3066 0.9932405    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">par</span>(<span class="dt">mfrow=</span><span class="kw">c</span>(<span class="dv">2</span>,<span class="dv">2</span>)); <span class="kw">plot</span>(m1); <span class="kw">layout</span>(<span class="dv">1</span>)</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;F&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: tot
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##           Df Deviance Resid. Df Resid. Dev       F    Pr(&gt;F)    
+## NULL                         95     7106.3                      
+## Bloc       3    948.6        92     6157.7 16.6171  3.15e-08 ***
+## Vari       3    354.2        89     5803.5  6.2056 0.0008548 ***
+## Aval       5   4432.2        84     1371.3 46.5852 &lt; 2.2e-16 ***
+## Vari:Aval 15     87.5        69     1283.8  0.3066 0.9932405    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ajuste do Gamma-Count.
+
+start &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="st">&quot;alpha&quot;</span>=<span class="kw">log</span>(<span class="fl">0.05</span>), <span class="kw">coef</span>(m0))
+<span class="kw">parnames</span>(ll) &lt;-<span class="st"> </span><span class="kw">names</span>(start)
+
+y &lt;-<span class="st"> </span><span class="kw">with</span>(dc, tot)
+X &lt;-<span class="st"> </span><span class="kw">model.matrix</span>(~Bloc+Vari*Aval, <span class="dt">data=</span>dc)
+
+L &lt;-<span class="st"> </span><span class="kw">with</span>(dc, <span class="kw">list</span>(<span class="dt">y=</span>tot, <span class="dt">offset=</span><span class="dv">100</span>, <span class="dt">X=</span>X))
+
+m3 &lt;-<span class="st"> </span><span class="kw">mle2</span>(ll, <span class="dt">start=</span>start,
+           <span class="dt">data=</span>L, <span class="dt">vecpar=</span><span class="ot">TRUE</span>)
+## summary(m3)</code></pre>
+</div>
+<div id="comparacao-dos-ajustes-2" class="section level3">
+<h3>Comparação dos ajustes</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+
+## Log-verossimilhaça.
+<span class="kw">cbind</span>(<span class="kw">logLik</span>(m0), <span class="kw">logLik</span>(m1), <span class="kw">logLik</span>(m3))</code></pre>
+<pre><code>##           [,1] [,2]      [,3]
+## [1,] -879.2287   NA -406.3823</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Estimativas dos parâmetros.
+<span class="kw">cbind</span>(<span class="kw">coef</span>(m0), <span class="kw">coef</span>(m1), <span class="kw">coef</span>(m3)[-<span class="dv">1</span>])</code></pre>
+<pre><code>##                              [,1]        [,2]        [,3]
+## (Intercept)            0.61622189  0.61622189  0.58504511
+## Bloc2                 -0.52019337 -0.52019337 -0.57757362
+## Bloc3                 -0.81268000 -0.81268000 -0.91824130
+## Bloc4                 -0.99360148 -0.99360148 -1.12689114
+## VariBRS 243 RR        -0.46552935 -0.46552935 -0.52339156
+## VariBRS 245 RR         0.08382994  0.08382994  0.08711104
+## VariBRS 246 RR        -0.25099417 -0.25099417 -0.28037541
+## Aval8                  0.28992172  0.28992172  0.31047177
+## Aval13                 0.42324335  0.42324335  0.45246233
+## Aval22                -0.71124722 -0.71124722 -0.80784849
+## Aval31                -2.88144313 -2.88144313 -4.65211494
+## Aval38                -3.15587975 -3.15587975 -5.60370939
+## VariBRS 243 RR:Aval8  -0.20439954 -0.20439954 -0.21832971
+## VariBRS 245 RR:Aval8  -0.24358916 -0.24358916 -0.26078764
+## VariBRS 246 RR:Aval8   0.06732943  0.06732943  0.08301183
+## VariBRS 243 RR:Aval13 -0.53657204 -0.53657204 -0.58168152
+## VariBRS 245 RR:Aval13 -0.48929505 -0.48929505 -0.52302729
+## VariBRS 246 RR:Aval13  0.00595329  0.00595329  0.01849365
+## VariBRS 243 RR:Aval22 -0.13605064 -0.13605064 -0.24862953
+## VariBRS 245 RR:Aval22 -0.62087140 -0.62087140 -0.76234787
+## VariBRS 246 RR:Aval22 -0.09465244 -0.09465244 -0.14619717
+## VariBRS 243 RR:Aval31  0.13702528  0.13702528 -0.57602847
+## VariBRS 245 RR:Aval31  0.33488040  0.33488040  1.01382755
+## VariBRS 246 RR:Aval31  0.36432286  0.36432286  0.59593412
+## VariBRS 243 RR:Aval38  0.16014748  0.16014748 -0.68516307
+## VariBRS 245 RR:Aval38  0.55524980  0.55524980  1.80768792
+## VariBRS 246 RR:Aval38  0.19692673  0.19692673  0.09671683</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Estimativa do parâmetro de dispersão.
+<span class="kw">exp</span>(<span class="kw">coef</span>(m3)[<span class="dv">1</span>])</code></pre>
+<pre><code>##      alpha 
+## 0.05122604</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Perfil de log-verossmilhança.
+<span class="kw">plot</span>(<span class="kw">profile</span>(m3, <span class="dt">which=</span><span class="dv">1</span>))</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r">a &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="dv">0</span>, <span class="kw">attr</span>(<span class="kw">model.matrix</span>(m0), <span class="st">&quot;assign&quot;</span>))
+ai &lt;-<span class="st"> </span>a==<span class="dv">4</span>
+L &lt;-<span class="st"> </span><span class="kw">t</span>(<span class="kw">replicate</span>(<span class="kw">sum</span>(ai), <span class="kw">rbind</span>(<span class="kw">coef</span>(m3)*<span class="dv">0</span>), <span class="dt">simplify=</span><span class="st">&quot;matrix&quot;</span>))
+L[,ai] &lt;-<span class="st"> </span><span class="kw">diag</span>(<span class="kw">sum</span>(ai))
+
+## Teste de Wald explicito.
+## t(L%*%coef(m3))%*%
+##     solve(L%*%vcov(m3)%*%t(L))%*%
+##     (L%*%coef(m3))
+<span class="kw">crossprod</span>(L%*%<span class="kw">coef</span>(m3), <span class="kw">solve</span>(L%*%<span class="kw">vcov</span>(m3)%*%<span class="kw">t</span>(L), L%*%<span class="kw">coef</span>(m3)))</code></pre>
+<pre><code>##          [,1]
+## [1,] 6.354826</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste de Wald para interação (poderia ser LRT, claro).
+<span class="kw">linearHypothesis</span>(<span class="dt">model=</span>m0, ## É necessário um objeto glm.
+                 <span class="dt">hypothesis.matrix=</span>L,
+                 <span class="dt">vcov.=</span><span class="kw">vcov</span>(m3),
+                 <span class="dt">coef.=</span><span class="kw">coef</span>(m3))</code></pre>
+<pre><code>## Linear hypothesis test
+## 
+## Hypothesis:
+## VariBRS 243 RR:Aval8 = 0
+## VariBRS 245 RR:Aval8 = 0
+## VariBRS 246 RR:Aval8 = 0
+## VariBRS 243 RR:Aval13 = 0
+## VariBRS 245 RR:Aval13 = 0
+## VariBRS 246 RR:Aval13 = 0
+## VariBRS 243 RR:Aval22 = 0
+## VariBRS 245 RR:Aval22 = 0
+## VariBRS 246 RR:Aval22 = 0
+## VariBRS 243 RR:Aval31 = 0
+## VariBRS 245 RR:Aval31 = 0
+## VariBRS 246 RR:Aval31 = 0
+## VariBRS 243 RR:Aval38 = 0
+## VariBRS 245 RR:Aval38 = 0
+## VariBRS 246 RR:Aval38 = 0
+## 
+## Model 1: restricted model
+## Model 2: tot ~ offset(log(off)) + Bloc + Vari * Aval
+## 
+## Note: Coefficient covariance matrix supplied.
+## 
+##   Res.Df Df  Chisq Pr(&gt;Chisq)
+## 1     84                     
+## 2     69 15 6.3548     0.9732</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste pelo modelo quasi Poisson.
+<span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;Chisq&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: tot
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##           Df Deviance Resid. Df Resid. Dev  Pr(&gt;Chi)    
+## NULL                         95     7106.3              
+## Bloc       3    948.6        92     6157.7 8.594e-11 ***
+## Vari       3    354.2        89     5803.5 0.0003281 ***
+## Aval       5   4432.2        84     1371.3 &lt; 2.2e-16 ***
+## Vari:Aval 15     87.5        69     1283.8 0.9950153    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;F&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: tot
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##           Df Deviance Resid. Df Resid. Dev       F    Pr(&gt;F)    
+## NULL                         95     7106.3                      
+## Bloc       3    948.6        92     6157.7 16.6171  3.15e-08 ***
+## Vari       3    354.2        89     5803.5  6.2056 0.0008548 ***
+## Aval       5   4432.2        84     1371.3 46.5852 &lt; 2.2e-16 ***
+## Vari:Aval 15     87.5        69     1283.8  0.3066 0.9932405    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ortogonalidade entre dispersão e locação.
+
+V &lt;-<span class="st"> </span><span class="kw">cov2cor</span>(<span class="kw">vcov</span>(m3))
+<span class="kw">corrplot.mixed</span>(V, <span class="dt">upper=</span><span class="st">&quot;ellipse&quot;</span>, <span class="dt">col=</span><span class="st">&quot;gray50&quot;</span>)</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">dev.off</span>()</code></pre>
+<pre><code>## null device 
+##           1</code></pre>
+</div>
+<div id="predicao-2" class="section level3">
+<h3>Predição</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Predição das médias com IC.
+
+pred &lt;-<span class="st"> </span><span class="kw">expand.grid</span>(<span class="dt">Vari=</span><span class="kw">levels</span>(dc$Vari),
+                    <span class="dt">Aval=</span><span class="kw">unique</span>(dc$Aval),
+                    <span class="dt">Bloc=</span><span class="kw">factor</span>(<span class="st">&quot;1&quot;</span>, <span class="dt">levels=</span><span class="kw">levels</span>(dc$Bloc)),
+                    <span class="dt">off=</span><span class="dv">100</span>,
+                    <span class="dt">KEEP.OUT.ATTRS=</span><span class="ot">FALSE</span>)
+pred &lt;-<span class="st"> </span><span class="kw">list</span>(<span class="dt">pois=</span>pred, <span class="dt">quasi=</span>pred, <span class="dt">cg=</span>pred)
+
+## Quantil normal.
+qn &lt;-<span class="st"> </span><span class="kw">qnorm</span>(<span class="fl">0.975</span>)*<span class="kw">c</span>(<span class="dt">lwr=</span>-<span class="dv">1</span>, <span class="dt">fit=</span><span class="dv">0</span>, <span class="dt">upr=</span><span class="dv">1</span>)
+
+X &lt;-<span class="st"> </span><span class="kw">LSmatrix</span>(<span class="kw">lm</span>(tot~Bloc+Vari*Aval, dc), <span class="dt">effect=</span><span class="kw">c</span>(<span class="st">&quot;Vari&quot;</span>, <span class="st">&quot;Aval&quot;</span>))
+
+## Preditos pela Poisson.
+## aux &lt;- predict(m0, newdata=pred$pois, se.fit=TRUE)
+## aux &lt;- exp(aux$fit+outer(aux$se.fit, qn, FUN=&quot;*&quot;))
+## pred$pois &lt;- cbind(pred$pois, aux)
+aux &lt;-<span class="st"> </span><span class="kw">confint</span>(<span class="kw">glht</span>(m0, <span class="dt">linfct=</span>X), <span class="dt">calpha=</span><span class="kw">univariate_calpha</span>())$confint
+<span class="kw">colnames</span>(aux)[<span class="dv">1</span>] &lt;-<span class="st"> &quot;fit&quot;</span>
+pred$pois &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$pois, <span class="dv">100</span>*<span class="kw">exp</span>(aux))
+
+## aux &lt;- predict(m1, newdata=pred$quasi, se.fit=TRUE)
+## aux &lt;- exp(aux$fit+outer(aux$se.fit, qn, FUN=&quot;*&quot;))
+## pred$quasi &lt;- cbind(pred$quasi, aux)
+aux &lt;-<span class="st"> </span><span class="kw">confint</span>(<span class="kw">glht</span>(m1, <span class="dt">linfct=</span>X), <span class="dt">calpha=</span><span class="kw">univariate_calpha</span>())$confint
+<span class="kw">colnames</span>(aux)[<span class="dv">1</span>] &lt;-<span class="st"> &quot;fit&quot;</span>
+pred$quasi &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$quasi, <span class="dv">100</span>*<span class="kw">exp</span>(aux))
+
+alpha &lt;-<span class="st"> </span><span class="kw">coef</span>(m3)[<span class="dv">1</span>]  ## Locação.
+theta &lt;-<span class="st"> </span><span class="kw">coef</span>(m3)[-<span class="dv">1</span>] ## Dispersão.
+
+## Preditor linear.
+pred$cg$eta &lt;-<span class="st"> </span><span class="kw">c</span>(X%*%theta)
+
+## Matrix de covariância completa.
+V &lt;-<span class="st"> </span><span class="kw">vcov</span>(m3)
+
+## Marginal em theta.
+Vm &lt;-<span class="st"> </span>V[-<span class="dv">1</span>,-<span class="dv">1</span>]
+
+## Condicional.
+Vc &lt;-<span class="st"> </span>V[-<span class="dv">1</span>,-<span class="dv">1</span>]-V[-<span class="dv">1</span>,<span class="dv">1</span>]%*%<span class="kw">solve</span>(V[<span class="dv">1</span>,<span class="dv">1</span>])%*%V[<span class="dv">1</span>,-<span class="dv">1</span>]
+
+<span class="kw">max</span>(<span class="kw">abs</span>(Vm-Vc))</code></pre>
+<pre><code>## [1] 0.3355968</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Preditos pela Gamma-count.
+U &lt;-<span class="st"> </span><span class="kw">chol</span>(Vm)
+aux &lt;-<span class="st"> </span><span class="kw">sqrt</span>(<span class="kw">apply</span>(X%*%<span class="kw">t</span>(U), <span class="dt">MARGIN=</span><span class="dv">1</span>,
+                  <span class="dt">FUN=</span>function(x){ <span class="kw">sum</span>(x^<span class="dv">2</span>) }))
+
+aux &lt;-<span class="st"> </span>pred$cg$eta+<span class="kw">outer</span>(aux, qn, <span class="dt">FUN=</span><span class="st">&quot;*&quot;</span>)
+aux &lt;-<span class="st"> </span><span class="kw">apply</span>(aux, <span class="dt">MARGIN=</span><span class="dv">2</span>,
+             <span class="dt">FUN=</span>function(col){
+                 <span class="kw">sapply</span>(col, <span class="dt">FUN=</span>eta2mean,
+                        <span class="dt">offset=</span><span class="dv">100</span>, <span class="dt">alpha=</span>alpha)
+             })
+pred$cg &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$cg, aux)
+
+##----------------------------------------------------------------------
+
+pred &lt;-<span class="st"> </span><span class="kw">ldply</span>(pred, <span class="dt">.id=</span><span class="st">&quot;modelo&quot;</span>)
+pred &lt;-<span class="st"> </span><span class="kw">arrange</span>(pred, Aval, Vari, modelo)
+<span class="kw">str</span>(pred)</code></pre>
+<pre><code>## 'data.frame':    72 obs. of  9 variables:
+##  $ modelo: Factor w/ 3 levels &quot;pois&quot;,&quot;quasi&quot;,..: 1 2 3 1 2 3 1 2 3 1 ...
+##  $ Vari  : Factor w/ 4 levels &quot;BRS 239&quot;,&quot;BRS 243 RR&quot;,..: 1 1 1 2 2 2 3 3 3 4 ...
+##  $ Aval  : Factor w/ 6 levels &quot;0&quot;,&quot;8&quot;,&quot;13&quot;,&quot;22&quot;,..: 1 1 1 1 1 1 1 1 1 1 ...
+##  $ Bloc  : Factor w/ 4 levels &quot;1&quot;,&quot;2&quot;,&quot;3&quot;,&quot;4&quot;: 1 1 1 1 1 1 1 1 1 1 ...
+##  $ off   : num  100 100 100 100 100 100 100 100 100 100 ...
+##  $ fit   : num  104 104 102 65 65 ...
+##  $ lwr   : num  94.3 68.9 69.9 57.8 38.9 ...
+##  $ upr   : num  113.6 155.5 152.4 73.1 108.5 ...
+##  $ eta   : num  NA NA -0.0706 NA NA ...</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## source(&quot;http://git.leg.ufpr.br/leg/legTools/raw/devel/R/panel.segplot.by.R&quot;)
+
+<span class="kw">xyplot</span>(tot~Aval|Vari, <span class="dt">data=</span>dc, <span class="dt">layout=</span><span class="kw">c</span>(<span class="ot">NA</span>, <span class="dv">1</span>), <span class="dt">as.table=</span><span class="ot">TRUE</span>,
+       <span class="dt">col=</span><span class="dv">1</span>, <span class="dt">cex=</span><span class="fl">0.7</span>, <span class="dt">pch=</span><span class="dv">19</span>)+
+<span class="st">    </span><span class="kw">as.layer</span>(
+        <span class="kw">segplot</span>(Aval~lwr+upr|Vari, <span class="dt">centers=</span>fit, <span class="dt">data=</span>pred,
+                <span class="dt">horizontal=</span><span class="ot">FALSE</span>,
+                <span class="dt">draw=</span><span class="ot">FALSE</span>,
+                <span class="dt">panel=</span>panel.segplot.by, <span class="dt">groups=</span>pred$modelo, <span class="dt">f=</span><span class="fl">0.15</span>,
+                <span class="dt">pch=</span>pred$modelo, <span class="dt">layout=</span><span class="kw">c</span>(<span class="ot">NA</span>, <span class="dv">1</span>), <span class="dt">as.table=</span><span class="ot">TRUE</span>, 
+                <span class="dt">key=</span><span class="kw">list</span>(<span class="dt">type=</span><span class="st">&quot;o&quot;</span>, <span class="dt">divide=</span><span class="dv">1</span>,
+                         <span class="dt">lines=</span><span class="kw">list</span>(<span class="dt">pch=</span><span class="dv">1</span>:<span class="kw">nlevels</span>(pred$modelo),
+                                    <span class="dt">lty=</span><span class="dv">1</span>, <span class="dt">col=</span><span class="dv">1</span>),
+                         <span class="dt">text=</span><span class="kw">list</span>(<span class="kw">c</span>(<span class="st">&quot;Poisson&quot;</span>, <span class="st">&quot;Quasi-Poisson&quot;</span>,
+                                     <span class="st">&quot;Gamma-Count&quot;</span>))))
+    )</code></pre>
+<p><img src="" /></p>
+<hr />
+</div>
+</div>
+<div id="producao-de-ovos" class="section level2">
+<h2>Produção de ovos</h2>
+<div id="analise-exploratoria-3" class="section level3">
+<h3>Análise exploratória</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+
+dd &lt;-<span class="st"> </span><span class="kw">read.table</span>(<span class="st">&quot;ovos.txt&quot;</span>, <span class="dt">header=</span><span class="ot">TRUE</span>, <span class="dt">sep=</span><span class="st">&quot;</span><span class="ch">\t</span><span class="st">&quot;</span>)
+<span class="kw">str</span>(dd)</code></pre>
+<pre><code>## 'data.frame':    2100 obs. of  7 variables:
+##  $ periodo: int  1 1 1 1 1 1 1 1 1 1 ...
+##  $ box    : int  1 1 1 1 1 1 2 2 2 2 ...
+##  $ luz    : Factor w/ 5 levels &quot;amarelo&quot;,&quot;azul&quot;,..: 4 4 4 4 4 4 1 1 1 1 ...
+##  $ gaiola : int  1 2 3 4 5 6 1 2 3 4 ...
+##  $ dia    : int  1 1 1 1 1 1 1 1 1 1 ...
+##  $ ovos   : int  9 7 9 7 9 8 9 8 6 10 ...
+##  $ massa  : int  698 591 589 401 611 531 569 546 410 631 ...</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">ftable</span>(<span class="kw">xtabs</span>(~periodo+luz+box, <span class="dt">data=</span>dd))</code></pre>
+<pre><code>##                  box  1  2  3  4  5
+## periodo luz                        
+## 1       amarelo       0 84  0  0  0
+##         azul          0  0 84  0  0
+##         branco        0  0  0 84  0
+##         verde        84  0  0  0  0
+##         vermelho      0  0  0  0 84
+## 2       amarelo      84  0  0  0  0
+##         azul          0  0  0 84  0
+##         branco        0 84  0  0  0
+##         verde         0  0  0  0 84
+##         vermelho      0  0 84  0  0
+## 3       amarelo       0  0  0  0 84
+##         azul         84  0  0  0  0
+##         branco        0  0 84  0  0
+##         verde         0 84  0  0  0
+##         vermelho      0  0  0 84  0
+## 4       amarelo       0  0 84  0  0
+##         azul          0 84  0  0  0
+##         branco        0  0  0  0 84
+##         verde         0  0  0 84  0
+##         vermelho     84  0  0  0  0
+## 5       amarelo       0  0  0 84  0
+##         azul          0  0  0  0 84
+##         branco       84  0  0  0  0
+##         verde         0  0 84  0  0
+##         vermelho      0 84  0  0  0</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Cada box tem 6 gaiolas. Cada gaiola tem 10 aves.
+## Modelar a produção por ave dia usando o total de por gaiola em duas
+## semanas. O offset é 10*14=140.
+
+<span class="kw">useOuterStrips</span>(
+    <span class="kw">xyplot</span>(ovos~dia|luz+periodo, <span class="dt">data=</span>dd, <span class="dt">jitter.x=</span><span class="ot">TRUE</span>,
+           <span class="dt">groups=</span>gaiola,
+           <span class="dt">type=</span><span class="kw">c</span>(<span class="st">&quot;p&quot;</span>, <span class="st">&quot;smooth&quot;</span>)))</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">useOuterStrips</span>(
+    <span class="kw">xyplot</span>(massa~dia|luz+periodo, <span class="dt">data=</span>dd, <span class="dt">jitter.x=</span><span class="ot">TRUE</span>,
+           <span class="dt">groups=</span>gaiola,
+           <span class="dt">type=</span><span class="kw">c</span>(<span class="st">&quot;p&quot;</span>, <span class="st">&quot;smooth&quot;</span>)))</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r">## Agregar para o total quinzenal.
+dd &lt;-<span class="st"> </span><span class="kw">aggregate</span>(ovos~periodo+box+luz+gaiola, <span class="dt">data=</span>dd, <span class="dt">FUN=</span>sum)
+<span class="kw">str</span>(dd)</code></pre>
+<pre><code>## 'data.frame':    150 obs. of  5 variables:
+##  $ periodo: int  2 1 4 5 3 3 4 1 2 5 ...
+##  $ box    : int  1 2 3 4 5 1 2 3 4 5 ...
+##  $ luz    : Factor w/ 5 levels &quot;amarelo&quot;,&quot;azul&quot;,..: 1 1 1 1 1 2 2 2 2 2 ...
+##  $ gaiola : int  1 1 1 1 1 1 1 1 1 1 ...
+##  $ ovos   : int  111 115 99 118 117 107 91 113 120 115 ...</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">xyplot</span>(ovos~periodo, <span class="dt">groups=</span>luz, <span class="dt">data=</span>dd, <span class="dt">jitter.x=</span><span class="ot">TRUE</span>,
+       ## groups=gaiola,
+       <span class="dt">type=</span><span class="kw">c</span>(<span class="st">&quot;p&quot;</span>, <span class="st">&quot;smooth&quot;</span>))</code></pre>
+<p><img src="" /></p>
+</div>
+<div id="ajuste-dos-modelos-3" class="section level3">
+<h3>Ajuste dos modelos</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ajuste do Poisson e Quasi-Poisson.
+
+## IMPORTANT: Foi usado um offset de 10*14=140.
+
+dd &lt;-<span class="st"> </span><span class="kw">transform</span>(dd,
+                <span class="dt">off=</span><span class="dv">10</span>*<span class="dv">14</span>, ## 10 aves por gaiola, soma de 14 dias.
+                <span class="dt">Per=</span><span class="kw">factor</span>(periodo),
+                <span class="dt">Box=</span><span class="kw">factor</span>(box))
+<span class="kw">names</span>(dd)[<span class="dv">3</span>] &lt;-<span class="st"> &quot;Luz&quot;</span>
+
+## WARNING: Esta sendo negligenciada a variância de gaiolas. Isso requer
+## um modelo de efeitos aleatórios que ainda não dispomos.
+
+## Modelo Poisson para ter referência.
+m0 &lt;-<span class="st"> </span><span class="kw">glm</span>(ovos~<span class="kw">offset</span>(<span class="kw">log</span>(off))+Per+Box+Luz,
+          <span class="dt">data=</span>dd, <span class="dt">family=</span>poisson)
+<span class="kw">summary</span>(m0)</code></pre>
+<pre><code>## 
+## Call:
+## glm(formula = ovos ~ offset(log(off)) + Per + Box + Luz, family = poisson, 
+##     data = dd)
+## 
+## Deviance Residuals: 
+##      Min        1Q    Median        3Q       Max  
+## -2.98939  -0.70195   0.05559   0.73734   2.84660  
+## 
+## Coefficients:
+##              Estimate Std. Error z value Pr(&gt;|z|)    
+## (Intercept) -0.293502   0.028913 -10.151  &lt; 2e-16 ***
+## Per2        -0.020631   0.024848  -0.830 0.406375    
+## Per3        -0.066985   0.025143  -2.664 0.007717 ** 
+## Per4        -0.145362   0.025666  -5.664 1.48e-08 ***
+## Per5        -0.094955   0.025330  -3.749 0.000178 ***
+## Box2         0.016591   0.025919   0.640 0.522110    
+## Box3         0.017281   0.025923   0.667 0.505028    
+## Box4         0.071877   0.025581   2.810 0.004957 ** 
+## Box5         0.086243   0.025484   3.384 0.000714 ***
+## Luzazul     -0.007520   0.025659  -0.293 0.769463    
+## Luzbranco    0.005290   0.025575   0.207 0.836122    
+## Luzverde     0.026120   0.025441   1.027 0.304566    
+## Luzvermelho  0.003538   0.025579   0.138 0.889987    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for poisson family taken to be 1)
+## 
+##     Null deviance: 214.21  on 149  degrees of freedom
+## Residual deviance: 153.17  on 137  degrees of freedom
+## AIC: 1148.3
+## 
+## Number of Fisher Scoring iterations: 4</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m0, <span class="dt">test=</span><span class="st">&quot;Chisq&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: poisson, link: log
+## 
+## Response: ovos
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##      Df Deviance Resid. Df Resid. Dev  Pr(&gt;Chi)    
+## NULL                   149     214.21              
+## Per   4   41.191       145     173.02 2.454e-08 ***
+## Box   4   17.905       141     155.12  0.001288 ** 
+## Luz   4    1.942       137     153.17  0.746451    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Modelo quasi Poisson para usar os valores iniciais.
+## m1 &lt;- glm(count/volume~IP*DAS, data=da, family=quasipoisson)
+m1 &lt;-<span class="st"> </span><span class="kw">update</span>(m0, <span class="dt">family=</span>quasipoisson)
+<span class="kw">summary</span>(m1)</code></pre>
+<pre><code>## 
+## Call:
+## glm(formula = ovos ~ offset(log(off)) + Per + Box + Luz, family = quasipoisson, 
+##     data = dd)
+## 
+## Deviance Residuals: 
+##      Min        1Q    Median        3Q       Max  
+## -2.98939  -0.70195   0.05559   0.73734   2.84660  
+## 
+## Coefficients:
+##              Estimate Std. Error t value Pr(&gt;|t|)    
+## (Intercept) -0.293502   0.030410  -9.652  &lt; 2e-16 ***
+## Per2        -0.020631   0.026135  -0.789 0.431234    
+## Per3        -0.066985   0.026445  -2.533 0.012435 *  
+## Per4        -0.145362   0.026995  -5.385 3.07e-07 ***
+## Per5        -0.094955   0.026642  -3.564 0.000503 ***
+## Box2         0.016591   0.027261   0.609 0.543808    
+## Box3         0.017281   0.027266   0.634 0.527279    
+## Box4         0.071877   0.026905   2.671 0.008467 ** 
+## Box5         0.086243   0.026804   3.218 0.001614 ** 
+## Luzazul     -0.007520   0.026988  -0.279 0.780934    
+## Luzbranco    0.005290   0.026899   0.197 0.844375    
+## Luzverde     0.026120   0.026758   0.976 0.330712    
+## Luzvermelho  0.003538   0.026904   0.132 0.895564    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for quasipoisson family taken to be 1.106239)
+## 
+##     Null deviance: 214.21  on 149  degrees of freedom
+## Residual deviance: 153.17  on 137  degrees of freedom
+## AIC: NA
+## 
+## Number of Fisher Scoring iterations: 4</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;F&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: ovos
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##      Df Deviance Resid. Df Resid. Dev      F    Pr(&gt;F)    
+## NULL                   149     214.21                     
+## Per   4   41.191       145     173.02 9.3088 1.101e-06 ***
+## Box   4   17.905       141     155.12 4.0464  0.003924 ** 
+## Luz   4    1.942       137     153.17 0.4388  0.780359    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">par</span>(<span class="dt">mfrow=</span><span class="kw">c</span>(<span class="dv">2</span>,<span class="dv">2</span>)); <span class="kw">plot</span>(m1); <span class="kw">layout</span>(<span class="dv">1</span>)</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ajuste do Gamma-Count.
+
+start &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="st">&quot;alpha&quot;</span>=<span class="kw">log</span>(<span class="dv">1</span>), <span class="kw">coef</span>(m0))
+<span class="kw">parnames</span>(ll) &lt;-<span class="st"> </span><span class="kw">names</span>(start)
+
+y &lt;-<span class="st"> </span><span class="kw">with</span>(dd, ovos)
+X &lt;-<span class="st"> </span><span class="kw">model.matrix</span>(~Per+Box+Luz, <span class="dt">data=</span>dd)
+
+L &lt;-<span class="st"> </span><span class="kw">list</span>(<span class="dt">y=</span>y, <span class="dt">offset=</span><span class="dv">140</span>, <span class="dt">X=</span>X)
+
+m3 &lt;-<span class="st"> </span><span class="kw">mle2</span>(ll, <span class="dt">start=</span>start,
+           <span class="dt">data=</span>L, <span class="dt">vecpar=</span><span class="ot">TRUE</span>)
+## summary(m3)</code></pre>
+</div>
+<div id="comparacao-dos-ajustes-3" class="section level3">
+<h3>Comparação dos ajustes</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+
+## Log-verossimilhaça.
+<span class="kw">cbind</span>(<span class="kw">logLik</span>(m0), <span class="kw">logLik</span>(m1), <span class="kw">logLik</span>(m3))</code></pre>
+<pre><code>##           [,1] [,2]      [,3]
+## [1,] -561.1435   NA -561.1298</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Estimativas dos parâmetros.
+<span class="kw">cbind</span>(<span class="kw">coef</span>(m0), <span class="kw">coef</span>(m1), <span class="kw">coef</span>(m3)[-<span class="dv">1</span>])</code></pre>
+<pre><code>##                     [,1]         [,2]         [,3]
+## (Intercept) -0.293502158 -0.293502158 -0.293628429
+## Per2        -0.020631035 -0.020631035 -0.020628965
+## Per3        -0.066985381 -0.066985381 -0.066953143
+## Per4        -0.145362253 -0.145362253 -0.145392814
+## Per5        -0.094955166 -0.094955166 -0.094939106
+## Box2         0.016590669  0.016590669  0.016613475
+## Box3         0.017280556  0.017280556  0.017309822
+## Box4         0.071877118  0.071877118  0.071885239
+## Box5         0.086243384  0.086243384  0.086288936
+## Luzazul     -0.007520114 -0.007520114 -0.007514504
+## Luzbranco    0.005290366  0.005290366  0.005306603
+## Luzverde     0.026119937  0.026119937  0.026153428
+## Luzvermelho  0.003538117  0.003538117  0.003556394</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Estimativa do parâmetro de dispersão.
+<span class="kw">exp</span>(<span class="kw">coef</span>(m3)[<span class="dv">1</span>])</code></pre>
+<pre><code>##     alpha 
+## 0.9809765</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Perfil de log-verossmilhança.
+<span class="kw">plot</span>(<span class="kw">profile</span>(m3, <span class="dt">which=</span><span class="dv">1</span>))</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r">a &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="dv">0</span>, <span class="kw">attr</span>(<span class="kw">model.matrix</span>(m0), <span class="st">&quot;assign&quot;</span>))
+ai &lt;-<span class="st"> </span>a==<span class="dv">3</span>
+L &lt;-<span class="st"> </span><span class="kw">t</span>(<span class="kw">replicate</span>(<span class="kw">sum</span>(ai), <span class="kw">rbind</span>(<span class="kw">coef</span>(m3)*<span class="dv">0</span>), <span class="dt">simplify=</span><span class="st">&quot;matrix&quot;</span>))
+L[,ai] &lt;-<span class="st"> </span><span class="kw">diag</span>(<span class="kw">sum</span>(ai))
+
+## Teste de Wald explicito.
+## t(L%*%coef(m3))%*%
+##     solve(L%*%vcov(m3)%*%t(L))%*%
+##     (L%*%coef(m3))
+<span class="kw">crossprod</span>(L%*%<span class="kw">coef</span>(m3), <span class="kw">solve</span>(L%*%<span class="kw">vcov</span>(m3)%*%<span class="kw">t</span>(L), L%*%<span class="kw">coef</span>(m3)))</code></pre>
+<pre><code>##          [,1]
+## [1,] 1.914755</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste de Wald para interação (poderia ser LRT, claro).
+<span class="kw">linearHypothesis</span>(<span class="dt">model=</span>m0, ## É necessário um objeto glm.
+                 <span class="dt">hypothesis.matrix=</span>L,
+                 <span class="dt">vcov.=</span><span class="kw">vcov</span>(m3),
+                 <span class="dt">coef.=</span><span class="kw">coef</span>(m3))</code></pre>
+<pre><code>## Linear hypothesis test
+## 
+## Hypothesis:
+## Luzazul = 0
+## Luzbranco = 0
+## Luzverde = 0
+## Luzvermelho = 0
+## 
+## Model 1: restricted model
+## Model 2: ovos ~ offset(log(off)) + Per + Box + Luz
+## 
+## Note: Coefficient covariance matrix supplied.
+## 
+##   Res.Df Df  Chisq Pr(&gt;Chisq)
+## 1    141                     
+## 2    137  4 1.9148     0.7514</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste pelo modelo quasi Poisson.
+<span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;Chisq&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: ovos
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##      Df Deviance Resid. Df Resid. Dev  Pr(&gt;Chi)    
+## NULL                   149     214.21              
+## Per   4   41.191       145     173.02 1.611e-07 ***
+## Box   4   17.905       141     155.12   0.00278 ** 
+## Luz   4    1.942       137     153.17   0.78064    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;F&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: ovos
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##      Df Deviance Resid. Df Resid. Dev      F    Pr(&gt;F)    
+## NULL                   149     214.21                     
+## Per   4   41.191       145     173.02 9.3088 1.101e-06 ***
+## Box   4   17.905       141     155.12 4.0464  0.003924 ** 
+## Luz   4    1.942       137     153.17 0.4388  0.780359    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ortogonalidade entre dispersão e locação.
+
+V &lt;-<span class="st"> </span><span class="kw">cov2cor</span>(<span class="kw">vcov</span>(m3))
+<span class="kw">corrplot.mixed</span>(V, <span class="dt">upper=</span><span class="st">&quot;ellipse&quot;</span>, <span class="dt">col=</span><span class="st">&quot;gray50&quot;</span>)</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">dev.off</span>()</code></pre>
+<pre><code>## null device 
+##           1</code></pre>
+</div>
+<div id="predicao-3" class="section level3">
+<h3>Predição</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Predição das médias com IC.
+
+pred &lt;-<span class="st"> </span><span class="kw">expand.grid</span>(<span class="dt">Per=</span><span class="kw">factor</span>(<span class="kw">levels</span>(dd$Per)[<span class="dv">1</span>],
+                               <span class="dt">levels=</span><span class="kw">levels</span>(dd$Per)),
+                    <span class="dt">Box=</span><span class="kw">factor</span>(<span class="kw">levels</span>(dd$Box)[<span class="dv">1</span>],
+                               <span class="dt">levels=</span><span class="kw">levels</span>(dd$Box)),
+                    <span class="dt">Luz=</span><span class="kw">levels</span>(dd$Luz),
+                    <span class="dt">off=</span><span class="dv">10</span>*<span class="dv">14</span>,
+                    <span class="dt">KEEP.OUT.ATTRS=</span><span class="ot">FALSE</span>)
+pred &lt;-<span class="st"> </span><span class="kw">list</span>(<span class="dt">pois=</span>pred, <span class="dt">quasi=</span>pred, <span class="dt">cg=</span>pred)
+
+## Quantil normal.
+qn &lt;-<span class="st"> </span><span class="kw">qnorm</span>(<span class="fl">0.975</span>)*<span class="kw">c</span>(<span class="dt">lwr=</span>-<span class="dv">1</span>, <span class="dt">fit=</span><span class="dv">0</span>, <span class="dt">upr=</span><span class="dv">1</span>)
+
+X &lt;-<span class="st"> </span><span class="kw">LSmatrix</span>(<span class="kw">lm</span>(ovos~Per+Box+Luz, dd), <span class="dt">effect=</span><span class="kw">c</span>(<span class="st">&quot;Luz&quot;</span>))
+
+## Preditos pela Poisson.
+## aux &lt;- predict(m0, newdata=pred$pois, se.fit=TRUE)
+## aux &lt;- exp(aux$fit+outer(aux$se.fit, qn, FUN=&quot;*&quot;))
+## pred$pois &lt;- cbind(pred$pois, aux)
+aux &lt;-<span class="st"> </span><span class="kw">confint</span>(<span class="kw">glht</span>(m0, <span class="dt">linfct=</span>X), <span class="dt">calpha=</span><span class="kw">univariate_calpha</span>())$confint
+<span class="kw">colnames</span>(aux)[<span class="dv">1</span>] &lt;-<span class="st"> &quot;fit&quot;</span>
+pred$pois &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$pois, <span class="dv">140</span>*<span class="kw">exp</span>(aux))
+
+## aux &lt;- predict(m1, newdata=pred$quasi, se.fit=TRUE)
+## aux &lt;- exp(aux$fit+outer(aux$se.fit, qn, FUN=&quot;*&quot;))
+## pred$quasi &lt;- cbind(pred$quasi, aux)
+aux &lt;-<span class="st"> </span><span class="kw">confint</span>(<span class="kw">glht</span>(m1, <span class="dt">linfct=</span>X), <span class="dt">calpha=</span><span class="kw">univariate_calpha</span>())$confint
+<span class="kw">colnames</span>(aux)[<span class="dv">1</span>] &lt;-<span class="st"> &quot;fit&quot;</span>
+pred$quasi &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$quasi, <span class="dv">140</span>*<span class="kw">exp</span>(aux))
+
+alpha &lt;-<span class="st"> </span><span class="kw">coef</span>(m3)[<span class="dv">1</span>]  ## Locação.
+theta &lt;-<span class="st"> </span><span class="kw">coef</span>(m3)[-<span class="dv">1</span>] ## Dispersão.
+
+## Preditor linear.
+pred$cg$eta &lt;-<span class="st"> </span><span class="kw">c</span>(X%*%theta)
+
+## Matrix de covariância completa.
+V &lt;-<span class="st"> </span><span class="kw">vcov</span>(m3)
+
+## Marginal em theta.
+Vm &lt;-<span class="st"> </span>V[-<span class="dv">1</span>,-<span class="dv">1</span>]
+
+## Condicional.
+Vc &lt;-<span class="st"> </span>V[-<span class="dv">1</span>,-<span class="dv">1</span>]-V[-<span class="dv">1</span>,<span class="dv">1</span>]%*%<span class="kw">solve</span>(V[<span class="dv">1</span>,<span class="dv">1</span>])%*%V[<span class="dv">1</span>,-<span class="dv">1</span>]
+
+<span class="kw">max</span>(<span class="kw">abs</span>(Vm-Vc))</code></pre>
+<pre><code>## [1] 3.270846e-07</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Preditos pela Gamma-count.
+U &lt;-<span class="st"> </span><span class="kw">chol</span>(Vm)
+aux &lt;-<span class="st"> </span><span class="kw">sqrt</span>(<span class="kw">apply</span>(X%*%<span class="kw">t</span>(U), <span class="dt">MARGIN=</span><span class="dv">1</span>,
+                  <span class="dt">FUN=</span>function(x){ <span class="kw">sum</span>(x^<span class="dv">2</span>) }))
+
+aux &lt;-<span class="st"> </span>pred$cg$eta+<span class="kw">outer</span>(aux, qn, <span class="dt">FUN=</span><span class="st">&quot;*&quot;</span>)
+aux &lt;-<span class="st"> </span><span class="kw">apply</span>(aux, <span class="dt">MARGIN=</span><span class="dv">2</span>,
+             <span class="dt">FUN=</span>function(col){
+                 <span class="kw">sapply</span>(col, <span class="dt">FUN=</span>eta2mean,
+                        <span class="dt">offset=</span><span class="dv">140</span>, <span class="dt">alpha=</span>alpha)
+             })
+pred$cg &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$cg, aux)
+
+##----------------------------------------------------------------------
+
+pred &lt;-<span class="st"> </span><span class="kw">ldply</span>(pred, <span class="dt">.id=</span><span class="st">&quot;modelo&quot;</span>)
+pred &lt;-<span class="st"> </span><span class="kw">arrange</span>(pred, Luz, modelo)
+<span class="kw">str</span>(pred)</code></pre>
+<pre><code>## 'data.frame':    15 obs. of  9 variables:
+##  $ modelo: Factor w/ 3 levels &quot;pois&quot;,&quot;quasi&quot;,..: 1 2 3 1 2 3 1 2 3 1 ...
+##  $ Per   : Factor w/ 5 levels &quot;1&quot;,&quot;2&quot;,&quot;3&quot;,&quot;4&quot;,..: 1 1 1 1 1 1 1 1 1 1 ...
+##  $ Box   : Factor w/ 5 levels &quot;1&quot;,&quot;2&quot;,&quot;3&quot;,&quot;4&quot;,..: 1 1 1 1 1 1 1 1 1 1 ...
+##  $ Luz   : Factor w/ 5 levels &quot;amarelo&quot;,&quot;azul&quot;,..: 1 1 1 2 2 2 3 3 3 4 ...
+##  $ off   : num  140 140 140 140 140 140 140 140 140 140 ...
+##  $ fit   : num  102 102 102 101 101 ...
+##  $ lwr   : num  98 97.9 98 97.3 97.1 ...
+##  $ upr   : num  105 105 105 104 105 ...
+##  $ eta   : num  NA NA -0.321 NA NA ...</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## source(&quot;http://git.leg.ufpr.br/leg/legTools/raw/devel/R/panel.segplot.by.R&quot;)
+
+<span class="kw">segplot</span>(Luz~lwr+upr, <span class="dt">centers=</span>fit, <span class="dt">data=</span>pred,
+        <span class="dt">horizontal=</span><span class="ot">FALSE</span>,
+        <span class="dt">draw=</span><span class="ot">FALSE</span>,
+        <span class="dt">panel=</span>panel.segplot.by, <span class="dt">groups=</span>pred$modelo, <span class="dt">f=</span><span class="fl">0.15</span>,
+        <span class="dt">pch=</span>pred$modelo, <span class="dt">layout=</span><span class="kw">c</span>(<span class="ot">NA</span>, <span class="dv">1</span>), <span class="dt">as.table=</span><span class="ot">TRUE</span>, 
+        <span class="dt">key=</span><span class="kw">list</span>(<span class="dt">type=</span><span class="st">&quot;o&quot;</span>, <span class="dt">divide=</span><span class="dv">1</span>,
+                 <span class="dt">lines=</span><span class="kw">list</span>(<span class="dt">pch=</span><span class="dv">1</span>:<span class="kw">nlevels</span>(pred$modelo),
+                            <span class="dt">lty=</span><span class="dv">1</span>, <span class="dt">col=</span><span class="dv">1</span>),
+                 <span class="dt">text=</span><span class="kw">list</span>(<span class="kw">c</span>(<span class="st">&quot;Poisson&quot;</span>, <span class="st">&quot;Quasi-Poisson&quot;</span>,
+                             <span class="st">&quot;Gamma-Count&quot;</span>))))</code></pre>
+<p><img src="" /></p>
+<hr />
+</div>
+</div>
+<div id="capulhos-no-algodao-em-funcao-da-pressao-da-mosca-branca" class="section level2">
+<h2>Capulhos no algodão em função da pressão da mosca branca</h2>
+<p><a href="http://www.leg.ufpr.br/~walmes/data/mosca_algodao_prod.txt" class="uri">http://www.leg.ufpr.br/~walmes/data/mosca_algodao_prod.txt</a></p>
+<div id="analise-exploratoria-4" class="section level3">
+<h3>Análise exploratória</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+
+da &lt;-<span class="st"> </span><span class="kw">read.table</span>(
+    <span class="st">&quot;http://www.leg.ufpr.br/~walmes/data/mosca_algodao_prod.txt&quot;</span>,
+    <span class="dt">header=</span><span class="ot">TRUE</span>, <span class="dt">sep=</span><span class="st">&quot;</span><span class="ch">\t</span><span class="st">&quot;</span>)
+## da &lt;- aggregate(ncapu~vaso+dexp, data=da, FUN=sum)
+<span class="kw">str</span>(da)</code></pre>
+<pre><code>## 'data.frame':    60 obs. of  8 variables:
+##  $ dexp    : int  0 0 0 0 0 0 0 0 0 0 ...
+##  $ vaso    : int  1 1 2 2 3 3 4 4 5 5 ...
+##  $ planta  : int  1 2 1 2 1 2 1 2 1 2 ...
+##  $ nestrrep: int  4 4 3 5 5 5 5 5 4 5 ...
+##  $ ncapu   : int  4 4 2 5 5 5 5 5 4 5 ...
+##  $ alt     : num  70.5 67.5 72 70 64 64.5 67.5 61 70 70 ...
+##  $ nnos    : int  13 14 14 15 15 11 14 11 14 15 ...
+##  $ pesocap : num  25.2 NA 28.5 NA 31.8 ...</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">xyplot</span>(ncapu~dexp, <span class="dt">data=</span>da, <span class="dt">jitter.x=</span><span class="ot">TRUE</span>,
+       <span class="dt">type=</span><span class="kw">c</span>(<span class="st">&quot;p&quot;</span>, <span class="st">&quot;smooth&quot;</span>))</code></pre>
+<p><img src="" /></p>
+</div>
+<div id="ajuste-dos-modelos-4" class="section level3">
+<h3>Ajuste dos modelos</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ajuste do Poisson e Quasi-Poisson.
+
+## da &lt;- transform(da, Dexp=factor(dexp))
+da &lt;-<span class="st"> </span><span class="kw">transform</span>(da, <span class="dt">dexp=</span>dexp-<span class="kw">mean</span>(<span class="kw">range</span>(dexp)))
+
+## WARNING: Esta sendo negligenciada a variância entre vasos. Isso
+## requer um modelo de efeitos aleatórios que ainda não dispomos.
+
+## Modelo Poisson para ter referência.
+m0 &lt;-<span class="st"> </span><span class="kw">glm</span>(ncapu~dexp+<span class="kw">I</span>(dexp^<span class="dv">2</span>), <span class="dt">data=</span>da, <span class="dt">family=</span>poisson)
+<span class="kw">summary</span>(m0)</code></pre>
+<pre><code>## 
+## Call:
+## glm(formula = ncapu ~ dexp + I(dexp^2), family = poisson, data = da)
+## 
+## Deviance Residuals: 
+##      Min        1Q    Median        3Q       Max  
+## -1.58913  -0.33198   0.06437   0.27783   1.25187  
+## 
+## Coefficients:
+##             Estimate Std. Error z value Pr(&gt;|z|)    
+## (Intercept)  1.23887    0.10535  11.759   &lt;2e-16 ***
+## dexp        -0.02573    0.03785  -0.680    0.497    
+## I(dexp^2)    0.02870    0.02638   1.088    0.277    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for poisson family taken to be 1)
+## 
+##     Null deviance: 20.800  on 59  degrees of freedom
+## Residual deviance: 19.133  on 57  degrees of freedom
+## AIC: 214.88
+## 
+## Number of Fisher Scoring iterations: 4</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m0, <span class="dt">test=</span><span class="st">&quot;Chisq&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: poisson, link: log
+## 
+## Response: ncapu
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##           Df Deviance Resid. Df Resid. Dev Pr(&gt;Chi)
+## NULL                         59     20.800         
+## dexp       1  0.49164        58     20.308   0.4832
+## I(dexp^2)  1  1.17575        57     19.133   0.2782</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Modelo quasi Poisson para usar os valores iniciais.
+m1 &lt;-<span class="st"> </span><span class="kw">update</span>(m0, <span class="dt">family=</span>quasipoisson)
+<span class="kw">summary</span>(m1)</code></pre>
+<pre><code>## 
+## Call:
+## glm(formula = ncapu ~ dexp + I(dexp^2), family = quasipoisson, 
+##     data = da)
+## 
+## Deviance Residuals: 
+##      Min        1Q    Median        3Q       Max  
+## -1.58913  -0.33198   0.06437   0.27783   1.25187  
+## 
+## Coefficients:
+##             Estimate Std. Error t value Pr(&gt;|t|)    
+## (Intercept)  1.23887    0.05991  20.677   &lt;2e-16 ***
+## dexp        -0.02573    0.02152  -1.195   0.2370    
+## I(dexp^2)    0.02870    0.01500   1.913   0.0607 .  
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for quasipoisson family taken to be 0.3234131)
+## 
+##     Null deviance: 20.800  on 59  degrees of freedom
+## Residual deviance: 19.133  on 57  degrees of freedom
+## AIC: NA
+## 
+## Number of Fisher Scoring iterations: 4</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;F&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: ncapu
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##           Df Deviance Resid. Df Resid. Dev      F  Pr(&gt;F)  
+## NULL                         59     20.800                 
+## dexp       1  0.49164        58     20.308 1.5202 0.22265  
+## I(dexp^2)  1  1.17575        57     19.133 3.6355 0.06161 .
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">par</span>(<span class="dt">mfrow=</span><span class="kw">c</span>(<span class="dv">2</span>,<span class="dv">2</span>)); <span class="kw">plot</span>(m1); <span class="kw">layout</span>(<span class="dv">1</span>)</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ajuste do Gamma-Count.
+
+start &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="st">&quot;alpha&quot;</span>=<span class="kw">log</span>(<span class="dv">2</span>), <span class="kw">coef</span>(m0))
+<span class="kw">parnames</span>(ll) &lt;-<span class="st"> </span><span class="kw">names</span>(start)
+
+y &lt;-<span class="st"> </span><span class="kw">with</span>(da, ncapu)
+X &lt;-<span class="st"> </span><span class="kw">model.matrix</span>(m0)
+
+L &lt;-<span class="st"> </span><span class="kw">list</span>(<span class="dt">y=</span>y, <span class="dt">offset=</span><span class="dv">1</span>, <span class="dt">X=</span>X)
+
+m3 &lt;-<span class="st"> </span><span class="kw">mle2</span>(ll, <span class="dt">start=</span>start,
+           <span class="dt">data=</span>L, <span class="dt">vecpar=</span><span class="ot">TRUE</span>)
+<span class="kw">summary</span>(m3)</code></pre>
+<pre><code>## Maximum likelihood estimation
+## 
+## Call:
+## mle2(minuslogl = ll, start = start, data = L, vecpar = TRUE)
+## 
+## Coefficients:
+##              Estimate Std. Error z value     Pr(z)    
+## alpha        1.337744   0.203356  6.5783 4.757e-11 ***
+## (Intercept)  1.340756   0.053763 24.9381 &lt; 2.2e-16 ***
+## dexp        -0.023555   0.019175 -1.2284   0.21929    
+## I(dexp^2)    0.026019   0.013354  1.9484   0.05136 .  
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## -2 log L: 178.8027</code></pre>
+</div>
+<div id="comparacao-dos-ajustes-4" class="section level3">
+<h3>Comparação dos ajustes</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+
+## Log-verossimilhaça.
+<span class="kw">cbind</span>(<span class="kw">logLik</span>(m0), <span class="kw">logLik</span>(m1), <span class="kw">logLik</span>(m3))</code></pre>
+<pre><code>##           [,1] [,2]      [,3]
+## [1,] -104.4391   NA -89.40136</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Estimativas dos parâmetros.
+<span class="kw">cbind</span>(<span class="kw">coef</span>(m0), <span class="kw">coef</span>(m1), <span class="kw">coef</span>(m3)[-<span class="dv">1</span>])</code></pre>
+<pre><code>##                    [,1]        [,2]        [,3]
+## (Intercept)  1.23887158  1.23887158  1.34075603
+## dexp        -0.02572514 -0.02572514 -0.02355527
+## I(dexp^2)    0.02870051  0.02870051  0.02601916</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Estimativa do parâmetro de dispersão.
+<span class="kw">exp</span>(<span class="kw">coef</span>(m3)[<span class="dv">1</span>])</code></pre>
+<pre><code>##    alpha 
+## 3.810439</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Perfil de log-verossmilhança.
+<span class="kw">plot</span>(<span class="kw">profile</span>(m3, <span class="dt">which=</span><span class="dv">1</span>))</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r">a &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="dv">0</span>, <span class="kw">attr</span>(<span class="kw">model.matrix</span>(m0), <span class="st">&quot;assign&quot;</span>))
+ai &lt;-<span class="st"> </span>a!=<span class="dv">0</span>
+L &lt;-<span class="st"> </span><span class="kw">t</span>(<span class="kw">replicate</span>(<span class="kw">sum</span>(ai), <span class="kw">rbind</span>(<span class="kw">coef</span>(m3)*<span class="dv">0</span>), <span class="dt">simplify=</span><span class="st">&quot;matrix&quot;</span>))
+L[,ai] &lt;-<span class="st"> </span><span class="kw">diag</span>(<span class="kw">sum</span>(ai))
+
+## Teste de Wald explicito.
+## t(L%*%coef(m3))%*%
+##     solve(L%*%vcov(m3)%*%t(L))%*%
+##     (L%*%coef(m3))
+<span class="kw">crossprod</span>(L%*%<span class="kw">coef</span>(m3), <span class="kw">solve</span>(L%*%<span class="kw">vcov</span>(m3)%*%<span class="kw">t</span>(L), L%*%<span class="kw">coef</span>(m3)))</code></pre>
+<pre><code>##          [,1]
+## [1,] 5.483212</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste de Wald para interação (poderia ser LRT, claro).
+<span class="kw">linearHypothesis</span>(<span class="dt">model=</span>m0, ## É necessário um objeto glm.
+                 <span class="dt">hypothesis.matrix=</span>L,
+                 <span class="dt">vcov.=</span><span class="kw">vcov</span>(m3),
+                 <span class="dt">coef.=</span><span class="kw">coef</span>(m3))</code></pre>
+<pre><code>## Linear hypothesis test
+## 
+## Hypothesis:
+## dexp = 0
+## I(dexp^2) = 0
+## 
+## Model 1: restricted model
+## Model 2: ncapu ~ dexp + I(dexp^2)
+## 
+## Note: Coefficient covariance matrix supplied.
+## 
+##   Res.Df Df  Chisq Pr(&gt;Chisq)  
+## 1     59                       
+## 2     57  2 5.4832    0.06447 .
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Teste pelo modelo quasi Poisson.
+<span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;Chisq&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: ncapu
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##           Df Deviance Resid. Df Resid. Dev Pr(&gt;Chi)  
+## NULL                         59     20.800           
+## dexp       1  0.49164        58     20.308  0.21759  
+## I(dexp^2)  1  1.17575        57     19.133  0.05656 .
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(m1, <span class="dt">test=</span><span class="st">&quot;F&quot;</span>)</code></pre>
+<pre><code>## Analysis of Deviance Table
+## 
+## Model: quasipoisson, link: log
+## 
+## Response: ncapu
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##           Df Deviance Resid. Df Resid. Dev      F  Pr(&gt;F)  
+## NULL                         59     20.800                 
+## dexp       1  0.49164        58     20.308 1.5202 0.22265  
+## I(dexp^2)  1  1.17575        57     19.133 3.6355 0.06161 .
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Ortogonalidade entre dispersão e locação.
+
+V &lt;-<span class="st"> </span><span class="kw">cov2cor</span>(<span class="kw">vcov</span>(m3))
+<span class="kw">corrplot.mixed</span>(V, <span class="dt">upper=</span><span class="st">&quot;ellipse&quot;</span>, <span class="dt">col=</span><span class="st">&quot;gray50&quot;</span>)</code></pre>
+<p><img src="" /></p>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">dev.off</span>()</code></pre>
+<pre><code>## null device 
+##           1</code></pre>
+</div>
+<div id="predicao-4" class="section level3">
+<h3>Predição</h3>
+<pre class="sourceCode r"><code class="sourceCode r">##----------------------------------------------------------------------
+## Predição das médias com IC.
+
+pred &lt;-<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">dexp=</span><span class="kw">with</span>(da, <span class="kw">seq</span>(<span class="kw">min</span>(dexp), <span class="kw">max</span>(dexp), <span class="dt">l=</span><span class="dv">30</span>)))
+pred &lt;-<span class="st"> </span><span class="kw">list</span>(<span class="dt">pois=</span>pred, <span class="dt">quasi=</span>pred, <span class="dt">cg=</span>pred)
+
+## Quantil normal.
+qn &lt;-<span class="st"> </span><span class="kw">qnorm</span>(<span class="fl">0.975</span>)*<span class="kw">c</span>(<span class="dt">lwr=</span>-<span class="dv">1</span>, <span class="dt">fit=</span><span class="dv">0</span>, <span class="dt">upr=</span><span class="dv">1</span>)
+
+X &lt;-<span class="st"> </span><span class="kw">model.matrix</span>(<span class="kw">formula</span>(m0)[-<span class="dv">2</span>], <span class="dt">data=</span>pred$cg)
+
+## Preditos pela Poisson.
+## aux &lt;- predict(m0, newdata=pred$pois, se.fit=TRUE)
+## aux &lt;- exp(aux$fit+outer(aux$se.fit, qn, FUN=&quot;*&quot;))
+## pred$pois &lt;- cbind(pred$pois, aux)
+aux &lt;-<span class="st"> </span><span class="kw">confint</span>(<span class="kw">glht</span>(m0, <span class="dt">linfct=</span>X), <span class="dt">calpha=</span><span class="kw">univariate_calpha</span>())$confint
+<span class="kw">colnames</span>(aux)[<span class="dv">1</span>] &lt;-<span class="st"> &quot;fit&quot;</span>
+pred$pois &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$pois, <span class="kw">exp</span>(aux))
+
+## aux &lt;- predict(m1, newdata=pred$quasi, se.fit=TRUE)
+## aux &lt;- exp(aux$fit+outer(aux$se.fit, qn, FUN=&quot;*&quot;))
+## pred$quasi &lt;- cbind(pred$quasi, aux)
+aux &lt;-<span class="st"> </span><span class="kw">confint</span>(<span class="kw">glht</span>(m1, <span class="dt">linfct=</span>X), <span class="dt">calpha=</span><span class="kw">univariate_calpha</span>())$confint
+<span class="kw">colnames</span>(aux)[<span class="dv">1</span>] &lt;-<span class="st"> &quot;fit&quot;</span>
+pred$quasi &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$quasi, <span class="kw">exp</span>(aux))
+
+alpha &lt;-<span class="st"> </span><span class="kw">coef</span>(m3)[<span class="dv">1</span>]  ## Locação.
+theta &lt;-<span class="st"> </span><span class="kw">coef</span>(m3)[-<span class="dv">1</span>] ## Dispersão.
+
+## Preditor linear.
+pred$cg$eta &lt;-<span class="st"> </span><span class="kw">c</span>(X%*%theta)
+
+## Matrix de covariância completa.
+V &lt;-<span class="st"> </span><span class="kw">vcov</span>(m3)
+
+## Marginal em theta.
+Vm &lt;-<span class="st"> </span>V[-<span class="dv">1</span>,-<span class="dv">1</span>]
+
+## Condicional.
+Vc &lt;-<span class="st"> </span>V[-<span class="dv">1</span>,-<span class="dv">1</span>]-V[-<span class="dv">1</span>,<span class="dv">1</span>]%*%<span class="kw">solve</span>(V[<span class="dv">1</span>,<span class="dv">1</span>])%*%V[<span class="dv">1</span>,-<span class="dv">1</span>]
+
+<span class="kw">max</span>(<span class="kw">abs</span>(Vm-Vc))</code></pre>
+<pre><code>## [1] 5.565329e-05</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r">## Preditos pela Gamma-count.
+U &lt;-<span class="st"> </span><span class="kw">chol</span>(Vm)
+aux &lt;-<span class="st"> </span><span class="kw">sqrt</span>(<span class="kw">apply</span>(X%*%<span class="kw">t</span>(U), <span class="dt">MARGIN=</span><span class="dv">1</span>,
+                  <span class="dt">FUN=</span>function(x){ <span class="kw">sum</span>(x^<span class="dv">2</span>) }))
+
+aux &lt;-<span class="st"> </span>pred$cg$eta+<span class="kw">outer</span>(aux, qn, <span class="dt">FUN=</span><span class="st">&quot;*&quot;</span>)
+aux &lt;-<span class="st"> </span><span class="kw">apply</span>(aux, <span class="dt">MARGIN=</span><span class="dv">2</span>,
+             <span class="dt">FUN=</span>function(col){
+                 <span class="kw">sapply</span>(col, <span class="dt">FUN=</span>eta2mean,
+                        <span class="dt">offset=</span><span class="dv">1</span>, <span class="dt">alpha=</span>alpha)
+             })
+pred$cg &lt;-<span class="st"> </span><span class="kw">cbind</span>(pred$cg, aux)
+
+##----------------------------------------------------------------------
+
+pred &lt;-<span class="st"> </span><span class="kw">ldply</span>(pred, <span class="dt">.id=</span><span class="st">&quot;modelo&quot;</span>)
+pred &lt;-<span class="st"> </span><span class="kw">arrange</span>(pred, dexp)
+<span class="kw">str</span>(pred)</code></pre>
+<pre><code>## 'data.frame':    90 obs. of  6 variables:
+##  $ modelo: Factor w/ 3 levels &quot;pois&quot;,&quot;quasi&quot;,..: 1 2 3 1 2 3 1 2 3 1 ...
+##  $ dexp  : num  -2.5 -2.5 -2.5 -2.33 -2.33 ...
+##  $ fit   : num  4.4 4.4 4.4 4.28 4.28 ...
+##  $ lwr   : num  3.36 3.77 3.79 3.37 3.73 ...
+##  $ upr   : num  5.78 5.14 5.11 5.44 4.91 ...
+##  $ eta   : num  NA NA 1.56 NA NA ...</code></pre>
+<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">source</span>(<span class="st">&quot;https://raw.githubusercontent.com/walmes/wzRfun/master/R/prepanel.cbH.R&quot;</span>)
+<span class="kw">source</span>(<span class="st">&quot;https://raw.githubusercontent.com/walmes/wzRfun/master/R/panel.cbH.R&quot;</span>)
+
+<span class="kw">xyplot</span>(ncapu~dexp, <span class="dt">data=</span>da, <span class="dt">jitter.x=</span><span class="ot">TRUE</span>, <span class="dt">pch=</span><span class="dv">19</span>, <span class="dt">col=</span><span class="dv">1</span>)+
+<span class="st">    </span><span class="kw">as.layer</span>(
+        <span class="dt">under=</span><span class="ot">TRUE</span>,
+        <span class="kw">xyplot</span>(fit~dexp, <span class="dt">data=</span>pred, <span class="dt">groups=</span>modelo, <span class="dt">type=</span><span class="st">&quot;l&quot;</span>,
+               <span class="dt">ly=</span>pred$lwr, <span class="dt">uy=</span>pred$upr, <span class="dt">cty=</span><span class="st">&quot;bands&quot;</span>,
+               ## fill=&quot;gray90&quot;,
+               <span class="dt">alpha=</span><span class="fl">0.5</span>,
+               <span class="dt">prepanel=</span>prepanel.cbH,
+               <span class="dt">panel.groups=</span>panel.cbH,
+               <span class="dt">panel=</span>panel.superpose)
+    )</code></pre>
+<p><img src="" /></p>
+<hr />
+</div>
+</div>
+<div id="mais-dados-para-se-considerar" class="section level2">
+<h2>Mais dados para se considerar</h2>
+<ul>
+<li><a href="http://www.leg.ufpr.br/~walmes/data/banana_culttecido.txt" class="uri">http://www.leg.ufpr.br/~walmes/data/banana_culttecido.txt</a></li>
+<li><a href="http://www.leg.ufpr.br/~walmes/data/frango_comportamento.txt" class="uri">http://www.leg.ufpr.br/~walmes/data/frango_comportamento.txt</a></li>
+<li><a href="http://www.leg.ufpr.br/~walmes/data/mosca_algodao_aval.txt" class="uri">http://www.leg.ufpr.br/~walmes/data/mosca_algodao_aval.txt</a></li>
+</ul>
+</div>
+
+
+
+<!-- dynamically load mathjax for compatibility with self-contained -->
+<script>
+  (function () {
+    var script = document.createElement("script");
+    script.type = "text/javascript";
+    script.src  = "https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
+    document.getElementsByTagName("head")[0].appendChild(script);
+  })();
+</script>
+
+</body>
+</html>
diff --git a/examples/moscaBranca.txt b/examples/moscaBranca.txt
new file mode 100644
index 0000000000000000000000000000000000000000..69bcefeafd82cfa9ffbc150ae30fa54a640a6199
--- /dev/null
+++ b/examples/moscaBranca.txt
@@ -0,0 +1,241 @@
+data	vari	bloc	sup	med	inf
+2009-12-11	BRS 245 RR	1	168	71	39
+2009-12-11	BRS 245 RR	2	30	46	22
+2009-12-11	BRS 245 RR	3	28	36	7
+2009-12-11	BRS 245 RR	4	6	1	31
+2009-12-11	BRS 243 RR	1	31	22	28
+2009-12-11	BRS 243 RR	2	4	6	10
+2009-12-11	BRS 243 RR	3	3	12	27
+2009-12-11	BRS 243 RR	4	48	76	13
+2009-12-11	BRS 246 RR	1	100	50	34
+2009-12-11	BRS 246 RR	2	54	15	7
+2009-12-11	BRS 246 RR	3	1	50	12
+2009-12-11	BRS 246 RR	4	9	2	13
+2009-12-11	BRS 239	1	40	32	44
+2009-12-11	BRS 239	2	76	38	16
+2009-12-11	BRS 239	3	52	43	25
+2009-12-11	BRS 239	4	23	41	16
+2009-12-11	EMBRAPA 48	1	84	61	56
+2009-12-11	EMBRAPA 48	2	129	189	133
+2009-12-11	EMBRAPA 48	3	84	35	12
+2009-12-11	EMBRAPA 48	4	34	17	30
+2009-12-11	CD 214 RR	1	17	137	3
+2009-12-11	CD 214 RR	2	107	95	31
+2009-12-11	CD 214 RR	3	130	120	26
+2009-12-11	CD 214 RR	4	0	34	25
+2009-12-11	CD 202	1	16	21	12
+2009-12-11	CD 202	2	260	34	44
+2009-12-11	CD 202	3	91	67	19
+2009-12-11	CD 202	4	5	2	7
+2009-12-11	M 7908 RR	1	27	37	29
+2009-12-11	M 7908 RR	2	103	72	32
+2009-12-11	M 7908 RR	3	50	60	32
+2009-12-11	M 7908 RR	4	53	26	41
+2009-12-11	VMAX RR	1	24	12	11
+2009-12-11	VMAX RR	2	67	6	15
+2009-12-11	VMAX RR	3	0	0	0
+2009-12-11	VMAX RR	4	12	26	36
+2009-12-11	CD 219 RR	1	0	22	16
+2009-12-11	CD 219 RR	2	391	208	88
+2009-12-11	CD 219 RR	3	53	81	23
+2009-12-11	CD 219 RR	4	38	39	93
+2009-12-19	BRS 245 RR	1	147	54	37
+2009-12-19	BRS 245 RR	2	98	65	17
+2009-12-19	BRS 245 RR	3	0	53	4
+2009-12-19	BRS 245 RR	4	16	11	6
+2009-12-19	BRS 243 RR	1	79	96	38
+2009-12-19	BRS 243 RR	2	4	20	19
+2009-12-19	BRS 243 RR	3	19	2	12
+2009-12-19	BRS 243 RR	4	8	3	5
+2009-12-19	BRS 246 RR	1	77	42	32
+2009-12-19	BRS 246 RR	2	72	110	23
+2009-12-19	BRS 246 RR	3	64	17	14
+2009-12-19	BRS 246 RR	4	25	7	13
+2009-12-19	BRS 239	1	53	14	7
+2009-12-19	BRS 239	2	144	38	12
+2009-12-19	BRS 239	3	136	48	42
+2009-12-19	BRS 239	4	49	23	30
+2009-12-19	EMBRAPA 48	1	69	38	19
+2009-12-19	EMBRAPA 48	2	172	158	83
+2009-12-19	EMBRAPA 48	3	150	104	32
+2009-12-19	EMBRAPA 48	4	22	12	8
+2009-12-19	CD 214 RR	1	36	25	10
+2009-12-19	CD 214 RR	2	59	101	27
+2009-12-19	CD 214 RR	3	376	115	82
+2009-12-19	CD 214 RR	4	363	170	62
+2009-12-19	CD 202	1	14	21	19
+2009-12-19	CD 202	2	175	160	51
+2009-12-19	CD 202	3	77	51	23
+2009-12-19	CD 202	4	38	34	6
+2009-12-19	M 7908 RR	1	52	15	12
+2009-12-19	M 7908 RR	2	138	261	139
+2009-12-19	M 7908 RR	3	87	48	19
+2009-12-19	M 7908 RR	4	21	10	16
+2009-12-19	VMAX RR	1	53	17	9
+2009-12-19	VMAX RR	2	129	65	68
+2009-12-19	VMAX RR	3	11	18	7
+2009-12-19	VMAX RR	4	12	19	14
+2009-12-19	CD 219 RR	1	11	40	18
+2009-12-19	CD 219 RR	2	85	1157	278
+2009-12-19	CD 219 RR	3	95	75	24
+2009-12-19	CD 219 RR	4	24	34	135
+2009-12-24	BRS 245 RR	1	138	54	39
+2009-12-24	BRS 245 RR	2	47	56	14
+2009-12-24	BRS 245 RR	3	32	14	10
+2009-12-24	BRS 245 RR	4	24	21	5
+2009-12-24	BRS 243 RR	1	85	38	11
+2009-12-24	BRS 243 RR	2	21	7	19
+2009-12-24	BRS 243 RR	3	8	3	14
+2009-12-24	BRS 243 RR	4	10	30	4
+2009-12-24	BRS 246 RR	1	99	85	40
+2009-12-24	BRS 246 RR	2	84	56	23
+2009-12-24	BRS 246 RR	3	17	23	13
+2009-12-24	BRS 246 RR	4	51	19	23
+2009-12-24	BRS 239	1	156	42	22
+2009-12-24	BRS 239	2	60	66	10
+2009-12-24	BRS 239	3	144	57	11
+2009-12-24	BRS 239	4	75	23	15
+2009-12-24	EMBRAPA 48	1	135	44	43
+2009-12-24	EMBRAPA 48	2	87	169	62
+2009-12-24	EMBRAPA 48	3	268	107	111
+2009-12-24	EMBRAPA 48	4	20	14	3
+2009-12-24	CD 214 RR	1	85	47	25
+2009-12-24	CD 214 RR	2	76	108	36
+2009-12-24	CD 214 RR	3	265	155	146
+2009-12-24	CD 214 RR	4	464	223	170
+2009-12-24	CD 202	1	25	4	9
+2009-12-24	CD 202	2	182	100	23
+2009-12-24	CD 202	3	77	53	22
+2009-12-24	CD 202	4	64	65	10
+2009-12-24	M 7908 RR	1	39	13	16
+2009-12-24	M 7908 RR	2	216	152	151
+2009-12-24	M 7908 RR	3	62	32	22
+2009-12-24	M 7908 RR	4	82	24	19
+2009-12-24	VMAX RR	1	57	9	16
+2009-12-24	VMAX RR	2	88	176	26
+2009-12-24	VMAX RR	3	0	0	0
+2009-12-24	VMAX RR	4	71	4	11
+2009-12-24	CD 219 RR	1	89	99	14
+2009-12-24	CD 219 RR	2	15	751	423
+2009-12-24	CD 219 RR	3	131	79	13
+2009-12-24	CD 219 RR	4	140	159	215
+2010-01-02	BRS 245 RR	1	25	11	30
+2010-01-02	BRS 245 RR	2	8	11	3
+2010-01-02	BRS 245 RR	3	9	2	0
+2010-01-02	BRS 245 RR	4	18	8	3
+2010-01-02	BRS 243 RR	1	42	19	3
+2010-01-02	BRS 243 RR	2	6	3	6
+2010-01-02	BRS 243 RR	3	2	0	3
+2010-01-02	BRS 243 RR	4	8	25	3
+2010-01-02	BRS 246 RR	1	24	30	14
+2010-01-02	BRS 246 RR	2	18	7	2
+2010-01-02	BRS 246 RR	3	7	2	1
+2010-01-02	BRS 246 RR	4	25	14	11
+2010-01-02	BRS 239	1	38	20	55
+2010-01-02	BRS 239	2	21	4	5
+2010-01-02	BRS 239	3	21	23	7
+2010-01-02	BRS 239	4	8	12	5
+2010-01-02	EMBRAPA 48	1	10	7	13
+2010-01-02	EMBRAPA 48	2	27	13	12
+2010-01-02	EMBRAPA 48	3	101	23	18
+2010-01-02	EMBRAPA 48	4	11	8	6
+2010-01-02	CD 214 RR	1	27	16	27
+2010-01-02	CD 214 RR	2	12	35	11
+2010-01-02	CD 214 RR	3	62	24	54
+2010-01-02	CD 214 RR	4	36	48	3
+2010-01-02	CD 202	1	18	8	6
+2010-01-02	CD 202	2	41	6	17
+2010-01-02	CD 202	3	28	7	10
+2010-01-02	CD 202	4	21	12	14
+2010-01-02	M 7908 RR	1	22	11	2
+2010-01-02	M 7908 RR	2	78	30	18
+2010-01-02	M 7908 RR	3	41	12	1
+2010-01-02	M 7908 RR	4	101	83	60
+2010-01-02	VMAX RR	1	34	6	4
+2010-01-02	VMAX RR	2	42	30	10
+2010-01-02	VMAX RR	3	0	4	2
+2010-01-02	VMAX RR	4	43	7	5
+2010-01-02	CD 219 RR	1	166	39	33
+2010-01-02	CD 219 RR	2	135	265	65
+2010-01-02	CD 219 RR	3	26	43	1
+2010-01-02	CD 219 RR	4	77	88	9
+2010-01-11	BRS 245 RR	1	2	7	10
+2010-01-11	BRS 245 RR	2	3	5	2
+2010-01-11	BRS 245 RR	3	1	1	0
+2010-01-11	BRS 245 RR	4	4	0	3
+2010-01-11	BRS 243 RR	1	0	5	3
+2010-01-11	BRS 243 RR	2	0	1	1
+2010-01-11	BRS 243 RR	3	1	1	0
+2010-01-11	BRS 243 RR	4	4	0	2
+2010-01-11	BRS 246 RR	1	4	9	6
+2010-01-11	BRS 246 RR	2	3	4	0
+2010-01-11	BRS 246 RR	3	0	0	0
+2010-01-11	BRS 246 RR	4	2	0	0
+2010-01-11	BRS 239	1	1	10	2
+2010-01-11	BRS 239	2	1	0	0
+2010-01-11	BRS 239	3	4	3	1
+2010-01-11	BRS 239	4	2	0	1
+2010-01-11	EMBRAPA 48	1	0	2	1
+2010-01-11	EMBRAPA 48	2	2	0	0
+2010-01-11	EMBRAPA 48	3	3	1	2
+2010-01-11	EMBRAPA 48	4	1	0	1
+2010-01-11	CD 214 RR	1	2	0	1
+2010-01-11	CD 214 RR	2	3	7	4
+2010-01-11	CD 214 RR	3	4	16	8
+2010-01-11	CD 214 RR	4	1	0	4
+2010-01-11	CD 202	1	12	2	0
+2010-01-11	CD 202	2	7	1	4
+2010-01-11	CD 202	3	1	0	0
+2010-01-11	CD 202	4	3	1	0
+2010-01-11	M 7908 RR	1	2	9	3
+2010-01-11	M 7908 RR	2	11	6	4
+2010-01-11	M 7908 RR	3	4	1	1
+2010-01-11	M 7908 RR	4	55	10	0
+2010-01-11	VMAX RR	1	1	1	1
+2010-01-11	VMAX RR	2	23	7	0
+2010-01-11	VMAX RR	3	5	1	4
+2010-01-11	VMAX RR	4	10	0	0
+2010-01-11	CD 219 RR	1	65	12	4
+2010-01-11	CD 219 RR	2	217	145	27
+2010-01-11	CD 219 RR	3	10	2	1
+2010-01-11	CD 219 RR	4	11	4	0
+2010-01-18	BRS 245 RR	1	5	9	12
+2010-01-18	BRS 245 RR	2	3	0	1
+2010-01-18	BRS 245 RR	3	0	0	0
+2010-01-18	BRS 245 RR	4	3	2	1
+2010-01-18	BRS 243 RR	1	6	0	7
+2010-01-18	BRS 243 RR	2	1	0	0
+2010-01-18	BRS 243 RR	3	0	0	0
+2010-01-18	BRS 243 RR	4	0	0	0
+2010-01-18	BRS 246 RR	1	5	2	10
+2010-01-18	BRS 246 RR	2	1	0	0
+2010-01-18	BRS 246 RR	3	0	0	0
+2010-01-18	BRS 246 RR	4	0	0	0
+2010-01-18	BRS 239	1	3	1	0
+2010-01-18	BRS 239	2	1	0	0
+2010-01-18	BRS 239	3	0	0	0
+2010-01-18	BRS 239	4	2	9	3
+2010-01-18	EMBRAPA 48	1	1	6	4
+2010-01-18	EMBRAPA 48	2	0	1	0
+2010-01-18	EMBRAPA 48	3	0	0	0
+2010-01-18	EMBRAPA 48	4	2	1	4
+2010-01-18	CD 214 RR	1	5	2	4
+2010-01-18	CD 214 RR	2	3	2	2
+2010-01-18	CD 214 RR	3	0	0	2
+2010-01-18	CD 214 RR	4	0	0	0
+2010-01-18	CD 202	1	1	9	6
+2010-01-18	CD 202	2	0	0	1
+2010-01-18	CD 202	3	0	0	0
+2010-01-18	CD 202	4	0	2	1
+2010-01-18	M 7908 RR	1	3	1	13
+2010-01-18	M 7908 RR	2	5	0	0
+2010-01-18	M 7908 RR	3	1	0	0
+2010-01-18	M 7908 RR	4	2	0	0
+2010-01-18	VMAX RR	1	0	1	0
+2010-01-18	VMAX RR	2	13	3	0
+2010-01-18	VMAX RR	3	1	0	0
+2010-01-18	VMAX RR	4	6	1	3
+2010-01-18	CD 219 RR	1	49	12	2
+2010-01-18	CD 219 RR	2	110	42	28
+2010-01-18	CD 219 RR	3	7	3	0
+2010-01-18	CD 219 RR	4	4	3	4
diff --git a/examples/ovos.txt b/examples/ovos.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7efcd47a26803c5de8f0c43312368a79918e12b8
--- /dev/null
+++ b/examples/ovos.txt
@@ -0,0 +1,2101 @@
+periodo	box	luz	gaiola	dia	ovos	massa
+1	1	verde	1	1	9	698
+1	1	verde	2	1	7	591
+1	1	verde	3	1	9	589
+1	1	verde	4	1	7	401
+1	1	verde	5	1	9	611
+1	1	verde	6	1	8	531
+1	2	amarelo	1	1	9	569
+1	2	amarelo	2	1	8	546
+1	2	amarelo	3	1	6	410
+1	2	amarelo	4	1	10	631
+1	2	amarelo	5	1	8	565
+1	2	amarelo	6	1	7	457
+1	3	azul	1	1	8	490
+1	3	azul	2	1	10	667
+1	3	azul	3	1	7	465
+1	3	azul	4	1	8	496
+1	3	azul	5	1	7	464
+1	3	azul	6	1	8	531
+1	4	branco	1	1	9	598
+1	4	branco	2	1	8	503
+1	4	branco	3	1	9	595
+1	4	branco	4	1	7	434
+1	4	branco	5	1	9	589
+1	4	branco	6	1	7	435
+1	5	vermelho	1	1	9	582
+1	5	vermelho	2	1	8	516
+1	5	vermelho	3	1	8	520
+1	5	vermelho	4	1	9	588
+1	5	vermelho	5	1	9	560
+1	5	vermelho	6	1	7	462
+1	1	verde	1	2	7	429
+1	1	verde	2	2	7	469
+1	1	verde	3	2	5	333
+1	1	verde	4	2	6	371
+1	1	verde	5	2	5	345
+1	1	verde	6	2	7	455
+1	2	amarelo	1	2	10	640
+1	2	amarelo	2	2	8	540
+1	2	amarelo	3	2	10	671
+1	2	amarelo	4	2	9	582
+1	2	amarelo	5	2	7	458
+1	2	amarelo	6	2	6	381
+1	3	azul	1	2	7	440
+1	3	azul	2	2	9	605
+1	3	azul	3	2	6	373
+1	3	azul	4	2	9	590
+1	3	azul	5	2	7	460
+1	3	azul	6	2	7	487
+1	4	branco	1	2	8	511
+1	4	branco	2	2	7	468
+1	4	branco	3	2	7	450
+1	4	branco	4	2	7	449
+1	4	branco	5	2	10	670
+1	4	branco	6	2	4	270
+1	5	vermelho	1	2	8	530
+1	5	vermelho	2	2	6	379
+1	5	vermelho	3	2	7	441
+1	5	vermelho	4	2	7	455
+1	5	vermelho	5	2	6	366
+1	5	vermelho	6	2	10	661
+1	1	verde	1	3	9	574
+1	1	verde	2	3	8	558
+1	1	verde	3	3	9	606
+1	1	verde	4	3	10	620
+1	1	verde	5	3	9	619
+1	1	verde	6	3	8	523
+1	2	amarelo	1	3	8	508
+1	2	amarelo	2	3	7	421
+1	2	amarelo	3	3	8	514
+1	2	amarelo	4	3	8	535
+1	2	amarelo	5	3	8	505
+1	2	amarelo	6	3	5	340
+1	3	azul	1	3	9	557
+1	3	azul	2	3	7	467
+1	3	azul	3	3	10	645
+1	3	azul	4	3	8	516
+1	3	azul	5	3	8	513
+1	3	azul	6	3	8	532
+1	4	branco	1	3	9	594
+1	4	branco	2	3	9	595
+1	4	branco	3	3	8	50
+1	4	branco	4	3	8	521
+1	4	branco	5	3	9	590
+1	4	branco	6	3	8	509
+1	5	vermelho	1	3	10	658
+1	5	vermelho	2	3	8	511
+1	5	vermelho	3	3	9	573
+1	5	vermelho	4	3	9	569
+1	5	vermelho	5	3	7	414
+1	5	vermelho	6	3	8	519
+1	1	verde	1	4	9	564
+1	1	verde	2	4	7	441
+1	1	verde	3	4	5	320
+1	1	verde	4	4	9	545
+1	1	verde	5	4	10	665
+1	1	verde	6	4	9	595
+1	2	amarelo	1	4	9	587
+1	2	amarelo	2	4	5	526
+1	2	amarelo	3	4	9	591
+1	2	amarelo	4	4	6	413
+1	2	amarelo	5	4	6	385
+1	2	amarelo	6	4	9	599
+1	3	azul	1	4	8	487
+1	3	azul	2	4	9	623
+1	3	azul	3	4	10	637
+1	3	azul	4	4	9	579
+1	3	azul	5	4	5	330
+1	3	azul	6	4	9	608
+1	4	branco	1	4	7	448
+1	4	branco	2	4	8	519
+1	4	branco	3	4	5	530
+1	4	branco	4	4	6	337
+1	4	branco	5	4	10	653
+1	4	branco	6	4	9	569
+1	5	vermelho	1	4	10	654
+1	5	vermelho	2	4	7	439
+1	5	vermelho	3	4	7	440
+1	5	vermelho	4	4	9	572
+1	5	vermelho	5	4	6	365
+1	5	vermelho	6	4	8	514
+1	1	verde	1	5	9	576
+1	1	verde	2	5	4	261
+1	1	verde	3	5	8	528
+1	1	verde	4	5	8	500
+1	1	verde	5	5	7	460
+1	1	verde	6	5	8	613
+1	2	amarelo	1	5	7	458
+1	2	amarelo	2	5	7	441
+1	2	amarelo	3	5	9	602
+1	2	amarelo	4	5	8	530
+1	2	amarelo	5	5	9	590
+1	2	amarelo	6	5	8	510
+1	3	azul	1	5	9	560
+1	3	azul	2	5	9	629
+1	3	azul	3	5	8	533
+1	3	azul	4	5	10	630
+1	3	azul	5	5	6	396
+1	3	azul	6	5	6	407
+1	4	branco	1	5	10	654
+1	4	branco	2	5	9	566
+1	4	branco	3	5	9	592
+1	4	branco	4	5	7	385
+1	4	branco	5	5	8	506
+1	4	branco	6	5	8	491
+1	5	vermelho	1	5	8	518
+1	5	vermelho	2	5	8	527
+1	5	vermelho	3	5	8	493
+1	5	vermelho	4	5	10	657
+1	5	vermelho	5	5	9	555
+1	5	vermelho	6	5	9	572
+1	1	verde	1	6	9	564
+1	1	verde	2	6	8	527
+1	1	verde	3	6	8	514
+1	1	verde	4	6	9	546
+1	1	verde	5	6	10	711
+1	1	verde	6	6	7	441
+1	2	amarelo	1	6	7	441
+1	2	amarelo	2	6	8	516
+1	2	amarelo	3	6	7	450
+1	2	amarelo	4	6	10	659
+1	2	amarelo	5	6	7	451
+1	2	amarelo	6	6	6	371
+1	3	azul	1	6	8	493
+1	3	azul	2	6	8	546
+1	3	azul	3	6	10	633
+1	3	azul	4	6	7	437
+1	3	azul	5	6	7	436
+1	3	azul	6	6	7	472
+1	4	branco	1	6	8	541
+1	4	branco	2	6	8	515
+1	4	branco	3	6	8	507
+1	4	branco	4	6	7	439
+1	4	branco	5	6	10	649
+1	4	branco	6	6	6	369
+1	5	vermelho	1	6	10	652
+1	5	vermelho	2	6	6	380
+1	5	vermelho	3	6	9	560
+1	5	vermelho	4	6	7	435
+1	5	vermelho	5	6	10	623
+1	5	vermelho	6	6	8	486
+1	1	verde	1	7	8	504
+1	1	verde	2	7	8	519
+1	1	verde	3	7	9	597
+1	1	verde	4	7	8	496
+1	1	verde	5	7	8	534
+1	1	verde	6	7	6	412
+1	2	amarelo	1	7	8	547
+1	2	amarelo	2	7	7	450
+1	2	amarelo	3	7	9	591
+1	2	amarelo	4	7	9	582
+1	2	amarelo	5	7	8	518
+1	2	amarelo	6	7	5	307
+1	3	azul	1	7	10	623
+1	3	azul	2	7	9	606
+1	3	azul	3	7	6	403
+1	3	azul	4	7	6	397
+1	3	azul	5	7	10	644
+1	3	azul	6	7	8	520
+1	4	branco	1	7	8	520
+1	4	branco	2	7	6	396
+1	4	branco	3	7	7	466
+1	4	branco	4	7	9	591
+1	4	branco	5	7	9	570
+1	4	branco	6	7	8	507
+1	5	vermelho	1	7	10	658
+1	5	vermelho	2	7	6	403
+1	5	vermelho	3	7	7	452
+1	5	vermelho	4	7	9	606
+1	5	vermelho	5	7	9	564
+1	5	vermelho	6	7	9	583
+1	1	verde	1	8	7	463
+1	1	verde	2	8	6	310
+1	1	verde	3	8	8	519
+1	1	verde	4	8	9	567
+1	1	verde	5	8	10	685
+1	1	verde	6	8	6	392
+1	2	amarelo	1	8	8	572
+1	2	amarelo	2	8	8	509
+1	2	amarelo	3	8	7	449
+1	2	amarelo	4	8	9	586
+1	2	amarelo	5	8	7	459
+1	2	amarelo	6	8	7	448
+1	3	azul	1	8	6	375
+1	3	azul	2	8	8	548
+1	3	azul	3	8	7	465
+1	3	azul	4	8	7	448
+1	3	azul	5	8	6	389
+1	3	azul	6	8	6	415
+1	4	branco	1	8	10	648
+1	4	branco	2	8	10	652
+1	4	branco	3	8	7	451
+1	4	branco	4	8	7	470
+1	4	branco	5	8	9	578
+1	4	branco	6	8	7	443
+1	5	vermelho	1	8	9	578
+1	5	vermelho	2	8	7	444
+1	5	vermelho	3	8	8	507
+1	5	vermelho	4	8	9	585
+1	5	vermelho	5	8	7	441
+1	5	vermelho	6	8	9	567
+1	1	verde	1	9	8	523
+1	1	verde	2	9	9	585
+1	1	verde	3	9	8	524
+1	1	verde	4	9	8	519
+1	1	verde	5	9	7	480
+1	1	verde	6	9	7	447
+1	2	amarelo	1	9	9	600
+1	2	amarelo	2	9	6	374
+1	2	amarelo	3	9	8	525
+1	2	amarelo	4	9	9	579
+1	2	amarelo	5	9	8	518
+1	2	amarelo	6	9	7	434
+1	3	azul	1	9	9	561
+1	3	azul	2	9	8	564
+1	3	azul	3	9	8	534
+1	3	azul	4	9	7	462
+1	3	azul	5	9	6	382
+1	3	azul	6	9	8	547
+1	4	branco	1	9	8	518
+1	4	branco	2	9	6	377
+1	4	branco	3	9	8	539
+1	4	branco	4	9	8	543
+1	4	branco	5	9	7	459
+1	4	branco	6	9	8	506
+1	5	vermelho	1	9	10	651
+1	5	vermelho	2	9	8	512
+1	5	vermelho	3	9	9	579
+1	5	vermelho	4	9	5	314
+1	5	vermelho	5	9	9	568
+1	5	vermelho	6	9	9	564
+1	1	verde	1	10	7	447
+1	1	verde	2	10	6	403
+1	1	verde	3	10	8	502
+1	1	verde	4	10	9	559
+1	1	verde	5	10	9	615
+1	1	verde	6	10	7	477
+1	2	amarelo	1	10	8	538
+1	2	amarelo	2	10	8	539
+1	2	amarelo	3	10	9	597
+1	2	amarelo	4	10	7	464
+1	2	amarelo	5	10	7	464
+1	2	amarelo	6	10	5	327
+1	3	azul	1	10	9	550
+1	3	azul	2	10	7	468
+1	3	azul	3	10	7	464
+1	3	azul	4	10	8	493
+1	3	azul	5	10	9	572
+1	3	azul	6	10	9	599
+1	4	branco	1	10	9	587
+1	4	branco	2	10	7	441
+1	4	branco	3	10	9	587
+1	4	branco	4	10	5	335
+1	4	branco	5	10	10	656
+1	4	branco	6	10	8	498
+1	5	vermelho	1	10	9	585
+1	5	vermelho	2	10	8	515
+1	5	vermelho	3	10	7	452
+1	5	vermelho	4	10	9	581
+1	5	vermelho	5	10	6	371
+1	5	vermelho	6	10	7	441
+1	1	verde	1	11	9	581
+1	1	verde	2	11	6	391
+1	1	verde	3	11	9	573
+1	1	verde	4	11	9	622
+1	1	verde	5	11	7	469
+1	1	verde	6	11	7	454
+1	2	amarelo	1	11	5	356
+1	2	amarelo	2	11	8	500
+1	2	amarelo	3	11	7	455
+1	2	amarelo	4	11	8	518
+1	2	amarelo	5	11	8	505
+1	2	amarelo	6	11	6	406
+1	3	azul	1	11	7	433
+1	3	azul	2	11	6	415
+1	3	azul	3	11	9	599
+1	3	azul	4	11	9	570
+1	3	azul	5	11	5	310
+1	3	azul	6	11	7	485
+1	4	branco	1	11	7	441
+1	4	branco	2	11	8	507
+1	4	branco	3	11	8	507
+1	4	branco	4	11	7	446
+1	4	branco	5	11	9	589
+1	4	branco	6	11	8	515
+1	5	vermelho	1	11	8	507
+1	5	vermelho	2	11	7	463
+1	5	vermelho	3	11	6	391
+1	5	vermelho	4	11	7	461
+1	5	vermelho	5	11	7	427
+1	5	vermelho	6	11	9	579
+1	1	verde	1	12	8	509
+1	1	verde	2	12	9	616
+1	1	verde	3	12	9	588
+1	1	verde	4	12	8	503
+1	1	verde	5	12	7	517
+1	1	verde	6	12	5	312
+1	2	amarelo	1	12	9	630
+1	2	amarelo	2	12	8	542
+1	2	amarelo	3	12	7	451
+1	2	amarelo	4	12	8	546
+1	2	amarelo	5	12	8	529
+1	2	amarelo	6	12	7	470
+1	3	azul	1	12	8	496
+1	3	azul	2	12	7	481
+1	3	azul	3	12	7	436
+1	3	azul	4	12	6	384
+1	3	azul	5	12	7	475
+1	3	azul	6	12	5	356
+1	4	branco	1	12	7	448
+1	4	branco	2	12	8	521
+1	4	branco	3	12	9	609
+1	4	branco	4	12	8	519
+1	4	branco	5	12	9	578
+1	4	branco	6	12	6	398
+1	5	vermelho	1	12	9	598
+1	5	vermelho	2	12	8	505
+1	5	vermelho	3	12	7	441
+1	5	vermelho	4	12	10	668
+1	5	vermelho	5	12	5	318
+1	5	vermelho	6	12	8	532
+1	1	verde	1	13	10	648
+1	1	verde	2	13	7	450
+1	1	verde	3	13	8	514
+1	1	verde	4	13	9	586
+1	1	verde	5	13	8	557
+1	1	verde	6	13	7	457
+1	2	amarelo	1	13	9	608
+1	2	amarelo	2	13	8	529
+1	2	amarelo	3	13	5	332
+1	2	amarelo	4	13	7	425
+1	2	amarelo	5	13	6	381
+1	2	amarelo	6	13	6	411
+1	3	azul	1	13	7	434
+1	3	azul	2	13	9	590
+1	3	azul	3	13	4	252
+1	3	azul	4	13	9	583
+1	3	azul	5	13	7	453
+1	3	azul	6	13	9	606
+1	4	branco	1	13	8	502
+1	4	branco	2	13	5	303
+1	4	branco	3	13	7	444
+1	4	branco	4	13	5	336
+1	4	branco	5	13	7	446
+1	4	branco	6	13	7	445
+1	5	vermelho	1	13	10	645
+1	5	vermelho	2	13	8	537
+1	5	vermelho	3	13	8	501
+1	5	vermelho	4	13	7	436
+1	5	vermelho	5	13	7	426
+1	5	vermelho	6	13	8	523
+1	1	verde	1	14	6	367
+1	1	verde	2	14	7	444
+1	1	verde	3	14	7	445
+1	1	verde	4	14	8	509
+1	1	verde	5	14	6	436
+1	1	verde	6	14	7	432
+1	2	amarelo	1	14	9	596
+1	2	amarelo	2	14	8	544
+1	2	amarelo	3	14	6	404
+1	2	amarelo	4	14	8	512
+1	2	amarelo	5	14	8	514
+1	2	amarelo	6	14	6	408
+1	3	azul	1	14	8	487
+1	3	azul	2	14	8	515
+1	3	azul	3	14	9	584
+1	3	azul	4	14	7	463
+1	3	azul	5	14	8	523
+1	3	azul	6	14	9	624
+1	4	branco	1	14	9	581
+1	4	branco	2	14	8	521
+1	4	branco	3	14	7	444
+1	4	branco	4	14	8	525
+1	4	branco	5	14	10	653
+1	4	branco	6	14	8	505
+1	5	vermelho	1	14	9	603
+1	5	vermelho	2	14	7	444
+1	5	vermelho	3	14	9	572
+1	5	vermelho	4	14	7	442
+1	5	vermelho	5	14	8	491
+1	5	vermelho	6	14	9	593
+2	1	amarelo	1	1	9	555
+2	1	amarelo	2	1	7	451
+2	1	amarelo	3	1	6	414
+2	1	amarelo	4	1	8	490
+2	1	amarelo	5	1	7	434
+2	1	amarelo	6	1	7	437
+2	2	branco	1	1	9	589
+2	2	branco	2	1	9	571
+2	2	branco	3	1	7	430
+2	2	branco	4	1	8	496
+2	2	branco	5	1	6	414
+2	2	branco	6	1	7	455
+2	3	vermelho	1	1	7	493
+2	3	vermelho	2	1	9	639
+2	3	vermelho	3	1	9	607
+2	3	vermelho	4	1	6	420
+2	3	vermelho	5	1	9	585
+2	3	vermelho	6	1	8	541
+2	4	azul	1	1	9	560
+2	4	azul	2	1	9	578
+2	4	azul	3	1	9	553
+2	4	azul	4	1	7	469
+2	4	azul	5	1	10	638
+2	4	azul	6	1	9	558
+2	5	verde	1	1	9	560
+2	5	verde	2	1	7	469
+2	5	verde	3	1	9	546
+2	5	verde	4	1	9	564
+2	5	verde	5	1	8	482
+2	5	verde	6	1	7	455
+2	1	amarelo	1	2	8	496
+2	1	amarelo	2	2	7	464
+2	1	amarelo	3	2	8	522
+2	1	amarelo	4	2	9	561
+2	1	amarelo	5	2	8	558
+2	1	amarelo	6	2	7	495
+2	2	branco	1	2	6	411
+2	2	branco	2	2	10	663
+2	2	branco	3	2	7	462
+2	2	branco	4	2	6	378
+2	2	branco	5	2	10	652
+2	2	branco	6	2	6	394
+2	3	vermelho	1	2	9	557
+2	3	vermelho	2	2	7	477
+2	3	vermelho	3	2	8	500
+2	3	vermelho	4	2	8	534
+2	3	vermelho	5	2	6	392
+2	3	vermelho	6	2	6	376
+2	4	azul	1	2	8	536
+2	4	azul	2	2	7	474
+2	4	azul	3	2	6	370
+2	4	azul	4	2	6	385
+2	4	azul	5	2	9	591
+2	4	azul	6	2	8	493
+2	5	verde	1	2	9	620
+2	5	verde	2	2	7	453
+2	5	verde	3	2	7	438
+2	5	verde	4	2	10	661
+2	5	verde	5	2	5	320
+2	5	verde	6	2	8	505
+2	1	amarelo	1	3	8	510
+2	1	amarelo	2	3	9	565
+2	1	amarelo	3	3	7	450
+2	1	amarelo	4	3	9	550
+2	1	amarelo	5	3	8	557
+2	1	amarelo	6	3	6	394
+2	2	branco	1	3	9	601
+2	2	branco	2	3	8	543
+2	2	branco	3	3	7	453
+2	2	branco	4	3	8	510
+2	2	branco	5	3	8	489
+2	2	branco	6	3	8	518
+2	3	vermelho	1	3	4	246
+2	3	vermelho	2	3	6	420
+2	3	vermelho	3	3	7	454
+2	3	vermelho	4	3	9	574
+2	3	vermelho	5	3	6	380
+2	3	vermelho	6	3	9	602
+2	4	azul	1	3	9	568
+2	4	azul	2	3	8	534
+2	4	azul	3	3	7	462
+2	4	azul	4	3	8	454
+2	4	azul	5	3	9	596
+2	4	azul	6	3	5	309
+2	5	verde	1	3	9	603
+2	5	verde	2	3	7	454
+2	5	verde	3	3	8	492
+2	5	verde	4	3	6	378
+2	5	verde	5	3	9	539
+2	5	verde	6	3	9	562
+2	1	amarelo	1	4	5	313
+2	1	amarelo	2	4	10	633
+2	1	amarelo	3	4	6	375
+2	1	amarelo	4	4	8	490
+2	1	amarelo	5	4	10	700
+2	1	amarelo	6	4	6	406
+2	2	branco	1	4	8	541
+2	2	branco	2	4	8	512
+2	2	branco	3	4	9	622
+2	2	branco	4	4	7	457
+2	2	branco	5	4	8	504
+2	2	branco	6	4	5	316
+2	3	vermelho	1	4	6	381
+2	3	vermelho	2	4	8	547
+2	3	vermelho	3	4	9	576
+2	3	vermelho	4	4	6	381
+2	3	vermelho	5	4	7	484
+2	3	vermelho	6	4	6	399
+2	4	azul	1	4	8	521
+2	4	azul	2	4	9	552
+2	4	azul	3	4	8	523
+2	4	azul	4	4	7	472
+2	4	azul	5	4	9	600
+2	4	azul	6	4	6	379
+2	5	verde	1	4	8	524
+2	5	verde	2	4	8	506
+2	5	verde	3	4	9	581
+2	5	verde	4	4	10	664
+2	5	verde	5	4	9	539
+2	5	verde	6	4	7	454
+2	1	amarelo	1	5	8	510
+2	1	amarelo	2	5	8	529
+2	1	amarelo	3	5	8	522
+2	1	amarelo	4	5	7	443
+2	1	amarelo	5	5	7	491
+2	1	amarelo	6	5	5	334
+2	2	branco	1	5	8	536
+2	2	branco	2	5	8	533
+2	2	branco	3	5	7	460
+2	2	branco	4	5	8	512
+2	2	branco	5	5	8	506
+2	2	branco	6	5	6	414
+2	3	vermelho	1	5	10	618
+2	3	vermelho	2	5	7	481
+2	3	vermelho	3	5	8	516
+2	3	vermelho	4	5	6	370
+2	3	vermelho	5	5	7	464
+2	3	vermelho	6	5	7	469
+2	4	azul	1	5	9	574
+2	4	azul	2	5	8	536
+2	4	azul	3	5	8	506
+2	4	azul	4	5	5	328
+2	4	azul	5	5	9	583
+2	4	azul	6	5	8	488
+2	5	verde	1	5	10	670
+2	5	verde	2	5	6	383
+2	5	verde	3	5	8	492
+2	5	verde	4	5	6	383
+2	5	verde	5	5	9	553
+2	5	verde	6	5	9	583
+2	1	amarelo	1	6	7	466
+2	1	amarelo	2	6	8	514
+2	1	amarelo	3	6	7	458
+2	1	amarelo	4	6	8	523
+2	1	amarelo	5	6	8	564
+2	1	amarelo	6	6	6	405
+2	2	branco	1	6	9	599
+2	2	branco	2	6	9	595
+2	2	branco	3	6	9	608
+2	2	branco	4	6	8	534
+2	2	branco	5	6	9	584
+2	2	branco	6	6	6	366
+2	3	vermelho	1	6	8	535
+2	3	vermelho	2	6	9	581
+2	3	vermelho	3	6	8	537
+2	3	vermelho	4	6	9	628
+2	3	vermelho	5	6	8	544
+2	3	vermelho	6	6	10	637
+2	4	azul	1	6	10	637
+2	4	azul	2	6	9	598
+2	4	azul	3	6	7	473
+2	4	azul	4	6	10	655
+2	4	azul	5	6	9	585
+2	4	azul	6	6	6	370
+2	5	verde	1	6	9	620
+2	5	verde	2	6	5	327
+2	5	verde	3	6	9	584
+2	5	verde	4	6	9	593
+2	5	verde	5	6	10	579
+2	5	verde	6	6	9	577
+2	1	amarelo	1	7	9	577
+2	1	amarelo	2	7	8	551
+2	1	amarelo	3	7	7	467
+2	1	amarelo	4	7	6	378
+2	1	amarelo	5	7	7	470
+2	1	amarelo	6	7	5	327
+2	2	branco	1	7	9	574
+2	2	branco	2	7	8	545
+2	2	branco	3	7	8	538
+2	2	branco	4	7	7	450
+2	2	branco	5	7	8	536
+2	2	branco	6	7	5	375
+2	3	vermelho	1	7	7	461
+2	3	vermelho	2	7	7	498
+2	3	vermelho	3	7	7	473
+2	3	vermelho	4	7	6	338
+2	3	vermelho	5	7	8	557
+2	3	vermelho	6	7	6	397
+2	4	azul	1	7	8	524
+2	4	azul	2	7	8	530
+2	4	azul	3	7	7	446
+2	4	azul	4	7	10	656
+2	4	azul	5	7	9	600
+2	4	azul	6	7	9	598
+2	5	verde	1	7	7	450
+2	5	verde	2	7	8	554
+2	5	verde	3	7	7	471
+2	5	verde	4	7	7	444
+2	5	verde	5	7	6	344
+2	5	verde	6	7	9	594
+2	1	amarelo	1	8	9	582
+2	1	amarelo	2	8	10	636
+2	1	amarelo	3	8	6	396
+2	1	amarelo	4	8	8	502
+2	1	amarelo	5	8	7	475
+2	1	amarelo	6	8	6	395
+2	2	branco	1	8	9	597
+2	2	branco	2	8	8	523
+2	2	branco	3	8	8	514
+2	2	branco	4	8	8	539
+2	2	branco	5	8	8	525
+2	2	branco	6	8	6	402
+2	3	vermelho	1	8	5	300
+2	3	vermelho	2	8	8	542
+2	3	vermelho	3	8	9	580
+2	3	vermelho	4	8	7	463
+2	3	vermelho	5	8	7	477
+2	3	vermelho	6	8	7	451
+2	4	azul	1	8	9	565
+2	4	azul	2	8	9	598
+2	4	azul	3	8	7	451
+2	4	azul	4	8	7	458
+2	4	azul	5	8	9	647
+2	4	azul	6	8	7	434
+2	5	verde	1	8	7	476
+2	5	verde	2	8	7	460
+2	5	verde	3	8	10	658
+2	5	verde	4	8	7	439
+2	5	verde	5	8	8	470
+2	5	verde	6	8	8	514
+2	1	amarelo	1	9	5	282
+2	1	amarelo	2	9	8	520
+2	1	amarelo	3	9	7	470
+2	1	amarelo	4	9	9	569
+2	1	amarelo	5	9	8	545
+2	1	amarelo	6	9	6	373
+2	2	branco	1	9	7	464
+2	2	branco	2	9	9	582
+2	2	branco	3	9	9	597
+2	2	branco	4	9	7	492
+2	2	branco	5	9	8	532
+2	2	branco	6	9	8	530
+2	3	vermelho	1	9	6	389
+2	3	vermelho	2	9	8	502
+2	3	vermelho	3	9	9	585
+2	3	vermelho	4	9	8	522
+2	3	vermelho	5	9	7	456
+2	3	vermelho	6	9	6	337
+2	4	azul	1	9	8	520
+2	4	azul	2	9	8	521
+2	4	azul	3	9	8	508
+2	4	azul	4	9	6	421
+2	4	azul	5	9	9	575
+2	4	azul	6	9	6	388
+2	5	verde	1	9	10	667
+2	5	verde	2	9	9	585
+2	5	verde	3	9	9	564
+2	5	verde	4	9	9	593
+2	5	verde	5	9	7	411
+2	5	verde	6	9	8	511
+2	1	amarelo	1	10	9	594
+2	1	amarelo	2	10	7	441
+2	1	amarelo	3	10	8	523
+2	1	amarelo	4	10	7	438
+2	1	amarelo	5	10	6	396
+2	1	amarelo	6	10	6	366
+2	2	branco	1	10	7	460
+2	2	branco	2	10	7	457
+2	2	branco	3	10	9	604
+2	2	branco	4	10	7	442
+2	2	branco	5	10	8	509
+2	2	branco	6	10	6	404
+2	3	vermelho	1	10	9	557
+2	3	vermelho	2	10	7	486
+2	3	vermelho	3	10	7	435
+2	3	vermelho	4	10	8	520
+2	3	vermelho	5	10	8	507
+2	3	vermelho	6	10	6	368
+2	4	azul	1	10	8	513
+2	4	azul	2	10	8	531
+2	4	azul	3	10	9	570
+2	4	azul	4	10	8	525
+2	4	azul	5	10	8	498
+2	4	azul	6	10	8	484
+2	5	verde	1	10	9	610
+2	5	verde	2	10	5	330
+2	5	verde	3	10	8	507
+2	5	verde	4	10	9	582
+2	5	verde	5	10	7	409
+2	5	verde	6	10	9	564
+2	1	amarelo	1	11	8	524
+2	1	amarelo	2	11	10	653
+2	1	amarelo	3	11	8	533
+2	1	amarelo	4	11	9	552
+2	1	amarelo	5	11	7	488
+2	1	amarelo	6	11	4	249
+2	2	branco	1	11	10	671
+2	2	branco	2	11	8	538
+2	2	branco	3	11	8	525
+2	2	branco	4	11	10	666
+2	2	branco	5	11	6	397
+2	2	branco	6	11	6	397
+2	3	vermelho	1	11	10	633
+2	3	vermelho	2	11	6	405
+2	3	vermelho	3	11	8	537
+2	3	vermelho	4	11	9	578
+2	3	vermelho	5	11	6	387
+2	3	vermelho	6	11	6	375
+2	4	azul	1	11	8	518
+2	4	azul	2	11	8	511
+2	4	azul	3	11	7	449
+2	4	azul	4	11	8	528
+2	4	azul	5	11	8	508
+2	4	azul	6	11	7	455
+2	5	verde	1	11	8	523
+2	5	verde	2	11	6	389
+2	5	verde	3	11	8	497
+2	5	verde	4	11	10	640
+2	5	verde	5	11	7	417
+2	5	verde	6	11	8	499
+2	1	amarelo	1	12	9	575
+2	1	amarelo	2	12	8	526
+2	1	amarelo	3	12	7	462
+2	1	amarelo	4	12	8	522
+2	1	amarelo	5	12	7	486
+2	1	amarelo	6	12	5	333
+2	2	branco	1	12	9	602
+2	2	branco	2	12	9	593
+2	2	branco	3	12	7	459
+2	2	branco	4	12	9	579
+2	2	branco	5	12	7	452
+2	2	branco	6	12	6	389
+2	3	vermelho	1	12	7	431
+2	3	vermelho	2	12	7	490
+2	3	vermelho	3	12	5	323
+2	3	vermelho	4	12	6	385
+2	3	vermelho	5	12	8	540
+2	3	vermelho	6	12	6	404
+2	4	azul	1	12	8	524
+2	4	azul	2	12	8	519
+2	4	azul	3	12	8	525
+2	4	azul	4	12	8	518
+2	4	azul	5	12	8	519
+2	4	azul	6	12	8	496
+2	5	verde	1	12	8	543
+2	5	verde	2	12	6	401
+2	5	verde	3	12	8	489
+2	5	verde	4	12	9	589
+2	5	verde	5	12	7	437
+2	5	verde	6	12	8	502
+2	1	amarelo	1	13	8	494
+2	1	amarelo	2	13	7	455
+2	1	amarelo	3	13	8	540
+2	1	amarelo	4	13	7	442
+2	1	amarelo	5	13	8	572
+2	1	amarelo	6	13	4	266
+2	2	branco	1	13	9	599
+2	2	branco	2	13	9	621
+2	2	branco	3	13	6	410
+2	2	branco	4	13	9	584
+2	2	branco	5	13	6	395
+2	2	branco	6	13	4	275
+2	3	vermelho	1	13	6	382
+2	3	vermelho	2	13	7	487
+2	3	vermelho	3	13	10	643
+2	3	vermelho	4	13	6	378
+2	3	vermelho	5	13	5	334
+2	3	vermelho	6	13	6	407
+2	4	azul	1	13	10	650
+2	4	azul	2	13	7	454
+2	4	azul	3	13	7	458
+2	4	azul	4	13	8	520
+2	4	azul	5	13	9	578
+2	4	azul	6	13	5	324
+2	5	verde	1	13	8	524
+2	5	verde	2	13	5	318
+2	5	verde	3	13	7	431
+2	5	verde	4	13	7	457
+2	5	verde	5	13	7	428
+2	5	verde	6	13	7	446
+2	1	amarelo	1	14	9	553
+2	1	amarelo	2	14	6	420
+2	1	amarelo	3	14	7	427
+2	1	amarelo	4	14	5	320
+2	1	amarelo	5	14	6	384
+2	1	amarelo	6	14	6	402
+2	2	branco	1	14	10	630
+2	2	branco	2	14	7	504
+2	2	branco	3	14	9	584
+2	2	branco	4	14	9	551
+2	2	branco	5	14	7	511
+2	2	branco	6	14	6	432
+2	3	vermelho	1	14	7	444
+2	3	vermelho	2	14	7	490
+2	3	vermelho	3	14	8	533
+2	3	vermelho	4	14	6	336
+2	3	vermelho	5	14	6	390
+2	3	vermelho	6	14	6	384
+2	4	azul	1	14	8	517
+2	4	azul	2	14	8	530
+2	4	azul	3	14	7	504
+2	4	azul	4	14	9	558
+2	4	azul	5	14	9	542
+2	4	azul	6	14	9	596
+2	5	verde	1	14	10	682
+2	5	verde	2	14	8	520
+2	5	verde	3	14	8	472
+2	5	verde	4	14	8	512
+2	5	verde	5	14	8	480
+2	5	verde	6	14	5	476
+3	1	azul	1	1	8	563
+3	1	azul	2	1	7	499
+3	1	azul	3	1	8	531
+3	1	azul	4	1	9	586
+3	1	azul	5	1	7	498
+3	1	azul	6	1	6	349
+3	2	verde	1	1	6	442
+3	2	verde	2	1	9	601
+3	2	verde	3	1	10	636
+3	2	verde	4	1	7	453
+3	2	verde	5	1	7	429
+3	2	verde	6	1	7	484
+3	3	branco	1	1	9	586
+3	3	branco	2	1	8	579
+3	3	branco	3	1	7	478
+3	3	branco	4	1	8	548
+3	3	branco	5	1	7	468
+3	3	branco	6	1	7	399
+3	4	vermelho	1	1	8	573
+3	4	vermelho	2	1	8	562
+3	4	vermelho	3	1	7	446
+3	4	vermelho	4	1	7	428
+3	4	vermelho	5	1	9	599
+3	4	vermelho	6	1	8	479
+3	5	amarelo	1	1	8	498
+3	5	amarelo	2	1	8	527
+3	5	amarelo	3	1	7	496
+3	5	amarelo	4	1	7	465
+3	5	amarelo	5	1	9	590
+3	5	amarelo	6	1	8	545
+3	1	azul	1	2	8	522
+3	1	azul	2	2	7	451
+3	1	azul	3	2	6	396
+3	1	azul	4	2	8	506
+3	1	azul	5	2	9	644
+3	1	azul	6	2	2	127
+3	2	verde	1	2	8	548
+3	2	verde	2	2	7	513
+3	2	verde	3	2	9	585
+3	2	verde	4	2	7	459
+3	2	verde	5	2	8	531
+3	2	verde	6	2	4	288
+3	3	branco	1	2	8	492
+3	3	branco	2	2	6	417
+3	3	branco	3	2	8	531
+3	3	branco	4	2	7	418
+3	3	branco	5	2	7	450
+3	3	branco	6	2	7	460
+3	4	vermelho	1	2	10	647
+3	4	vermelho	2	2	9	602
+3	4	vermelho	3	2	9	618
+3	4	vermelho	4	2	8	570
+3	4	vermelho	5	2	8	522
+3	4	vermelho	6	2	7	466
+3	5	amarelo	1	2	8	444
+3	5	amarelo	2	2	6	379
+3	5	amarelo	3	2	9	574
+3	5	amarelo	4	2	8	542
+3	5	amarelo	5	2	8	487
+3	5	amarelo	6	2	8	502
+3	1	azul	1	3	9	566
+3	1	azul	2	3	7	444
+3	1	azul	3	3	7	471
+3	1	azul	4	3	7	429
+3	1	azul	5	3	8	551
+3	1	azul	6	3	5	338
+3	2	verde	1	3	10	676
+3	2	verde	2	3	9	628
+3	2	verde	3	3	8	510
+3	2	verde	4	3	8	507
+3	2	verde	5	3	7	457
+3	2	verde	6	3	6	380
+3	3	branco	1	3	7	439
+3	3	branco	2	3	8	548
+3	3	branco	3	3	6	392
+3	3	branco	4	3	7	426
+3	3	branco	5	3	7	463
+3	3	branco	6	3	6	391
+3	4	vermelho	1	3	8	511
+3	4	vermelho	2	3	7	478
+3	4	vermelho	3	3	8	535
+3	4	vermelho	4	3	10	672
+3	4	vermelho	5	3	10	656
+3	4	vermelho	6	3	7	457
+3	5	amarelo	1	3	10	664
+3	5	amarelo	2	3	7	457
+3	5	amarelo	3	3	6	375
+3	5	amarelo	4	3	9	597
+3	5	amarelo	5	3	8	484
+3	5	amarelo	6	3	7	438
+3	1	azul	1	4	7	462
+3	1	azul	2	4	5	319
+3	1	azul	3	4	7	467
+3	1	azul	4	4	8	512
+3	1	azul	5	4	9	621
+3	1	azul	6	4	6	402
+3	2	verde	1	4	9	605
+3	2	verde	2	4	7	440
+3	2	verde	3	4	7	469
+3	2	verde	4	4	7	463
+3	2	verde	5	4	7	456
+3	2	verde	6	4	7	467
+3	3	branco	1	4	10	632
+3	3	branco	2	4	6	413
+3	3	branco	3	4	9	564
+3	3	branco	4	4	6	399
+3	3	branco	5	4	7	442
+3	3	branco	6	4	5	322
+3	4	vermelho	1	4	9	574
+3	4	vermelho	2	4	8	546
+3	4	vermelho	3	4	8	545
+3	4	vermelho	4	4	7	486
+3	4	vermelho	5	4	9	577
+3	4	vermelho	6	4	8	542
+3	5	amarelo	1	4	10	694
+3	5	amarelo	2	4	6	397
+3	5	amarelo	3	4	6	374
+3	5	amarelo	4	4	7	468
+3	5	amarelo	5	4	6	372
+3	5	amarelo	6	4	9	554
+3	1	azul	1	5	7	446
+3	1	azul	2	5	5	320
+3	1	azul	3	5	6	391
+3	1	azul	4	5	7	436
+3	1	azul	5	5	7	465
+3	1	azul	6	5	4	269
+3	2	verde	1	5	9	599
+3	2	verde	2	5	8	516
+3	2	verde	3	5	7	464
+3	2	verde	4	5	9	597
+3	2	verde	5	5	8	521
+3	2	verde	6	5	7	461
+3	3	branco	1	5	10	619
+3	3	branco	2	5	6	410
+3	3	branco	3	5	7	431
+3	3	branco	4	5	7	448
+3	3	branco	5	5	9	571
+3	3	branco	6	5	8	557
+3	4	vermelho	1	5	9	577
+3	4	vermelho	2	5	7	447
+3	4	vermelho	3	5	8	505
+3	4	vermelho	4	5	9	627
+3	4	vermelho	5	5	6	409
+3	4	vermelho	6	5	6	387
+3	5	amarelo	1	5	10	692
+3	5	amarelo	2	5	5	332
+3	5	amarelo	3	5	8	527
+3	5	amarelo	4	5	8	533
+3	5	amarelo	5	5	7	430
+3	5	amarelo	6	5	7	435
+3	1	azul	1	6	8	500
+3	1	azul	2	6	6	398
+3	1	azul	3	6	6	377
+3	1	azul	4	6	5	324
+3	1	azul	5	6	4	286
+3	1	azul	6	6	6	390
+3	2	verde	1	6	8	571
+3	2	verde	2	6	7	463
+3	2	verde	3	6	7	470
+3	2	verde	4	6	8	518
+3	2	verde	5	6	7	454
+3	2	verde	6	6	4	250
+3	3	branco	1	6	8	518
+3	3	branco	2	6	7	500
+3	3	branco	3	6	7	453
+3	3	branco	4	6	7	442
+3	3	branco	5	6	7	466
+3	3	branco	6	6	6	407
+3	4	vermelho	1	6	5	334
+3	4	vermelho	2	6	7	468
+3	4	vermelho	3	6	8	529
+3	4	vermelho	4	6	6	403
+3	4	vermelho	5	6	8	526
+3	4	vermelho	6	6	8	534
+3	5	amarelo	1	6	7	461
+3	5	amarelo	2	6	6	406
+3	5	amarelo	3	6	8	515
+3	5	amarelo	4	6	8	536
+3	5	amarelo	5	6	7	430
+3	5	amarelo	6	6	9	577
+3	1	azul	1	7	6	389
+3	1	azul	2	7	4	277
+3	1	azul	3	7	9	611
+3	1	azul	4	7	7	440
+3	1	azul	5	7	9	651
+3	1	azul	6	7	5	352
+3	2	verde	1	7	10	667
+3	2	verde	2	7	8	554
+3	2	verde	3	7	7	453
+3	2	verde	4	7	10	652
+3	2	verde	5	7	6	376
+3	2	verde	6	7	6	406
+3	3	branco	1	7	9	558
+3	3	branco	2	7	6	405
+3	3	branco	3	7	9	584
+3	3	branco	4	7	6	397
+3	3	branco	5	7	7	464
+3	3	branco	6	7	8	563
+3	4	vermelho	1	7	6	397
+3	4	vermelho	2	7	7	474
+3	4	vermelho	3	7	6	447
+3	4	vermelho	4	7	9	613
+3	4	vermelho	5	7	8	520
+3	4	vermelho	6	7	7	467
+3	5	amarelo	1	7	9	590
+3	5	amarelo	2	7	7	459
+3	5	amarelo	3	7	9	576
+3	5	amarelo	4	7	9	605
+3	5	amarelo	5	7	8	486
+3	5	amarelo	6	7	9	579
+3	1	azul	1	8	8	506
+3	1	azul	2	8	6	395
+3	1	azul	3	8	8	512
+3	1	azul	4	8	8	517
+3	1	azul	5	8	6	418
+3	1	azul	6	8	5	332
+3	2	verde	1	8	9	601
+3	2	verde	2	8	8	557
+3	2	verde	3	8	7	459
+3	2	verde	4	8	8	503
+3	2	verde	5	8	8	502
+3	2	verde	6	8	4	268
+3	3	branco	1	8	7	435
+3	3	branco	2	8	7	481
+3	3	branco	3	8	9	569
+3	3	branco	4	8	6	376
+3	3	branco	5	8	6	412
+3	3	branco	6	8	9	617
+3	4	vermelho	1	8	9	590
+3	4	vermelho	2	8	8	532
+3	4	vermelho	3	8	8	514
+3	4	vermelho	4	8	7	450
+3	4	vermelho	5	8	7	477
+3	4	vermelho	6	8	8	515
+3	5	amarelo	1	8	7	464
+3	5	amarelo	2	8	7	477
+3	5	amarelo	3	8	7	439
+3	5	amarelo	4	8	7	475
+3	5	amarelo	5	8	7	427
+3	5	amarelo	6	8	8	512
+3	1	azul	1	9	7	446
+3	1	azul	2	9	5	322
+3	1	azul	3	9	8	505
+3	1	azul	4	9	6	378
+3	1	azul	5	9	7	486
+3	1	azul	6	9	4	276
+3	2	verde	1	9	9	620
+3	2	verde	2	9	7	475
+3	2	verde	3	9	6	380
+3	2	verde	4	9	8	504
+3	2	verde	5	9	8	513
+3	2	verde	6	9	8	531
+3	3	branco	1	9	9	555
+3	3	branco	2	9	5	346
+3	3	branco	3	9	7	457
+3	3	branco	4	9	5	338
+3	3	branco	5	9	6	397
+3	3	branco	6	9	8	566
+3	4	vermelho	1	9	8	494
+3	4	vermelho	2	9	8	535
+3	4	vermelho	3	9	7	469
+3	4	vermelho	4	9	7	466
+3	4	vermelho	5	9	9	590
+3	4	vermelho	6	9	6	384
+3	5	amarelo	1	9	8	546
+3	5	amarelo	2	9	7	456
+3	5	amarelo	3	9	8	508
+3	5	amarelo	4	9	9	605
+3	5	amarelo	5	9	8	490
+3	5	amarelo	6	9	9	570
+3	1	azul	1	10	10	623
+3	1	azul	2	10	6	387
+3	1	azul	3	10	8	522
+3	1	azul	4	10	10	609
+3	1	azul	5	10	9	621
+3	1	azul	6	10	5	320
+3	2	verde	1	10	7	480
+3	2	verde	2	10	5	337
+3	2	verde	3	10	8	536
+3	2	verde	4	10	8	525
+3	2	verde	5	10	6	381
+3	2	verde	6	10	7	454
+3	3	branco	1	10	8	500
+3	3	branco	2	10	8	528
+3	3	branco	3	10	8	527
+3	3	branco	4	10	8	530
+3	3	branco	5	10	6	403
+3	3	branco	6	10	4	264
+3	4	vermelho	1	10	8	528
+3	4	vermelho	2	10	9	582
+3	4	vermelho	3	10	8	510
+3	4	vermelho	4	10	9	608
+3	4	vermelho	5	10	10	660
+3	4	vermelho	6	10	5	331
+3	5	amarelo	1	10	10	689
+3	5	amarelo	2	10	8	521
+3	5	amarelo	3	10	9	581
+3	5	amarelo	4	10	8	520
+3	5	amarelo	5	10	7	442
+3	5	amarelo	6	10	9	570
+3	1	azul	1	11	9	572
+3	1	azul	2	11	2	135
+3	1	azul	3	11	9	602
+3	1	azul	4	11	8	503
+3	1	azul	5	11	9	629
+3	1	azul	6	11	5	350
+3	2	verde	1	11	9	622
+3	2	verde	2	11	9	629
+3	2	verde	3	11	8	536
+3	2	verde	4	11	9	593
+3	2	verde	5	11	7	465
+3	2	verde	6	11	7	463
+3	3	branco	1	11	7	437
+3	3	branco	2	11	7	480
+3	3	branco	3	11	8	524
+3	3	branco	4	11	7	443
+3	3	branco	5	11	7	496
+3	3	branco	6	11	5	351
+3	4	vermelho	1	11	10	639
+3	4	vermelho	2	11	7	443
+3	4	vermelho	3	11	8	526
+3	4	vermelho	4	11	9	588
+3	4	vermelho	5	11	10	654
+3	4	vermelho	6	11	7	447
+3	5	amarelo	1	11	7	483
+3	5	amarelo	2	11	7	462
+3	5	amarelo	3	11	9	467
+3	5	amarelo	4	11	10	666
+3	5	amarelo	5	11	8	499
+3	5	amarelo	6	11	9	589
+3	1	azul	1	12	7	428
+3	1	azul	2	12	6	402
+3	1	azul	3	12	8	517
+3	1	azul	4	12	8	493
+3	1	azul	5	12	9	617
+3	1	azul	6	12	5	327
+3	2	verde	1	12	9	600
+3	2	verde	2	12	7	457
+3	2	verde	3	12	8	533
+3	2	verde	4	12	8	513
+3	2	verde	5	12	7	462
+3	2	verde	6	12	6	384
+3	3	branco	1	12	10	621
+3	3	branco	2	12	6	390
+3	3	branco	3	12	9	579
+3	3	branco	4	12	6	380
+3	3	branco	5	12	5	332
+3	3	branco	6	12	8	553
+3	4	vermelho	1	12	7	459
+3	4	vermelho	2	12	7	464
+3	4	vermelho	3	12	8	538
+3	4	vermelho	4	12	9	570
+3	4	vermelho	5	12	10	667
+3	4	vermelho	6	12	7	442
+3	5	amarelo	1	12	8	532
+3	5	amarelo	2	12	4	267
+3	5	amarelo	3	12	7	437
+3	5	amarelo	4	12	10	681
+3	5	amarelo	5	12	7	434
+3	5	amarelo	6	12	8	511
+3	1	azul	1	13	6	389
+3	1	azul	2	13	6	396
+3	1	azul	3	13	8	527
+3	1	azul	4	13	5	310
+3	1	azul	5	13	7	487
+3	1	azul	6	13	4	260
+3	2	verde	1	13	9	607
+3	2	verde	2	13	7	476
+3	2	verde	3	13	6	396
+3	2	verde	4	13	8	516
+3	2	verde	5	13	4	247
+3	2	verde	6	13	5	322
+3	3	branco	1	13	7	440
+3	3	branco	2	13	8	556
+3	3	branco	3	13	6	396
+3	3	branco	4	13	6	389
+3	3	branco	5	13	6	390
+3	3	branco	6	13	7	489
+3	4	vermelho	1	13	9	601
+3	4	vermelho	2	13	7	455
+3	4	vermelho	3	13	7	465
+3	4	vermelho	4	13	7	456
+3	4	vermelho	5	13	7	447
+3	4	vermelho	6	13	7	456
+3	5	amarelo	1	13	9	610
+3	5	amarelo	2	13	7	454
+3	5	amarelo	3	13	7	448
+3	5	amarelo	4	13	5	333
+3	5	amarelo	5	13	8	486
+3	5	amarelo	6	13	8	504
+3	1	azul	1	14	7	406
+3	1	azul	2	14	5	290
+3	1	azul	3	14	5	295
+3	1	azul	4	14	6	351
+3	1	azul	5	14	5	297
+3	1	azul	6	14	7	408
+3	2	verde	1	14	9	496
+3	2	verde	2	14	6	318
+3	2	verde	3	14	8	528
+3	2	verde	4	14	5	330
+3	2	verde	5	14	6	402
+3	2	verde	6	14	7	424
+3	3	branco	1	14	7	427
+3	3	branco	2	14	6	372
+3	3	branco	3	14	7	444
+3	3	branco	4	14	6	396
+3	3	branco	5	14	5	330
+3	3	branco	6	14	5	333
+3	4	vermelho	1	14	5	345
+3	4	vermelho	2	14	5	360
+3	4	vermelho	3	14	5	367
+3	4	vermelho	4	14	5	335
+3	4	vermelho	5	14	5	350
+3	4	vermelho	6	14	5	295
+3	5	amarelo	1	14	6	378
+3	5	amarelo	2	14	6	408
+3	5	amarelo	3	14	5	315
+3	5	amarelo	4	14	5	330
+3	5	amarelo	5	14	6	426
+3	5	amarelo	6	14	7	423
+4	1	vermelho	1	1	7	437
+4	1	vermelho	2	1	7	458
+4	1	vermelho	3	1	7	455
+4	1	vermelho	4	1	7	456
+4	1	vermelho	5	1	6	438
+4	1	vermelho	6	1	1	68
+4	2	azul	1	1	2	136
+4	2	azul	2	1	4	274
+4	2	azul	3	1	2	140
+4	2	azul	4	1	5	328
+4	2	azul	5	1	6	399
+4	2	azul	6	1	5	321
+4	3	amarelo	1	1	6	360
+4	3	amarelo	2	1	6	425
+4	3	amarelo	3	1	5	315
+4	3	amarelo	4	1	5	315
+4	3	amarelo	5	1	6	398
+4	3	amarelo	6	1	5	358
+4	4	verde	1	1	4	249
+4	4	verde	2	1	7	440
+4	4	verde	3	1	4	255
+4	4	verde	4	1	5	330
+4	4	verde	5	1	6	376
+4	4	verde	6	1	4	259
+4	5	branco	1	1	8	536
+4	5	branco	2	1	7	466
+4	5	branco	3	1	6	372
+4	5	branco	4	1	6	398
+4	5	branco	5	1	7	406
+4	5	branco	6	1	5	320
+4	1	vermelho	1	2	8	539
+4	1	vermelho	2	2	7	454
+4	1	vermelho	3	2	8	512
+4	1	vermelho	4	2	6	396
+4	1	vermelho	5	2	6	402
+4	1	vermelho	6	2	4	281
+4	2	azul	1	2	7	490
+4	2	azul	2	2	6	394
+4	2	azul	3	2	6	391
+4	2	azul	4	2	7	433
+4	2	azul	5	2	6	459
+4	2	azul	6	2	6	394
+4	3	amarelo	1	2	8	524
+4	3	amarelo	2	2	5	318
+4	3	amarelo	3	2	7	461
+4	3	amarelo	4	2	7	438
+4	3	amarelo	5	2	3	277
+4	3	amarelo	6	2	7	465
+4	4	verde	1	2	8	531
+4	4	verde	2	2	6	384
+4	4	verde	3	2	3	279
+4	4	verde	4	2	5	314
+4	4	verde	5	2	6	394
+4	4	verde	6	2	7	444
+4	5	branco	1	2	8	532
+4	5	branco	2	2	6	386
+4	5	branco	3	2	7	460
+4	5	branco	4	2	8	504
+4	5	branco	5	2	6	387
+4	5	branco	6	2	8	518
+4	1	vermelho	1	3	8	503
+4	1	vermelho	2	3	7	448
+4	1	vermelho	3	3	5	288
+4	1	vermelho	4	3	6	378
+4	1	vermelho	5	3	7	506
+4	1	vermelho	6	3	5	329
+4	2	azul	1	3	7	474
+4	2	azul	2	3	6	414
+4	2	azul	3	3	6	394
+4	2	azul	4	3	7	464
+4	2	azul	5	3	6	386
+4	2	azul	6	3	6	379
+4	3	amarelo	1	3	8	516
+4	3	amarelo	2	3	5	344
+4	3	amarelo	3	3	3	192
+4	3	amarelo	4	3	4	244
+4	3	amarelo	5	3	6	414
+4	3	amarelo	6	3	6	431
+4	4	verde	1	3	8	502
+4	4	verde	2	3	6	386
+4	4	verde	3	3	7	448
+4	4	verde	4	3	5	330
+4	4	verde	5	3	7	444
+4	4	verde	6	3	6	371
+4	5	branco	1	3	8	538
+4	5	branco	2	3	7	438
+4	5	branco	3	3	6	368
+4	5	branco	4	3	5	314
+4	5	branco	5	3	9	555
+4	5	branco	6	3	7	458
+4	1	vermelho	1	4	10	635
+4	1	vermelho	2	4	6	394
+4	1	vermelho	3	4	6	407
+4	1	vermelho	4	4	8	570
+4	1	vermelho	5	4	8	541
+4	1	vermelho	6	4	6	413
+4	2	azul	1	4	6	405
+4	2	azul	2	4	6	401
+4	2	azul	3	4	6	377
+4	2	azul	4	4	5	325
+4	2	azul	5	4	6	348
+4	2	azul	6	4	7	454
+4	3	amarelo	1	4	7	424
+4	3	amarelo	2	4	9	48
+4	3	amarelo	3	4	8	501
+4	3	amarelo	4	4	10	643
+4	3	amarelo	5	4	4	290
+4	3	amarelo	6	4	7	480
+4	4	verde	1	4	9	593
+4	4	verde	2	4	8	528
+4	4	verde	3	4	8	508
+4	4	verde	4	4	8	519
+4	4	verde	5	4	8	532
+4	4	verde	6	4	6	394
+4	5	branco	1	4	9	592
+4	5	branco	2	4	8	531
+4	5	branco	3	4	6	388
+4	5	branco	4	4	8	530
+4	5	branco	5	4	8	495
+4	5	branco	6	4	7	472
+4	1	vermelho	1	5	10	634
+4	1	vermelho	2	5	7	457
+4	1	vermelho	3	5	6	381
+4	1	vermelho	4	5	4	250
+4	1	vermelho	5	5	6	437
+4	1	vermelho	6	5	5	347
+4	2	azul	1	5	6	389
+4	2	azul	2	5	5	345
+4	2	azul	3	5	5	318
+4	2	azul	4	5	7	483
+4	2	azul	5	5	6	386
+4	2	azul	6	5	6	397
+4	3	amarelo	1	5	5	320
+4	3	amarelo	2	5	6	423
+4	3	amarelo	3	5	5	332
+4	3	amarelo	4	5	5	337
+4	3	amarelo	5	5	5	352
+4	3	amarelo	6	5	6	405
+4	4	verde	1	5	10	655
+4	4	verde	2	5	9	605
+4	4	verde	3	5	5	533
+4	4	verde	4	5	6	407
+4	4	verde	5	5	8	534
+4	4	verde	6	5	6	378
+4	5	branco	1	5	8	548
+4	5	branco	2	5	7	474
+4	5	branco	3	5	9	577
+4	5	branco	4	5	7	452
+4	5	branco	5	5	6	362
+4	5	branco	6	5	7	464
+4	1	vermelho	1	6	10	652
+4	1	vermelho	2	6	7	458
+4	1	vermelho	3	6	6	379
+4	1	vermelho	4	6	8	506
+4	1	vermelho	5	6	9	656
+4	1	vermelho	6	6	3	194
+4	2	azul	1	6	5	336
+4	2	azul	2	6	7	477
+4	2	azul	3	6	7	475
+4	2	azul	4	6	6	406
+4	2	azul	5	6	5	321
+4	2	azul	6	6	8	537
+4	3	amarelo	1	6	5	321
+4	3	amarelo	2	6	7	431
+4	3	amarelo	3	6	3	209
+4	3	amarelo	4	6	8	524
+4	3	amarelo	5	6	5	355
+4	3	amarelo	6	6	7	457
+4	4	verde	1	6	4	264
+4	4	verde	2	6	6	390
+4	4	verde	3	6	8	517
+4	4	verde	4	6	5	326
+4	4	verde	5	6	5	326
+4	4	verde	6	6	5	326
+4	5	branco	1	6	7	479
+4	5	branco	2	6	7	473
+4	5	branco	3	6	8	500
+4	5	branco	4	6	6	417
+4	5	branco	5	6	6	366
+4	5	branco	6	6	6	389
+4	1	vermelho	1	7	8	499
+4	1	vermelho	2	7	5	329
+4	1	vermelho	3	7	3	169
+4	1	vermelho	4	7	5	333
+4	1	vermelho	5	7	4	268
+4	1	vermelho	6	7	6	401
+4	2	azul	1	7	7	462
+4	2	azul	2	7	5	323
+4	2	azul	3	7	5	332
+4	2	azul	4	7	6	406
+4	2	azul	5	7	6	398
+4	2	azul	6	7	4	242
+4	3	amarelo	1	7	8	510
+4	3	amarelo	2	7	8	548
+4	3	amarelo	3	7	8	517
+4	3	amarelo	4	7	7	446
+4	3	amarelo	5	7	5	326
+4	3	amarelo	6	7	5	328
+4	4	verde	1	7	6	382
+4	4	verde	2	7	9	595
+4	4	verde	3	7	5	331
+4	4	verde	4	7	6	428
+4	4	verde	5	7	7	439
+4	4	verde	6	7	6	366
+4	5	branco	1	7	7	458
+4	5	branco	2	7	2	130
+4	5	branco	3	7	6	393
+4	5	branco	4	7	8	517
+4	5	branco	5	7	6	369
+4	5	branco	6	7	5	316
+4	1	vermelho	1	8	9	564
+4	1	vermelho	2	8	7	470
+4	1	vermelho	3	8	6	380
+4	1	vermelho	4	8	8	487
+4	1	vermelho	5	8	10	700
+4	1	vermelho	6	8	6	436
+4	2	azul	1	8	6	397
+4	2	azul	2	8	5	329
+4	2	azul	3	8	5	327
+4	2	azul	4	8	7	449
+4	2	azul	5	8	7	451
+4	2	azul	6	8	4	246
+4	3	amarelo	1	8	6	401
+4	3	amarelo	2	8	6	416
+4	3	amarelo	3	8	4	280
+4	3	amarelo	4	8	5	315
+4	3	amarelo	5	8	5	326
+4	3	amarelo	6	8	7	473
+4	4	verde	1	8	8	519
+4	4	verde	2	8	7	456
+4	4	verde	3	8	7	445
+4	4	verde	4	8	9	590
+4	4	verde	5	8	9	606
+4	4	verde	6	8	8	512
+4	5	branco	1	8	7	463
+4	5	branco	2	8	7	468
+4	5	branco	3	8	8	500
+4	5	branco	4	8	7	452
+4	5	branco	5	8	7	443
+4	5	branco	6	8	9	578
+4	1	vermelho	1	9	6	362
+4	1	vermelho	2	9	6	386
+4	1	vermelho	3	9	5	321
+4	1	vermelho	4	9	8	508
+4	1	vermelho	5	9	4	292
+4	1	vermelho	6	9	5	335
+4	2	azul	1	9	7	436
+4	2	azul	2	9	4	279
+4	2	azul	3	9	6	402
+4	2	azul	4	9	8	527
+4	2	azul	5	9	5	312
+4	2	azul	6	9	5	316
+4	3	amarelo	1	9	9	560
+4	3	amarelo	2	9	8	557
+4	3	amarelo	3	9	7	451
+4	3	amarelo	4	9	6	380
+4	3	amarelo	5	9	7	450
+4	3	amarelo	6	9	7	485
+4	4	verde	1	9	8	527
+4	4	verde	2	9	7	467
+4	4	verde	3	9	7	450
+4	4	verde	4	9	6	366
+4	4	verde	5	9	7	436
+4	4	verde	6	9	7	447
+4	5	branco	1	9	8	524
+4	5	branco	2	9	6	404
+4	5	branco	3	9	7	429
+4	5	branco	4	9	9	581
+4	5	branco	5	9	7	432
+4	5	branco	6	9	7	438
+4	1	vermelho	1	10	9	568
+4	1	vermelho	2	10	6	378
+4	1	vermelho	3	10	6	395
+4	1	vermelho	4	10	9	566
+4	1	vermelho	5	10	10	683
+4	1	vermelho	6	10	7	469
+4	2	azul	1	10	7	473
+4	2	azul	2	10	4	261
+4	2	azul	3	10	7	455
+4	2	azul	4	10	9	580
+4	2	azul	5	10	7	519
+4	2	azul	6	10	9	560
+4	3	amarelo	1	10	9	559
+4	3	amarelo	2	10	8	564
+4	3	amarelo	3	10	7	437
+4	3	amarelo	4	10	7	443
+4	3	amarelo	5	10	4	252
+4	3	amarelo	6	10	9	604
+4	4	verde	1	10	8	498
+4	4	verde	2	10	8	525
+4	4	verde	3	10	7	453
+4	4	verde	4	10	8	488
+4	4	verde	5	10	10	646
+4	4	verde	6	10	5	330
+4	5	branco	1	10	9	594
+4	5	branco	2	10	6	405
+4	5	branco	3	10	9	547
+4	5	branco	4	10	10	675
+4	5	branco	5	10	7	434
+4	5	branco	6	10	8	504
+4	1	vermelho	1	11	9	571
+4	1	vermelho	2	11	5	317
+4	1	vermelho	3	11	6	413
+4	1	vermelho	4	11	10	623
+4	1	vermelho	5	11	8	560
+4	1	vermelho	6	11	5	330
+4	2	azul	1	11	7	477
+4	2	azul	2	11	5	353
+4	2	azul	3	11	6	385
+4	2	azul	4	11	8	521
+4	2	azul	5	11	7	459
+4	2	azul	6	11	6	391
+4	3	amarelo	1	11	7	465
+4	3	amarelo	2	11	9	635
+4	3	amarelo	3	11	5	338
+4	3	amarelo	4	11	7	455
+4	3	amarelo	5	11	6	378
+4	3	amarelo	6	11	9	633
+4	4	verde	1	11	10	642
+4	4	verde	2	11	8	538
+4	4	verde	3	11	5	328
+4	4	verde	4	11	7	463
+4	4	verde	5	11	9	594
+4	4	verde	6	11	7	464
+4	5	branco	1	11	9	595
+4	5	branco	2	11	7	464
+4	5	branco	3	11	7	448
+4	5	branco	4	11	9	581
+4	5	branco	5	11	9	555
+4	5	branco	6	11	8	512
+4	1	vermelho	1	12	7	434
+4	1	vermelho	2	12	7	488
+4	1	vermelho	3	12	7	486
+4	1	vermelho	4	12	8	510
+4	1	vermelho	5	12	5	344
+4	1	vermelho	6	12	6	414
+4	2	azul	1	12	8	528
+4	2	azul	2	12	5	341
+4	2	azul	3	12	4	251
+4	2	azul	4	12	10	655
+4	2	azul	5	12	8	564
+4	2	azul	6	12	6	379
+4	3	amarelo	1	12	6	391
+4	3	amarelo	2	12	7	485
+4	3	amarelo	3	12	7	450
+4	3	amarelo	4	12	8	528
+4	3	amarelo	5	12	6	402
+4	3	amarelo	6	12	8	549
+4	4	verde	1	12	9	586
+4	4	verde	2	12	8	537
+4	4	verde	3	12	7	462
+4	4	verde	4	12	8	507
+4	4	verde	5	12	9	598
+4	4	verde	6	12	7	444
+4	5	branco	1	12	9	599
+4	5	branco	2	12	7	481
+4	5	branco	3	12	8	491
+4	5	branco	4	12	8	522
+4	5	branco	5	12	7	430
+4	5	branco	6	12	7	434
+4	1	vermelho	1	13	10	632
+4	1	vermelho	2	13	6	366
+4	1	vermelho	3	13	8	533
+4	1	vermelho	4	13	8	512
+4	1	vermelho	5	13	8	604
+4	1	vermelho	6	13	7	448
+4	2	azul	1	13	9	618
+4	2	azul	2	13	7	493
+4	2	azul	3	13	7	499
+4	2	azul	4	13	9	603
+4	2	azul	5	13	7	462
+4	2	azul	6	13	7	413
+4	3	amarelo	1	13	6	390
+4	3	amarelo	2	13	8	506
+4	3	amarelo	3	13	7	455
+4	3	amarelo	4	13	8	522
+4	3	amarelo	5	13	7	479
+4	3	amarelo	6	13	8	579
+4	4	verde	1	13	10	610
+4	4	verde	2	13	8	533
+4	4	verde	3	13	8	620
+4	4	verde	4	13	8	458
+4	4	verde	5	13	9	585
+4	4	verde	6	13	7	437
+4	5	branco	1	13	7	441
+4	5	branco	2	13	6	372
+4	5	branco	3	13	8	490
+4	5	branco	4	13	7	511
+4	5	branco	5	13	7	413
+4	5	branco	6	13	7	427
+4	1	vermelho	1	14	8	525
+4	1	vermelho	2	14	4	249
+4	1	vermelho	3	14	8	529
+4	1	vermelho	4	14	8	456
+4	1	vermelho	5	14	9	641
+4	1	vermelho	6	14	4	280
+4	2	azul	1	14	7	474
+4	2	azul	2	14	5	368
+4	2	azul	3	14	6	407
+4	2	azul	4	14	9	620
+4	2	azul	5	14	6	402
+4	2	azul	6	14	7	467
+4	3	amarelo	1	14	9	583
+4	3	amarelo	2	14	7	487
+4	3	amarelo	3	14	6	405
+4	3	amarelo	4	14	8	553
+4	3	amarelo	5	14	6	403
+4	3	amarelo	6	14	6	408
+4	4	verde	1	14	7	499
+4	4	verde	2	14	8	528
+4	4	verde	3	14	7	479
+4	4	verde	4	14	8	526
+4	4	verde	5	14	7	478
+4	4	verde	6	14	6	400
+4	5	branco	1	14	10	676
+4	5	branco	2	14	8	397
+4	5	branco	3	14	7	547
+4	5	branco	4	14	7	472
+4	5	branco	5	14	7	433
+4	5	branco	6	14	7	477
+5	1	branco	1	1	7	450
+5	1	branco	2	1	5	337
+5	1	branco	3	1	8	519
+5	1	branco	4	1	6	392
+5	1	branco	5	1	6	423
+5	1	branco	6	1	7	458
+5	2	vermelho	1	1	8	543
+5	2	vermelho	2	1	5	315
+5	2	vermelho	3	1	7	476
+5	2	vermelho	4	1	7	460
+5	2	vermelho	5	1	6	376
+5	2	vermelho	6	1	4	279
+5	3	verde	1	1	7	444
+5	3	verde	2	1	9	611
+5	3	verde	3	1	7	454
+5	3	verde	4	1	7	450
+5	3	verde	5	1	4	271
+5	3	verde	6	1	6	433
+5	4	amarelo	1	1	9	587
+5	4	amarelo	2	1	8	529
+5	4	amarelo	3	1	9	617
+5	4	amarelo	4	1	8	542
+5	4	amarelo	5	1	7	460
+5	4	amarelo	6	1	6	415
+5	5	azul	1	1	8	524
+5	5	azul	2	1	6	408
+5	5	azul	3	1	8	510
+5	5	azul	4	1	8	538
+5	5	azul	5	1	8	450
+5	5	azul	6	1	8	530
+5	1	branco	1	2	7	450
+5	1	branco	2	2	8	548
+5	1	branco	3	2	6	388
+5	1	branco	4	2	7	433
+5	1	branco	5	2	7	503
+5	1	branco	6	2	6	401
+5	2	vermelho	1	2	9	625
+5	2	vermelho	2	2	5	340
+5	2	vermelho	3	2	5	340
+5	2	vermelho	4	2	8	552
+5	2	vermelho	5	2	6	397
+5	2	vermelho	6	2	6	395
+5	3	verde	1	2	8	519
+5	3	verde	2	2	9	632
+5	3	verde	3	2	8	520
+5	3	verde	4	2	9	592
+5	3	verde	5	2	7	510
+5	3	verde	6	2	6	411
+5	4	amarelo	1	2	8	513
+5	4	amarelo	2	2	6	391
+5	4	amarelo	3	2	5	335
+5	4	amarelo	4	2	6	445
+5	4	amarelo	5	2	8	533
+5	4	amarelo	6	2	6	395
+5	5	azul	1	2	7	482
+5	5	azul	2	2	6	390
+5	5	azul	3	2	7	457
+5	5	azul	4	2	9	617
+5	5	azul	5	2	8	496
+5	5	azul	6	2	8	516
+5	1	branco	1	3	8	518
+5	1	branco	2	3	6	380
+5	1	branco	3	3	7	442
+5	1	branco	4	3	6	382
+5	1	branco	5	3	6	406
+5	1	branco	6	3	4	268
+5	2	vermelho	1	3	8	554
+5	2	vermelho	2	3	7	491
+5	2	vermelho	3	3	4	256
+5	2	vermelho	4	3	11	761
+5	2	vermelho	5	3	4	268
+5	2	vermelho	6	3	6	410
+5	3	verde	1	3	10	637
+5	3	verde	2	3	8	535
+5	3	verde	3	3	7	439
+5	3	verde	4	3	7	448
+5	3	verde	5	3	6	417
+5	3	verde	6	3	6	426
+5	4	amarelo	1	3	6	380
+5	4	amarelo	2	3	7	459
+5	4	amarelo	3	3	9	605
+5	4	amarelo	4	3	9	547
+5	4	amarelo	5	3	7	463
+5	4	amarelo	6	3	6	401
+5	5	azul	1	3	9	612
+5	5	azul	2	3	7	475
+5	5	azul	3	3	8	515
+5	5	azul	4	3	9	613
+5	5	azul	5	3	8	499
+5	5	azul	6	3	8	510
+5	1	branco	1	4	8	519
+5	1	branco	2	4	6	396
+5	1	branco	3	4	6	402
+5	1	branco	4	4	9	568
+5	1	branco	5	4	8	559
+5	1	branco	6	4	5	348
+5	2	vermelho	1	4	7	478
+5	2	vermelho	2	4	6	419
+5	2	vermelho	3	4	7	479
+5	2	vermelho	4	4	10	680
+5	2	vermelho	5	4	8	543
+5	2	vermelho	6	4	8	533
+5	3	verde	1	4	9	570
+5	3	verde	2	4	7	473
+5	3	verde	3	4	6	395
+5	3	verde	4	4	8	526
+5	3	verde	5	4	6	420
+5	3	verde	6	4	6	399
+5	4	amarelo	1	4	8	510
+5	4	amarelo	2	4	8	530
+5	4	amarelo	3	4	8	541
+5	4	amarelo	4	4	7	475
+5	4	amarelo	5	4	8	537
+5	4	amarelo	6	4	8	531
+5	5	azul	1	4	9	614
+5	5	azul	2	4	6	409
+5	5	azul	3	4	9	585
+5	5	azul	4	4	8	526
+5	5	azul	5	4	7	430
+5	5	azul	6	4	8	511
+5	1	branco	1	5	7	550
+5	1	branco	2	5	6	385
+5	1	branco	3	5	8	538
+5	1	branco	4	5	6	387
+5	1	branco	5	5	6	428
+5	1	branco	6	5	5	334
+5	2	vermelho	1	5	8	572
+5	2	vermelho	2	5	5	324
+5	2	vermelho	3	5	6	421
+5	2	vermelho	4	5	7	460
+5	2	vermelho	5	5	7	461
+5	2	vermelho	6	5	4	284
+5	3	verde	1	5	9	570
+5	3	verde	2	5	8	554
+5	3	verde	3	5	6	392
+5	3	verde	4	5	8	463
+5	3	verde	5	5	7	481
+5	3	verde	6	5	9	636
+5	4	amarelo	1	5	8	519
+5	4	amarelo	2	5	6	403
+5	4	amarelo	3	5	7	419
+5	4	amarelo	4	5	6	383
+5	4	amarelo	5	5	9	607
+5	4	amarelo	6	5	8	521
+5	5	azul	1	5	8	545
+5	5	azul	2	5	7	470
+5	5	azul	3	5	8	524
+5	5	azul	4	5	9	615
+5	5	azul	5	5	8	489
+5	5	azul	6	5	7	436
+5	1	branco	1	6	7	438
+5	1	branco	2	6	9	617
+5	1	branco	3	6	6	394
+5	1	branco	4	6	7	466
+5	1	branco	5	6	7	490
+5	1	branco	6	6	4	267
+5	2	vermelho	1	6	9	619
+5	2	vermelho	2	6	5	341
+5	2	vermelho	3	6	6	396
+5	2	vermelho	4	6	9	600
+5	2	vermelho	5	6	4	270
+5	2	vermelho	6	6	6	380
+5	3	verde	1	6	7	446
+5	3	verde	2	6	8	536
+5	3	verde	3	6	8	544
+5	3	verde	4	6	7	458
+5	3	verde	5	6	6	402
+5	3	verde	6	6	6	424
+5	4	amarelo	1	6	10	664
+5	4	amarelo	2	6	7	462
+5	4	amarelo	3	6	9	562
+5	4	amarelo	4	6	5	328
+5	4	amarelo	5	6	9	584
+5	4	amarelo	6	6	7	471
+5	5	azul	1	6	7	480
+5	5	azul	2	6	7	465
+5	5	azul	3	6	7	451
+5	5	azul	4	6	6	385
+5	5	azul	5	6	7	428
+5	5	azul	6	6	7	448
+5	1	branco	1	7	8	522
+5	1	branco	2	7	5	320
+5	1	branco	3	7	8	544
+5	1	branco	4	7	6	372
+5	1	branco	5	7	7	478
+5	1	branco	6	7	6	407
+5	2	vermelho	1	7	9	623
+5	2	vermelho	2	7	7	491
+5	2	vermelho	3	7	6	412
+5	2	vermelho	4	7	8	535
+5	2	vermelho	5	7	7	492
+5	2	vermelho	6	7	5	320
+5	3	verde	1	7	7	440
+5	3	verde	2	7	7	479
+5	3	verde	3	7	6	395
+5	3	verde	4	7	9	604
+5	3	verde	5	7	7	477
+5	3	verde	6	7	8	556
+5	4	amarelo	1	7	9	610
+5	4	amarelo	2	7	7	499
+5	4	amarelo	3	7	9	635
+5	4	amarelo	4	7	6	394
+5	4	amarelo	5	7	8	535
+5	4	amarelo	6	7	7	445
+5	5	azul	1	7	8	565
+5	5	azul	2	7	6	399
+5	5	azul	3	7	8	501
+5	5	azul	4	7	8	518
+5	5	azul	5	7	7	426
+5	5	azul	6	7	9	583
+5	1	branco	1	8	7	436
+5	1	branco	2	8	7	396
+5	1	branco	3	8	8	522
+5	1	branco	4	8	8	534
+5	1	branco	5	8	5	314
+5	1	branco	6	8	10	668
+5	2	vermelho	1	8	6	317
+5	2	vermelho	2	8	9	600
+5	2	vermelho	3	8	5	269
+5	2	vermelho	4	8	6	402
+5	2	vermelho	5	8	8	493
+5	2	vermelho	6	8	9	625
+5	3	verde	1	8	8	579
+5	3	verde	2	8	7	486
+5	3	verde	3	8	8	573
+5	3	verde	4	8	10	622
+5	3	verde	5	8	8	544
+5	3	verde	6	8	8	595
+5	4	amarelo	1	8	8	537
+5	4	amarelo	2	8	6	396
+5	4	amarelo	3	8	8	575
+5	4	amarelo	4	8	9	625
+5	4	amarelo	5	8	6	372
+5	4	amarelo	6	8	8	581
+5	5	azul	1	8	8	578
+5	5	azul	2	8	8	556
+5	5	azul	3	8	7	530
+5	5	azul	4	8	8	557
+5	5	azul	5	8	8	590
+5	5	azul	6	8	9	602
+5	1	branco	1	9	9	590
+5	1	branco	2	9	3	186
+5	1	branco	3	9	5	331
+5	1	branco	4	9	9	583
+5	1	branco	5	9	6	418
+5	1	branco	6	9	7	470
+5	2	vermelho	1	9	11	780
+5	2	vermelho	2	9	5	354
+5	2	vermelho	3	9	5	331
+5	2	vermelho	4	9	6	416
+5	2	vermelho	5	9	6	427
+5	2	vermelho	6	9	5	340
+5	3	verde	1	9	9	578
+5	3	verde	2	9	7	475
+5	3	verde	3	9	5	333
+5	3	verde	4	9	4	260
+5	3	verde	5	9	4	282
+5	3	verde	6	9	9	605
+5	4	amarelo	1	9	8	530
+5	4	amarelo	2	9	7	466
+5	4	amarelo	3	9	8	524
+5	4	amarelo	4	9	6	391
+5	4	amarelo	5	9	10	683
+5	4	amarelo	6	9	8	511
+5	5	azul	1	9	9	614
+5	5	azul	2	9	6	407
+5	5	azul	3	9	7	436
+5	5	azul	4	9	6	405
+5	5	azul	5	9	7	443
+5	5	azul	6	9	6	385
+5	1	branco	1	10	7	452
+5	1	branco	2	10	7	442
+5	1	branco	3	10	5	346
+5	1	branco	4	10	7	458
+5	1	branco	5	10	8	558
+5	1	branco	6	10	6	388
+5	2	vermelho	1	10	9	614
+5	2	vermelho	2	10	6	427
+5	2	vermelho	3	10	6	411
+5	2	vermelho	4	10	9	618
+5	2	vermelho	5	10	6	376
+5	2	vermelho	6	10	7	455
+5	3	verde	1	10	6	373
+5	3	verde	2	10	7	471
+5	3	verde	3	10	9	594
+5	3	verde	4	10	7	473
+5	3	verde	5	10	6	398
+5	3	verde	6	10	9	605
+5	4	amarelo	1	10	10	648
+5	4	amarelo	2	10	6	403
+5	4	amarelo	3	10	4	257
+5	4	amarelo	4	10	7	471
+5	4	amarelo	5	10	7	441
+5	4	amarelo	6	10	6	395
+5	5	azul	1	10	9	607
+5	5	azul	2	10	7	487
+5	5	azul	3	10	8	504
+5	5	azul	4	10	7	484
+5	5	azul	5	10	6	370
+5	5	azul	6	10	6	377
+5	1	branco	1	11	9	585
+5	1	branco	2	11	5	324
+5	1	branco	3	11	6	392
+5	1	branco	4	11	10	646
+5	1	branco	5	11	6	416
+5	1	branco	6	11	6	414
+5	2	vermelho	1	11	9	624
+5	2	vermelho	2	11	6	437
+5	2	vermelho	3	11	3	210
+5	2	vermelho	4	11	8	533
+5	2	vermelho	5	11	8	524
+5	2	vermelho	6	11	8	536
+5	3	verde	1	11	10	640
+5	3	verde	2	11	9	624
+5	3	verde	3	11	7	482
+5	3	verde	4	11	6	415
+5	3	verde	5	11	7	492
+5	3	verde	6	11	6	416
+5	4	amarelo	1	11	9	568
+5	4	amarelo	2	11	6	408
+5	4	amarelo	3	11	3	206
+5	4	amarelo	4	11	7	464
+5	4	amarelo	5	11	9	611
+5	4	amarelo	6	11	7	462
+5	5	azul	1	11	8	544
+5	5	azul	2	11	7	466
+5	5	azul	3	11	8	514
+5	5	azul	4	11	8	553
+5	5	azul	5	11	7	430
+5	5	azul	6	11	10	637
+5	1	branco	1	12	7	466
+5	1	branco	2	12	5	337
+5	1	branco	3	12	7	485
+5	1	branco	4	12	7	453
+5	1	branco	5	12	4	290
+5	1	branco	6	12	4	272
+5	2	vermelho	1	12	9	624
+5	2	vermelho	2	12	4	241
+5	2	vermelho	3	12	7	492
+5	2	vermelho	4	12	10	677
+5	2	vermelho	5	12	7	455
+5	2	vermelho	6	12	8	520
+5	3	verde	1	12	9	577
+5	3	verde	2	12	8	561
+5	3	verde	3	12	7	451
+5	3	verde	4	12	7	459
+5	3	verde	5	12	6	417
+5	3	verde	6	12	6	412
+5	4	amarelo	1	12	9	571
+5	4	amarelo	2	12	7	452
+5	4	amarelo	3	12	6	373
+5	4	amarelo	4	12	5	338
+5	4	amarelo	5	12	8	535
+5	4	amarelo	6	12	7	445
+5	5	azul	1	12	8	544
+5	5	azul	2	12	5	324
+5	5	azul	3	12	7	449
+5	5	azul	4	12	8	536
+5	5	azul	5	12	7	422
+5	5	azul	6	12	8	523
+5	1	branco	1	13	8	512
+5	1	branco	2	13	6	389
+5	1	branco	3	13	7	490
+5	1	branco	4	13	8	542
+5	1	branco	5	13	9	702
+5	1	branco	6	13	6	388
+5	2	vermelho	1	13	9	629
+5	2	vermelho	2	13	8	573
+5	2	vermelho	3	13	6	414
+5	2	vermelho	4	13	9	623
+5	2	vermelho	5	13	6	400
+5	2	vermelho	6	13	6	395
+5	3	verde	1	13	8	518
+5	3	verde	2	13	6	398
+5	3	verde	3	13	7	465
+5	3	verde	4	13	7	463
+5	3	verde	5	13	6	405
+5	3	verde	6	13	8	549
+5	4	amarelo	1	13	7	450
+5	4	amarelo	2	13	7	492
+5	4	amarelo	3	13	6	393
+5	4	amarelo	4	13	4	243
+5	4	amarelo	5	13	8	520
+5	4	amarelo	6	13	7	450
+5	5	azul	1	13	9	601
+5	5	azul	2	13	2	124
+5	5	azul	3	13	6	308
+5	5	azul	4	13	7	462
+5	5	azul	5	13	7	417
+5	5	azul	6	13	7	426
+5	1	branco	1	14	5	311
+5	1	branco	2	14	8	499
+5	1	branco	3	14	6	366
+5	1	branco	4	14	5	306
+5	1	branco	5	14	6	396
+5	1	branco	6	14	7	480
+5	2	vermelho	1	14	7	490
+5	2	vermelho	2	14	5	350
+5	2	vermelho	3	14	6	378
+5	2	vermelho	4	14	8	672
+5	2	vermelho	5	14	7	546
+5	2	vermelho	6	14	7	431
+5	3	verde	1	14	7	420
+5	3	verde	2	14	7	438
+5	3	verde	3	14	4	261
+5	3	verde	4	14	7	448
+5	3	verde	5	14	5	320
+5	3	verde	6	14	8	616
+5	4	amarelo	1	14	9	592
+5	4	amarelo	2	14	7	459
+5	4	amarelo	3	14	6	378
+5	4	amarelo	4	14	5	315
+5	4	amarelo	5	14	10	624
+5	4	amarelo	6	14	6	378
+5	5	azul	1	14	8	576
+5	5	azul	2	14	7	406
+5	5	azul	3	14	9	637
+5	5	azul	4	14	7	508
+5	5	azul	5	14	5	362
+5	5	azul	6	14	10	624