From 3c66edf9eb663a9bdb354d7ec5d1640da6adf2c2 Mon Sep 17 00:00:00 2001 From: Cesar Taconeli <taconeli@ufpr.br> Date: Mon, 9 May 2016 17:40:07 -0300 Subject: [PATCH] Adiciona slides e vinhetas da primeira parte do curso --- inst/slides/images/graf1.pdf | Bin 0 -> 5384 bytes inst/slides/images/graf2.pdf | Bin 0 -> 5655 bytes inst/slides/images/processos14.pdf | Bin 0 -> 9618 bytes vignettes/Ovelhas.Rmd | 240 ++++++++++++++++++++ vignettes/Sinistros.Rmd | 352 +++++++++++++++++++++++++++++ 5 files changed, 592 insertions(+) create mode 100644 inst/slides/images/graf1.pdf create mode 100644 inst/slides/images/graf2.pdf create mode 100644 inst/slides/images/processos14.pdf create mode 100644 vignettes/Ovelhas.Rmd create mode 100644 vignettes/Sinistros.Rmd diff --git a/inst/slides/images/graf1.pdf b/inst/slides/images/graf1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9cb41388fa25ad83e2b8643ccbda8ab6ec8235b5 GIT binary patch literal 5384 zcmY!laB<T$)HC5yZG6=Dxbb}B<(MKaLj?nc{G=={8yhZt=c3falFa-(m&B4(1q~M~ zBLhP-0~14YLkm*_6AMi)ec${PoN^(VB{``I8bJ!~MTrF&naRZp{-q@ar6rnN`T<4x zDW%D&MIc#YJtIA1O{iV@AR$dIJ3Fq_ycCctjNq<O&=09BNLA2xPAo~x$xm0%4@gW; zEmkmAFi;3mKxi<>&;U{gQeBjqR{~Y8@0_1klA2ditY87wt{;?IoL^d$oLa140v14+ z2T}lX2q-vwQuESFG87Dr&CC?^-7<4ZQi~My-EtC3Qe9G$^HWkm?k+AVN=?k=s+hAk z!Z%;WoM-R*^%pL(MMW;z$G^`amrEjJ;x+Ci4wJkmi);wIopEQ;&;7Pv@~21@x?L(c z7TJ5<_KnV#{wo=(limj^=&^Q4fBgN<{a?(R@^pUt+H%Ev_HU+ycy<2z`Qcw)`M03S z=l_K>x*1K7ujIMqDc-`Uy;$^j^v7pUX1{K?w~PH>q!rLP*?#^1pTFa3erUwa<#K-f z`*nN!@7<Tnlj?W=F020_HQ{>0W>cPI7v+l|8>SU}`Wf;j-^?fe?9bA#TECX}={QYs z<o~?Cs`}Gr3-S5)=UvlZWp}7)i$>2>huzQDe)*ER_=;Q2FO9hF-8-4}KOVh$NN9cB zABX)_+W&6ttyG`#V*_)c=lt2SJg0xxO~0Sk+oO?pIlB4j#r#KIf$vjGglD<4va$vp zWcj?|P-gd3-3qy|9Up^^Ha$;ltyVoKV#BX(lf}94LFJ4O^IimOejzdMh03uK1uJ>E zzZUbNX8jgO&tLNG4bR?l7rmR`^z1#?;3akZ-mcrXGcrZ1XXoWVU$XU0?(V&su{kOE z=I1A?&tJtWH0Q#MIMY3kKYXp6>$GM^*_@1D{>zHqTKETqEm~J&?Pu)Ds9OB-t;Oku z4$e<+7fwnD%nJRvi!a_?RV{4azQg7(T(pjwm;5+3W75_i$NEkzUDW@z+VL#Y_tUL= zwVnhnTrq!dtIS39IPIx5hN%f&GgDt}*y8cPGhv0Al**AU_qyk@d#;IT=DYljH$kH7 z2Nws|Qhwg7jIWJ>9G8BuEtUB8C+vb+YJM-<%88D`-1Qq*e|a1|*H<#4`RW$NpsuY7 zofCN6rq|^;rW(!QyLV8gg-34UqVPx0vK*}!7-h1%M^8T2>728+Vw#6V^-DQnp9aIZ zI;$pp(_{VhHffTMb+F^YwJYbGFO0j_zadon|NgsL=O*yYEj3|s@--3KZYU7caeG5= z(*z@izh-=g7EF3``-r2*&&O}f_%4Z9-pYHd(5txgr5fL*CG~sm9dn#@=)?n%Oee!_ z3lH{R`*)mh^gpHL{MG8%C6$0*yJkg8%)iyrGu^K7<0Xxh=2gKGy34{Eb-mUbMERU$ zik^~}xMjvI)@>Sp4`mpd^5g_swH@w0JbA~i#OGW3vg*wzn+loFo_1fM^TU~-E&dli z&7OYG(BqCwR2_3y!ZU*}j<;rVNfa3^zNj)UXUCj*R*R#KhP=EMu*LJaxpD9{!`E4t zSZ=Ip5#c-Y?3R%Fb}hy?E~joKb6)gR{cztmb5Zovgdhf){*Chd^Ihet{LWo7DZjw{ zw(Y{{n^F!{!PfI{FE0A_SbD>Xd=Evo|NCS66!=n;_9Q$=+}YspYte$aA8ghX<X__R ztB?z`*!pu{Ov8r_4`w~lm%ZQddBdU3RZcq@9wxS0hu?qq;X{YGibv&|W8Qu5q=ifr z4euS(7FuG)a%^_nJ8PkJankQSOah+FT3fC%OY7l^|G(aQY`Oe2?3I1FO8fKEf>q}< z?T`8Baeiu9H#z;`rFD<59DllRb7QQJV7%$PwVVB0m%g)+p0PuG*164&S6!s<RGzyq zv2e%NIg3}lw7q`ePR+W7JAcPG?))3$*dNIn-juP@A$t-J$N8%bvq}zGE!eVaKVz%T z6!quDU#}Lvd~;DYV%a}FE9+B2k@;eAr>%CJx_vPz$!wd(6|*RxJIBOY@3?h$-o3Ht zf^@V<-Dxq=gS}$Hhc~(|+;K7Kk;OI*mFpXC9~by~b=|eye?lVft5g^So2Df0=St7K zf1vG3b<URBXg%Lq8^pfzt_gm2<xyQ&m5s@xx;7@WM|E-AHVA&#cI`d-S8CSPzr|ul z^j$6`O|nn-OsU<!R%O$^_1;Q0?fdMPC_Ov>E`GVQ>W$RA6lnPhtsX$7KcsYqRS%%j zzF0xuJ2RzNAzA@c8w4rDD(E}sm*$ly7%J%drlw>jI^|a=L>nj=D3}-<fp9ER1p=x7 zAVz}gspR0)5`}2}02em}{gBj(l2|T%xBR>k1sfZEHzNf@kRd?|`fkPwhM<ZQ#57Yd z1l3yLN=e_fqQpJ81XO+6*nlk2ch1krFA6S5Oiop>u~E=34sv%=Foo4Qh-wEU1ad{R zzNfRZQ(|#yih>zPRV=Jx1o1!$K!!MiYN9-lCHgL@WtqvTAVc;26pR)0p;eZVsU`L* z3*;tfkXFo@JFPq<_@-F<`Mu_Q111S{O}UVr5ya%dyVql)o|Yk}fY*Tu3`%A$Aq6gh z6PIxqX*_6H>^yO!QdcWu;KtW1k}g*Y3q+)+d8VwDyuYXN{n^>~<-gZu&)<9gZu<M$ zYr7aG{Ap%A<P*W!z_Tzy<l*z99lhP@3G9qK9~hW(7#<XC-s~jy!;NVsQ_YQ@oSDKu z#P{yvQ~3E?>#}{%L5BbHr|gVWGGqvt(ewP%kDD=);wLR^!{?}O_dhvfn~Co^1Fv&R zkxfQnlZ!v;MAv+qnaXeZ*{H=v@^taJN2wp4+);nrYbms^XJUe+_;ZdQJB{|KB{!FN zwmBTjf3i`s#?OpFW6~YHXT`xOIl9S{G>n>bA6GIw@HiR&;gWvDne)P@`H!AE6Qw7l zvb;l5Ehf0Fcd~Hz!}I5TpLZWUW58$LtNh6D#!SgbnTJITY3Kh$id5!GZc?(oVPR=u zkgJ=!Pvc5`?4Q|_zL!mlYpH)H=_3E*@VD@~nY;`emZfgJ`KvuQQ<Ne0HDkc;zwKue z^clJ~?JMQ0EtK0;6Bl&kkxshy>N|I0ycy?bYwEvv|7$*9y>ooc`JjDw-#<;P_&nKS zQi-8+oOxba)iReOC(b=8_{sBZe)|u3_J5^vVuF8E_I2n_adkPp%tygz+Sce3!X2zL zo!T6J%%Amx|M0&hH+N3!y!Auy!n6pcrHWDxb#e?ET7n9k)hXH+-q&&;b7%f}w)^7D z8FPQ1Z~9jozQgC=2{D!WzGQb7qa8wl=ibcv6UAhrz~Jh@{K`T41+(x0mTd<FcQEij zU}kdE=wK;KFnrJ?GJ(-WL0qI^>jH@>O=}a>SFn{X5Hx8vE08E@OnzWu!LHYMI)UX5 zV~_#gyavq=TxT2vT3SyChz7NnC^(;x+0+^_LHY?ZtFvH$%oGk)XD1IPQHR$Hf>y|^ zYJ0UX?M3tpjS{I{47|?U7X)Sq{SvKWS2o~Wb}(v#U=Hi%1b+*Tz83L=CqEcj$m=z2 zKQOg`xklh!i~r&24+JB)>>HO0HV6n>E$TK96g%YRG_gX3Q&4gB1feBNnGUxm$SslI z+2t{D`H5%|Hdj}}0G}z`r{qOjA1#`;Fl?dO;#Gm{0drT_T?xISk;U~@(AO<{(b<dV zUNDsCSV_+9)^iJAF#Ce+i_I?tzgYYdWourT++)}$QST$8Cc2qvv*c#!%YBxulE-=y zmu-w#V|7jDbr<i^q76wohTFKR1*(OrS*`nOo0T7x6l}AIkFoLV&^{9SAgVyUAiO|$ zhvXiidjju!_>X@6aQb8F54RfrIu853`HC9CJ)G-WJe;%=br(*$;AY{y!@I&!Md)jX z-;shv4LjN*JZ)TT{AE=4sRnwashDXtswn0vzEz*AbXRGw!sL@~Df~q?kv{jF^3>)l z-dEorxIimHi$&vuNSO8&jS{Vxz=~xZ;U*zpLSoj;SRb*l!llsT<4U2plOCOGj|4_7 z4Ov_g^0MvH7NgLcZk8dI&Xt>sx<9c#br;b&+VRNwVPKcWZ;f<~<dBwC{;9z`uasVK zdlmW0g4fx28S90h%%xlMGn%((igtC)_1fY!&#U)Tp{S<pLg|alFJ68z`jz;r^p|z0 zZm56gzE^5j&8}*%T7UJ~ipmuquX<g%b=B?4y_LpSYOh?rvVCRw%KMicGG}DAWIxGz zbJ1e;#}dBWzSA=A=1j6|e}3m$i|JVtWs~rXcb8=@%(-^y+NaB>F0Hy`wfJku>~(J! z&Rw<F`FG2=C48aBeccyqc7DF(Tyh)N;mH%vtw{M|xU9sq^lz!^uCKeAcNte5s|u`Y zt$JJa{R`(Woxdu7Wq<Ac70hPErpU(1ww7%>@5eTs!y<=c+y1t#@9pVL>M@fjm9#Yq zGv+fmXP#%eFWbqi&^$8jQbN&Lk>pcGzQ%WRt8Vg`Z8rBdTx}?A)P7d>4C}MqXWMlz zi1~>*b+dI#`v_g0Jo9i)YG2eP-DX{G-Q7C#BPAn_M(1vRwf$E{ZvNc7yBW2|+meJc zf-^2Be_p+IrtbA^$G+W)`4n@1=j!KW=WFxQ^Nw%7om_r-UY2~){)79j|7&hu+<ao; z*~Cj14;WtDc<m!w_c5;I+_bsnPS%x{Ys;*jeYtk?VC0*c8$ZRxmwC_f?moS^^4RAe zpQWDn?tHbgDCTwS(mbB+F5CC!1(nB^_f<FlX6CQupXWaLc+2vY>8qYQo==av7N@kH zZ~gV0^lx6@H1m(#KEL}&^@a9F!cT+W7T*s)Z+>(8)$&v4@8!4N*R0=CKjFXGe`&@j z#ybtq8df?SKQOhi)^W)KR>!N3{7q+@To2kR7I-9__%>npXWr-B&&ykzE;L+tyYTy= zp2O2xYvubm`MK9~)=MM`2MS!=->@s;WYaX(^-6n{PAk24nd#!WsA{q3V&O%z7sns3 zI6mdLNAlXF@MCdZmpg=ylparhy!i3#N6W>3>D<{_U~|xJp~b^rN{?MDyY+OgMa<dv z<A=~u)j6u}LKiy?J9RtXTP~c#cJ9lihNWA*m+#1Vr}s{H9(z7}{-pP(^q>2y>{Oeo zZtGR%dvBi2%t!NrCVmPzAQr+sZ~3p~*Ou<{<MzEh|C^?*+Fo1c=@VxZhIj}r<NR&3 z)%def`{py7yEZR5J!ksc7&BEaA=6ano86msA2qpo{z}6UmrZd-vmQ?ip8Q$O-0Hi> zyrOvq`3XC3e)2u7{;Br!{<y}dgRvK*7esH^mQb?v`Ke!_7gjA@T^0U%y<U{<zGL}k z8@IM>&CIUX*rKPSU$av$E!KZx*u`0kHh!&p9o;S3<$BcIY)8(D+a0$wZdmNde79_s zue^7Ks<`)BZ*8yp`Oot9{g`?-d}@5{tw~!_H=J3Rb3W`$*u!hDZ{OK2s}ZhuUSIyU z+@`(7?8)vY`=(n@f3qhbF+6a4_Xh7x-cgb<H)B%+wr+h@Tk7@Iqc_~QdTrX<Ww);H zuH3!;&Bq&;!<L7JM}5y*pYZ-{)&5`S*cP{S)y}B3{4HnZX8x`I?5|xrJr}Rs^73%q z!@8G^9n7_7`_7)#ou!+)wqW&=(oYG84xYYWQGfaFv7FWU%ePOLV`^7vm#d%s<L%eO zj_uX`8~V1?rvHe|W#77ZiSVnKdzM$HUQ&JA_gc<Qs$$Fb<4c!6u0H+#yZmL_u;Q4f z6*oB#buJQ~@Aqu}9J{HduU@`<ayfagch&njowmhm_4nj|$hmOy^YfbXb6<XcV_$ji z>z|F>=fwNsQexlidQz~m_(0u)$Lzo5t=MGQtlMSUcj;TlzLT71Uh}By_teYbd)Lp~ zEmrXM(uqG4AHEK}o`26{hvMFoyMMk2`?dD@_Ts$rcOr|$Yqvj{cWH0e?^)la>rDP` zjD4kGYxm05>O;c8X6xiT8`bSo|9`35^Fr}w;?b6KE}xZeyB}ApRoAzV`%&@7^V;N@ z%a7V?|Bv~7=E=?S{S|+V3`DI>|HXXyb9w#j_!awa{J-=r^?k{WFMq=&*Qdoz-xFA0 z{6P10?*H90%7u-0zTfy>+kQsfi=Pr-KE7Mt<3GQS`FqRf-xv*WOZadL7j%5aH7_|o zB{MHwK_Ap?MexEi^BnVvGhqT;`YxGiX{kl2d7x33Xay5f{oKsF(qe^J&?pMDc@J)0 z!&<qJ;U940TR*rosRTS41QIk<(DzHsO;rFj$ibFE)Oe)kl%<wrCMR;~!z@(*ITze8 zhgkq>w3A?gF~nDB7U(+V=cM4X1=JrP!4@-QTY@Wdlk#(r0;QrTHI2(a!O)n?01gz) zOihhV719*oVn&7vU|EGcxR{}tF}j$cxv>F;n1vyxI!hCC40V<k7<vtiKz$#O#YpxV zSsJ11H8C?c#Sk+$v&0ayFf+ptvoy0nh?Nv2X6B?8ae?|l!I@R53WmlC`kr}d`3j(@ k4N}k#%Fi!R07U>e-iu2Ti%P&DXlh_$#-*z2>hHz{06I`e=>Px# literal 0 HcmV?d00001 diff --git a/inst/slides/images/graf2.pdf b/inst/slides/images/graf2.pdf new file mode 100644 index 0000000000000000000000000000000000000000..998e9068ec962d67a2038d93ecd273adbd7782f8 GIT binary patch literal 5655 zcmY!laB<T$)HC5yZG6=Dxbb}B<(MKaLj?nc{G=={8yhZt=c3falFa-(m&B4(1q~M~ zBLhP-0~14YLkm*_6H84lec${PoN^(VB{``I8bJ!~MTrF&naRZp{-q@ar6rnN`T<4x zDW%D&MIc#YJtIA1O{iV@AR$dIJ3Fq_ycCctjNq<O&=09BNLA2xPAo~x$xm0%4@gW; zEmkmAFi;3mKxi<>&;U{gQeBjqR{~Y8@0_1klA2ditY87wt{;?IoL^d$oLa140v14+ z2T}lX2q-vwQuESFG87EWjLjAF-7<4ZQi~My-EtC3Qe9G$^HWkm?k+AVN=?k=s+e<h z*2z9;bAh(^Ra|oJ?8a-f*0IOG(P?Ou@Jnl8*-$&fqD<kiadSl9<L_q`*H2s(rk~R9 z(rIf{G{Hvq+I{=k-XE3kE|{ko@c!!j)$`NltB0@7-)8^+gUjBV>w3(Nt@u;@`&rr7 zv)_;0T3yby<{fug{O;EYTe(j)T|T*Twe;6dk8Yp+cKP_({One@*gso;exGmsHKn+^ zeDltK3+C<r`}o)8XP?)-iK@M~N<2ID=lk7f%c{$F*R5SQZ|%O_Ry(t9g!86{zFsHT zY_@IxgH^FLk*imK=gymd_j6#{QQilZN*1}!<^RRk>(zz!U!5NQ`i{nLjpL?Wr>uDI zthkewA|ko^<jVg1tNO3L#r=P?>c^KNe^LGUcF*IRgX`DF?F)1JyN~H>kNx}b3!(3i zUp;qra^H%)Da^SG_y1a;_dAH;Qo`{^|BST1uUI?(RQdE^OQshB$3B4s7WmEr3lygQ z{JwC{{wbfP{WIVE@BO}u**>SFd#{xC|FJ0Px${TFbjFgo(ofb!zFX9{aJutm>sc!l z`97tUKT#`NHa&T>wWNOX(&@W@&ZsN+UvNG`jzJ@C?#Y*;JT@PSHRtH{+Auh)9lgAi z)8uK8RV)|VmhUsKnPpV^EseQtAixm$)M#z~g-xfP-ny`0>x#u^w`_EL?eXdH5?|gZ zxe&YcpG{u+ojVwL&X+Cp-`!coiVK#NSiJo9w0-kCfdYfK-x%9JgBTybF-AVK{ls%~ zO}mQjV~1Y~8=}%|*%!S(>=~Vx@~D2&mUq_ED&90%Cq5CFxMPX(Q=u(!yDdDv?PR&M zuE6nqDVM3ZpHxGx-o)nE+1^jmbYc{u=H{GLjr4ohs=_ii>8$EU{s4~&DJQ~X8rXMk z-Kpj_chz5|$kQTbF@}#<>-o4YEKpp&cjc}RH=cUV@Z1q!adzF#1(%me7}oShycKtt zP$g13v-D}4_&O_5Jr(1HX-+Y{Ay-bHT(fFsf!e2|4TeU~vef28FEr@9bzT05;XLP; zj9=LcHM)!MsecMT+nmmJ&ZcK=RY4GUE4$abcOvOe?laH)SHwSKvhSxWwL1MN*=?>5 z1>QQiS?}8>J@F+w&yG7A^4wdlS5M#iH%acE-Lpr>EuL>QHo4mPTz~eecz!7}!*pf0 zo7t_cCpa#a_wQ(tRQx&VkJJLenT!59Wx0G%{b?Go_)T4*qN!5rq(4$C1al|++1epB zal7}12~ro`Bkzd?D!0A+vB<6WxclGc4I3NQNVghh%r_3_>`HcE>r>VA6BM?bw!*?K z<weA%M<RwBlR3MSUD*1M&wIjQ>(pVq!Md-1lGuVJjA~v+SD$u0R5xQ%aZzt<J$90B z_p`~Dc;5Ma@SO83ZHd>U1}(b`i&Ar^B}>$TH?4ZVt=m-I!+4*y*ThLjS12&c32!`g z*F)B3OMr^exu1uQmVJmS-k5f*++9<s)B60BvpU6#pFR2!<}0G9DZ(v$Z~2w^E!+35 z<Wzc^b7Gm$z7_8T9hA2@sQfyxe@a(?{87Otp3(|Jmhm$pv@XmORC?W6uP;^W+cV{4 zN|jL0T8Yj*o>MMQ^!)SVo>%#_YgU{pzn4Dz&*15Ew`&`RN~ihJEdnYlpZ`!*@Z8hr z%k4PHMRZ!D%Ez+Hx-6cOnHTk$Js(-}ayw39I+?YDLq&7anu2bJNfj}o7i@jkv-@gi z2Z-HdT(zdNXqJs*XuRE{MEMC19|{;gcqm}_Fj3y{QKI}rO#aKs{~c{&6P905&bD9a zcJh3(!?gredw;>;=Ba;d+){YMK7AH3G>tfUKH2430x0bLla(B2sm(i<k~W81Bvp0& znmd=uFPylX@<V*r@|B-VP9|M?b=WqjXx$fwxh@=Qc{Zrco5tg->VLYvKYV4EL{4w^ zqfDh46W4jHdcO3?=bl>?vn1x9Hg<Nr|H{(La^K3_N12fdURRz<W~^fGJyN~y%8|=Q zimy#&KjU7;CbCQT1=~C|w)vAv9i3}c+?V}Qn>TIh$ukvFuNPaC{%^f~;PR25O=&i^ zbAHTk6#xajVx8~2X(wI0D`#2gE}OLcZe``JdrZ^2S62MjEbf}rugN;I>GElt?5`b; zZx&T7f4*n^s|_3X{1FVySZFL4FS$!LUb5(t`SV)m4)xrg*7x08i+<mCKedKWcG(9e zkBzrgKTCNZihum_!W+Kd)8}YJf4C+4t~TsH<HWqfr&IG%pw$huwggp%kje^HTY@UT zVg-Hg%#>n<Xa!K^7^D!ZpzoYtnpdJ=sG#qgnv$95lwY9`ZJ=PFU}9_p!m&v8DX2b# z7zwVnlY>)B6r%M5T-+4&LsBbBV!8C)^7Bd*Y;5%1j1&w(h6E|-yBRAOg4z)vrkR2v zs1gU)(fY0xCGNo`pw@(q4agFG=lq=fqTqtW<WvP48wLI1Aa^GPQ&<&@sD(j7AXh}| zdpbKiB^IZqD42m%#lqSNARb5o$Ph<R#heGSMBgQ~EHgP3WT?KMg0X@=v<5dawKT(8 zgM-`z4bqA^bElPu1m6^EKfl*}Z@?sht|=F?GlG~rc=vit)YCHL6!1DQfkDa4C8WS5 zaN;r!BaH_Qi=8KKRO)JF4BYsdMbhO;VS$MBG|!Z^lK1yizCSzrzWn#P?D>1o-%WpC zdu<oPgg?!!hkPP98+aB*h&+6Lw4=8>J%OE(=K}+C4#R_j&6}OXez-BsWU9H*lQUEJ zhxp!Id<s8*YhAYQImqyT{*;}ON`?#pGkTtX`f)QxQv9TaZTKA3?fxfcY%}paXW(^C zDYD5ZY;y4@o#>ixGgJ93KO42!NS-b}_bBzllRN5<do6|b^-N5V6o1a~W2ezRwdCd! z&o+l+`A;@V*7%t*XiU1J_pCTLB}X@Tl7>-}?&C^^2OcNmKU~s}ICEb3H2=|aXQK3k zRF-#0s>KAi^-dP<et7=8@AK}XXAJnvdzBv<-k2#FDf6(1A?^I1NRi51$xTYuH!LhI z403gI_i0?IkNq=y()Y4yaV_=lBwgfx9R3zwH<OoP!?M(^H-EL~W{NVzzGe*A{kQ#W zf<8mnrhTP+wS{uKYT|;9Jkm+mUVZ0Ij5p)_Y)$<a?|;qbt9OpCIUls|?)#^S6`v<t zOe!&Sjx*0ot6JuA<ixp01wVP7&2Rr9&;GAePE7ER%DxW$DXuQ3m-#68OxqfLLb!u< zrc;~4kNLBH@E`uS<mS$4owt4nUYHiav{X^bp-zrLLrYMBvpPll!uwk8WA4m9&vsv& zIb-hc^G*M1!*}@nJ0Yf0-<Ry}Vzfgj@Z6hOf1;R76c}6`m|r<azhD+Vz_RUt;0^}< z2h2>48XYW!35E}vL?$r0D2R(RY+WERrD<(~`U<wv1%f8cW(5)@jmZy8EZFrLPbaY4 zVGJ_ho7bTEf$NNeKuhZh0nwoL5(VcIGMic>CP+VFW_1<}keR}v>g?pfB<k>bLC^}B zRc)^proD)Mp;02Wi-Fg9`+~p>p<kj^?8*k5%MM0u5X@oSoZxT4(bpn=@Z<+03wgb! z?FXh7FxLpYYw<rk{efTvmwn@M!3F_At3}-gf?|i<oF-PNa0)7}o*=Y@DbwNB1i2;h zJG(q4E<X`1!shB~7~nI7`;@$B>!U@}7KSY}Tf8ceJz(w%yDOnrG_tt93i`TbFFJei z+zW;h9V^MX-Fj}}3ua%CeX;q4;1`QuqHN6zlY0#NB<g)+)I>KkZI;|DeYwxFRq|L* z;<AkqYpkxxyzb&XTC^c4$8Z~0wLrB{HLG=BZL{*Dl7ej(@i8`j9ok1iA4C<X7laoG z?~vRhbWh-Y5C756A5MQv{oz)_U&mqJH(yahxQBCHi-(g|qVB>;7u+nocX(GgstA4U z@H<kls9{H2gr|**jlYcQKGi^vG!-+=Mis?e#kcBnmF_C-RhWFzErq|xCer7gQ=Zy< z#rx{}0~csTXt8K~5DC-1qEVt16IijVBitn9OGwO`8S5h!R=5;;d|W9MchaMC?UBH! zr6G$;LSD9A+F}%X)6Fu((z$YTQTHd-r|u#;M>`%lKMd^B_^pwyksQ*p%0D%D=atec zZm%L=S@1d=FJrwBl(}?Een#^aP0_Bdxn5hm=6Us=Diqa}T_}B#`NhjGM!yn&mHx60 z)eZFz-S<lEs@YZTRqL-lTT!{<<5jOKx30Qfxwq2zO6`@)SGKP#UwQwsL*|Ukmh2~4 zZ!TJ_{#e47+jm;#-JD65?a%LAYcV}*qHGeL@$RzBg*n$QUHf$T)TLFItQLO_nZ54q z!nv#VI{$9@wuCSAxUc(y&Cbu4oJ(%wIy`yexfLm2440Ldmi{eO-Su@>^Dg76V^x7w ztyOQUzJKBTrSn(iuk5eAzk=DU*c91V+19dc=l$5Gb6DhXY}?<q^}Rj4Nj+u~rINNr zVa9w0=gjj=_hmbo6`Dt;T}miAE0TQ5$k+I8Zq-d5v(4t-hN}&wjoQ!3o?(5q`)s@J z1u;J{r*5`xX&<4>lV={zN$rceq}!~^t-D)iexzi?(dgXGueSfn$jzUdcQ>Q<cw3Ti zMsUXE<j<?u&eXlW?bx?lF`r`Y?_B-7?0jurdfxHvx0A~+&&!fe+JA80^?%LHi<?g@ zJezpw;sL{p8?Sw2>psSnoSQbc+{wDqa&4K_voF_f9*lfbbK|GD_%iQV-rc7cS04NP z<FnNB-kq;@7R9`dU7E+U-DUgUyrA;f^1kZk-^~2A{PWx=A8%Q{GJVx^$MflN*W#4c z^R2(0lm5-?n`Zuz+vj&5slL$uNcd^++v5A-=gn_!zgm9k{Js3v`<nGz>L>g+`!CHH z#dxRTS;I<);|HcT);ca(!0LF_k-zC|lj}iS#R89n6W=E6{>=NF`+0e5(}ji$Zx?<) z)N^=RYpr}ACqMUk&U%SN;Xr|l`x|y8oNSuLx?X9o(rKmlE;C&`7ga45T`at4_Tu>C z700I>_efrw6n-qO>vD(ik<#PIj~73l{b;%PFP%F(3v3SBEwp&}OX;y|Ww)NrwTL<U ze*6$Rsyav2UFc$`VW)2Ad&`A$*v@^q)Ub4`_wpS%@ATdY&tuPL&!6=El>T#nm7Qu+ z)os1XeDBS(nfYj5(8Nz62gE|S=Pm!W{Myoee%!vd=YP|*RoiRJJbmJf!VnL^Wt_i_ zwi<snYTtZjbJyl2r{_$68)K%*C1jfFe6xGg?xQ9*&tGXc;<72uXx8It!IM9$nOlAL zm{&B<AU|Q}%}>6k)j!pK-XGT(buji~^n&OO+Y(BaK0oy<^uns8tE<9auh)yR-FGbi zY~$9Jt(n>N8e8;q^lNtNrN#PB47)gM(Z;WJucNy~yIhZ&o9)P1al7M|#tn-dneUdZ z@|E|lP!;!H>#gl|KmS?Yz8_Q1hEI*Jy)|h|>V`85bIymI343_$_3b;`Wi`U}&g;wH zmfN(qm_6D3WZ!h_>2LM~B!&lW@800O$va9i=4Nbaz}Bs=YD>Modh~|-R<BKayX@BW z-Icr7zxjCMa@g|F@Tl*3>l5Cet=j+V9NXfyuG$&3mcQl9+|0k#pZ&FKr|068TV5Wn zdsz3fv4gqxY~R_ly0dgs*A}c^Qu-<3(81I9E9x)bJ(jaNfBE+5a!l<i?Q-?Af4u#A z*s;C3e?#Av+Vmf>x$IjPFA;tfbI<bX)Jv*w`(Df0NmXpwethZj$JM9bf0w^(8&(|i zwBjb`q0U9Z^ZlO9pJO+*^wrCkPcA3#^{#q9r_;80t^S_;4>=cZetuqae(uZfZ|p1Y zef_hM`<!@RTuSVlT~7*D79Xfv@R<F#ycL@)n{~TP`!0R!*msii%xfNX{hoR`eDC^s zyTuCLUOMq-;=|X0*Yodr>`>f$a`(>{VZYWs-(H+|{!V1Ec<uHl^Dgb}`aSErbe+lH zjj^v3Z0%mzT75`3*leAAXQR4(>i;iwdtNC1Og!3h&gHZ6ZTI79wd(rzaX%{lcwU=4 zbNNww?f)^q&pf$VzQ5v+k%6eS>A#pSe=e_|9lv7#jsKV4rM@q@@#Sy0<odL@>3ag} ziy!E|&i%i8M!B%@&i5PNYunGLd+}4^%g1-id;I6uF@JCQ{2QYIZV4ZK;(`uWx#lJ3 zr)1`(E9irotq5LtW}ahSaVAWFOW!3kEiJVuH4iih6|G=ms-K&gS6ZwP3mQ~{Ht)gB zYgj86G8zVMeCr37CY68($3TLH3i^JDxv2`E207SLh#HU7oU+uC%;ZEaeVC;RAm@S` z<}eFDjdl_&FoyUF%>rGg{G1egwt)HrB-mnxY)f!uZc=^@QlL~6rKWKiC>R=Z8Nh*p znW?F<sY03pT+GN&0W7PK2NyFmGe#FPGBChUXJlYuf}zgH&;nD;6hp6p5vcD2vKYx; zBTFN6y(X3>X6Rz31||j=Vur@%7-B}omI$$uqQuOc)FLiWKPWh}DpkSISV7-2FD+jI l6tzJL`a${mB?_Pj0LOcANn%k6I0Q|N4b8b!RbBnvxBv#R$$9_) literal 0 HcmV?d00001 diff --git a/inst/slides/images/processos14.pdf b/inst/slides/images/processos14.pdf new file mode 100644 index 0000000000000000000000000000000000000000..fb02e99a3893f869fcbdd8d52ede6b4a2439ebf0 GIT binary patch literal 9618 zcmY!laB<T$)HC5yZG6=Dxbb}B<(MKaLj?nc{G=={8yhZt=c3falFa-(m&B4(1q~M~ zBLhP-14Cm2LsL_8LlaFdec${PoN^(VB{``I8bJ!~MTrF&naRZp{-q@ar6rnN`T<4x zDW%D&MIc#YJtIA1O{iV@AR$dIJ3Fq_ycCctjNq<O&=09BNLA2xPAo~x$xm0%4@gW; zEmkmAFi;3mKxi<>&;U{gQeBjqR{~Y8@0_1klA2ditY87wt{;?IoL^d$oLa140v14+ z2T}lX2q-vwQuESFG89ZrEsYiQ-7<4ZQi~My-EtC3Qe9G$^HWkm?k+AVN=?k=s+e;$ z_I6+FQNh~z>u>abJH2f8>h(dB+7&ulrf6`6E#mm((B!CaCRJt%|2g$1>_ORA=M}S^ zw`@+2)Zo9dCA}(s*Xq}sR)xLYQ@iEq+t+W~XWQr6=bZf(v;E%pIoon_-{+pLeV3fG zU4Q%jy!-d|eE)TR|L?co&R;jr^w-S&{=eq$`Q7sS|9@<iumAH;{!hI7?SHkOPu}0Y zrM7PJ_WnQn*XJA6CI0?<Hb4H(p6`j@mREi}8n#V*d-UDcpYHp7v|s&R_hX^g{kT21 z=GA_#ss6b2|Cgh0&$8>+<&~}57JmEMt#r|}<!v{2{#xvpSe3W?rr9w&pBZm|U;GtT zGq>%-v(;~lb2h(s-SNFZa>Z?(YAyfyHtNe#wW}jfW&hrLdE2pjQ*WAm3*9#9+P*0- zjo&}3pSm)4$NtZ6qK|#jJoL&vf5)2jO^d&OdAT$>&g{0Y;EYz`u%dg}!F*9|GoHN) z7xbHTI&<y5g5>p0N1mE}pZWLZ>3OZ`@3ZBLqt~%atqz|)^_9@|?<?ngdZvEmYVNE{ zo18<`&YuaIS1XbKu6>#3>3!c`ot~HTe$pPbH8JbfrA)mXq_NVn|L!ECyZP3CAFf`u zOy}+14=eh0-puCi{dtx<WKTkbR!Pb>R@1*<4!af4k3Fha`0&rv;+55tMOyv!P1gEa z>gVyrKC2K--F3h0=b`88ELoD@Ju?dD{&M!RsPEnM&$IbYPJhX4#+x6&a{Ed8)$+9> zllf+!pO@OaOCap5y7>Q>KGk8{azbRTyosvPiaMsM%C8qKwk=05=f?thjhk&Yg}saB zh?FO7njIpM_VnmN*__Xz@=bMzjivo>PwI<o<BteBbk18VZD-y&8P5E;M4=-8N!ASE zX$KeipX~oMHT%N4(9aIp_p9&S;SZI$;KzQcw|hxc^ue_cTQn~pZ{l`;s^+o!{*~0d zQ#OU4RQs8g&gC=hN|ob+Y3a@8UrUnhUUckOWcc)%#q!RHt2EP(`bNs~*!mPP-mN_p zm_14Ss^o_$HmdAJJKn!u=iohI_ww0OJ)dvoJIkNR`$|wNDyqzW`C$n?&%FKb%Vt}w z3=TBhre6P9lZiXmz^nB9^(hM1RnvIePWc8F<Xt_p-2CIaJgH3=Ux%l#>Cb&6J4wZ) zQ|Pt3nP!%j^qdJfu|*GK&MO>Y+n}V$^?2V;?UbX68r7#t+(b;ce#9F8YKV<2w@)ir zvWksqnqvsNk#g%!Ud8s?97h+dZ~0NQ({}ot@LjK2&#nIO=-swm;t%=tEYE%Tdq;0) zY<|<4-MXz?epUvX$n@>Z?!0QEl5?T+)Xs$atcj|9EgJp@?LVKmaQYp)+ELkp#JR>b zf={RH-q7bJI$706?eHuk&IL2X=D+*Ml;ZYvPxbTAC6^y@=O>DbMzFjp6`FdfVGrkh zX}t`=mNZe983pRIHocx(V7Xak(h<Lw?-n10W=wr}`hbR)<0lUHGip3NB5!<^<<wbi z1+EH4vb*~8#&7a6Rlm8_L|`uaA;rq1DSKA2%Kf|WZtL^BS*u>i8eTW>J*d1}wD7pd zn(pp7$Df^$@=!Y5vqU?C^TT)dvghadbArFE`JE^^W%e?iDx;>v3DQq*daGMBZdTK} zVaKF6;nPB9p~)L_g}y{9*<LeU{jP2TyUyw)R+gEH8Z7T`PD%fs!5Mb<ujR>gzXaF! z&J<HUm&cvS_C#jNf~7l6-#rZ0?0?7oJWcfCA{G_4S!O$b36=H8R2g#KXgpz{Zl&^F zdfQT$9qNue?>O}=RF=*C>h(dCf8&&d$tP1DIdv_|VD96&7GJ~?%%t|L%gHH$S1_+o zRx`1)?nKU|r9oS+EQxh~pmbvO`_TDkj%!s;i_uQ>d9rz``g)J7#OG5^b>BQxnji4d z|F|IU_qeErcX}sY2;5L%tuA4^!yGqB_{t%rG))h;Tlf3LulYq5r6nw!;cJ=vj(bOu z^VU8lU4ebYe>K+blwOij)OkTC!X%{H<6iu$o(X|p)Y6`2F-+*<HjQGi3O>E}x}VRn zEh^lPvJ=*OoYoX|%4>1HC(?P)`TC(FGs^rT=R0SHuUWX>f_bar&iV`f$0CA1Do^m4 z>(k|Bn!A_jPmAtVh4;rE+*|HlA)++(XppF9QsdIl1q&{n?KP<XHrspQEN*TUu^Bxj zF<g5mXj$&7i`wv}g869s$%6fDGk*D>@lsTdROzpGP3sMH>xy(@G}KaWu`RA<d2_Wk z{^iBksM@RECxx^&YNXc%EerW8xzFJ;SJ}k6{6?3|qsKT6_<}Zu3e1#T86ht7a?0;X zy{9r9n+{r?et5?yX37lvT>CxIoj?En`W9|})Ah{O3ZDHtrNxq$J(~S^`hAIee?J{x zGyQq$Pj;@8AFik5)P|gXoLj#v;h%H&(Gz96ME-YtOqjNDOC850_4EIJ)NI~j`}@u3 z+y85}*M2*D`uxAI_iwM?SN-q%+oSHwzv>=W{VYBGiNwA|`=9Ju9sT=3yZruNe^y_= zzkg5d+wdbr`=6FZxV3%SDdxZJ@6(<3>+Ns7U4H)Gx0j#e>ksVr^Z&+D)tH}GS5my4 zY3q}7b-VYR{lncIRx`bN?sG-6b(_}B+5h>Kgv{->`Je6wvRyh?oZK;g8z;kq8Pd(> z&;8Pl`hx_R6!prBlRrF*X_;d?S6x2&&z<DRa@oF{h7|_Zo5Nn)SReag>A~<duZ&0T zjG36~y!7J|_UVD2GEeqhZ2r0K-K#z3_Q&SLU)tw)x~xa;Onc0e>d(n%e!A^=ombZ* zcV_;XZF8R=pYi!_wBPch)^7aIsxM^zz4u3=c;EXHd)@nnRmFCPCTu<Tx!>@4bx6dy z*W!!WKc8;tE}kc!d~QBZ&iiM_U)-yiv-Z)!e~;T=zpZ=y|HKEwD~m&v9(!pW(0Z%e zEOqdx$&~oiUzuL61&ql{44$ue@H0))sq~7d{oi+Teur|_t1c`_y>y~iHFRM#=Yli6 zr-bI+Jy3IEjlXEw-XGfQosy=PyqC-rnXFK_xzEJ>%Ek?OsiihnMt{1hbKgzdEjQEk z)UBD>ObIP{x2J4MkTLsS*txcAIqTKm?;dNZ`b^vL@`6a$nHvUa4P7i>Z!TD4C=lkt zw`1b^n9PQXrMsug&9qM4rC($DrzG`ZpjGObJDQmi-e;tlwoi_;-ME9XNBZfr)~{P5 zDq4RgFlc%wa2#sXY<_g8Wv!CwWUI2wo#vkt4A`%`X}&Yv?)5=DXzH@*u0jksvx6=N zsg?5Fn83ArO%H=%o7-z+@oSPnix)^#RP49Dz;SfVdBMzIYD?egc+GIo4Vkj#r{?j@ zt6493ORolYtv7J*%GR*g_txfa^uENjG1%;Eza;n1<;yg~1cb7u&u}YC>HdAeq{b|S zu~$#=%7>=NsdrVsoRIn$tMW)?BB$7EouJ%SU8l<@JT#@QH7_a>k@ASjIw+l-*!$$a zbknP)qW5NIr-d9*>7AF>ZBqY$)$5Z`o9IISm9w-hU%DtquT{CUX2RcwM_jEIzU4Z` zg3EPe5AiQ((eRvfu8O;A?y-dpSH3iKiu`7n&*I^AE#rPiox-Pg{h4(oP3&*lV>LxK zxTVZD5lDS{;J-ms*wRJp(?lhBR(+T<mAN-@!vx=l^$NGzt)Ck<ObXhR$M9f5+SEU~ zcPxF_qm+-H>0PpP-;zF+RLOZ#|7M8QZoDV7%1=>b%E?)clYG72I$TV8*|zPyS!8y@ zp<vZ|o*qutn$_8TtdHW7lRR%)yvV$>H@oyuSoDHb%M{u4%=Feyo}{lKE!Mqgd;6BR z$qX5?Qcv$`Y0C!eUh$!?tGX#*%Dao2UUIwGUcOecdNkR9{nrN#(~1cd8~)UMpOVF^ zJ@Jya^QHiYl?P<o5flh6om}XPKtsbh5)qC3WMXH^QxYT~~HGw>&v;!K1C?pMsgf zHm%?HI43Xg^DKOIDq;GDg`$zsygQt0zh*pBy2PT(wdA3X`qP_&e^cZnG`lx;JY1aP z6cjqw#d?RU*F#OYeQf+OhuG8mkECAfd!4jj=Z5)GTh2=o76zt?DiY~Uyld_S{E_<p zFwo-m60YJI5-+&wOL;}(8e{@eml{0d>Cl<8YH91aefg%lUV7y5UOE`KcJY)o2Ntqi zzn~g_t1QIW?;5XmL}28a?Ty~*nw2GPGrzPg7dn>kxG&D@)T!@Y{Q@icS+dL@9nv^A zdBRQCYtd_iR1(%L2z<g?5m8nCO*qP%he2}RhR(?<C6jyiFN&V0Q1Zm?WYoTM9$U;$ z%-isG&9TJRSw(RV&r5krPxY~!W0WGi%+1JPjpVX$UUQElR}L~wUUXelLba=3rC|CS z&4$oPi&&3DMk*>ktl9U_;TFSA53?+Wd#*MMZLDvJU&;8UbhN*_#r^WC`Dd^GjwxBT zltUoVM{Qwj)2US(AGdd%+TB{bJSofd^@*hmHU>xqU7Pyz)eGL0Dz_)LF!6goIi|qf zx_iCS$4!ZMq-QH@zI?Z7Mf}b9z>AZ+uijprB`TJCr?h0!qmD2oo{L58Vg80wrWnrS z`4iBpGq2R*u%5Ay$92y2icG;-T_0Z6onyG@)nQk?qG^`$!bfvWV>)b?a&*}Id6ea) zI5qm^8mHC1S+$9su{;mByb}*3{5YU?_fq24jF8J)W6w8c`LDIK+9c_qv#BJ;Kzi-A z%`Z6ncTd^)=xDSR!=aVF=G%lMqWX^+9Tq$nTHKP}AG<ngE`yae>)|L@_5LHvFWupI zdi;ax-y0rR6^&hgn3%d-$QU-v=CbBk$)kMK!)a>xmwOJ&T~C^&eR=5gb}`eo1L`Yv zre9s8t|!y|V9DltO&-^`Dp?%4GkFdN=Tak<*mcW9GA_TXu{_J}e&Kd=%(^#~u{pmR zyFEA}x6F29w(@+`A$&&F)sOY**=F0CrKRVegl|6BZzTIRAiP9CY_Z#iDFIR{suP6f zI9y5ctU6Zv!RSWRgQOQ<&b4ft|G_fu?v;@D#<%(&b{;DG^KJIy`9-(*)Nbpa$kLwt z)Ga(S*S_xeRq^w+$G4~7zq_yMCrh5Rne^6K>P5GY+y8TZxQ#Kba>|`=tGS<S+rISL z9^>7-oQ~hGt^0J_>-=|)yyGwAqF>CYpZb`Mxmazd?Be#%>p$IzP%cc$2C?NI?wZ=* z`hK0jV(#!A=gOTM&(8c%)}t5m(CRtwk9RXaL)fo-pG>%HB?neh-F(&J^S!={t=ci^ z`xF(+)Aq@N#cLPev{|3hBNz8j@SAkekMwW14R;l^zW!t0owm6=yyK$upY5-_o<9GX zZ~s5~zx%&v=H+Iy477ANMI|!jn5^B%TCj+9dk~|olvSX#p_3~ARhzQ-$$Rfl6<>cb z=^Fp~pnXx{3}(x|{?2J-?a5iRVo#NA?HbRYW-jIXPi#GU;m*&hfP0g#ty!rXq+N4+ z%DzKu)xOO%T6?puxw3Co`q8C%Q{|%$-4&g_%XeDvLgqzHGq*_E78JxyX+PhSIxSPk zTDfj+RCTx5+RN=>EghGyEy@e$ToSd&-D=CUytVGnPfS{B)Ojtk#$$>1j%xp$J$zsF zI(X9E{e_-hww~F0((U5D4GsJoL=Ne4MO_XMJo?Lh>Git9*N<{_>rcIPHY{Qr*SZx= zndZ?KYc_i9zLwQ_{-J7T)71m-digoE=1iM+V|!7_NrP>!PV6_+A7wVyosZi5@7X{3 z1#0`dCgtW$HHm)KFs1x_;Ot3Tbo@^LVLLNRDC43~_s%0)g%PRdE7oaDF?#!KmtlMC z6st3fk~SCJoT}q<ddb5lOG53<a>O-1a$R6$|MjAIt;(+3HW}-@H}UCKOtW~!CCA^X z?S8n<^<qTMZV%DcNI6N9aL?c=FLv;+@w3dC`qt^=E3VB8)``tam^SH8hn?G0?y}w8 zyI!wc7`P$o`S*YcM*^GnT@#M6oDt^guUL~H%+YHdE^hDD)Bi^6YI{Zb1D1ekldc?L zH@XlLX=Tvq8-9C|j<HhQll_x2#h64M|4{1=Qn<*sDNE&{ioD!i>#lE!HhX?|oafV! zi{zhDo?-hxG4X=Ea;AJ{cK6x!ZWFt*qMmL4IKxDAp6sqg#y7$z<(IN9KD@=vTG!~U zvvzA%tL<MmG2P-4T|?$Pb)9O*1Kbs!fg)nL?w2M_+xsw?UDt2dmh4V<(GpKjPqt%{ zEx{+d-(75QYO1Ibxt+H5%+A)PgQvWu?mbs^nia~T^-5`d%*q#yiy|BirX3PrFtJ&1 zJIlu%(++=GCHjBsAv+f5zo(8|OkUv~YMOg)x82cM#*)1AKGur52DYwg5>wduu+_Io z(%frb#zK87lS4{P3?{xWr8bx^&M3|}`L3(&UZ+NXhw9-yA%Zuo51mtKWw6kbbNunh z``nD|onkNDPcGFE+*dOBm0Y62rG(f$OEjxeB_pn7+;q6^RWj-NqhpM^o%!drjGFal zOGKM_rC;sXw|M0amX*IwEe!RW7j-1I_=vpJWR?K4!jn2%w=$_nPbtx5NLX=p$<!&; zFP~WLdY~Ptz2=UM-Cr%&wcQh=<%7DjbAI#4bp`#n@o4qh0(Q~uOn!elu53+-4%|HB z<e#7u!99!-jq0-B&b28wa4(s<T6Na44)$eIvYQsE<_kFU*q-F+;d-E8cU&{`W!oW< znqA?apU)_kiduc)nss!mQnp&<q1QjQEnKpqs-J)9irsddrVHffBqgft-`P6t^r}WD zMafC-L2OHv@}4$MGznGdKj0)J!>u9{e0ZN{XB2mwiCxYTjz6m|UiJPh6P*1<zEN(i z*LAmf*M6kT6)O4ea@wTJW%H6*I$yM>ERYmcT+F<DqKNOZHuuN8nm@dBPDv>FJwE=l zqIjvalo+3DRmPds2QI!7|B?~B$}^|){Pi%+s;nPDF%R1nMZ*|`j%J>`&#<_5<(9Qv z+EN{PspmbH=Ch0NdRRp9+Z?ffvGVHju+HXLY-!$8+17qJWStq$<-}@V#WF!Jx5~Dv z&1YrVn<)#fcW4~QJn{V6zJ%@#*PGinF7cN$Za3&#f8LXkV@u4sNwIAQcJcSWx9Irj zZu{xTq%$tujSIhSYdy2YBRtEsx|M(abctQAldQ{i|7ipoy$Eyrn6aTm<0_BZgek2G zaSOICU=BGnWxiYJn~8eT%bv!ku?Qq73L5RriLuzSL3nMVw5-z8o3UGOcg^b+y5gu% zDdKyvLEz3}C0D_Ua&`mTsJk9J)TF;;oXx$hw88AgGWSjV${l-GnX^}|&Xk?FP%ZQN z^t3x4rY?9<yY9>F{EMramxy>iNKe?cD4Nk}+d}IJCB+RJTmOWtT*oAHUWoPWsm7Oy z^FN6i{GDr=Z~w4h&#spzLg!lMAOCQq(7NvT*^mB~`B$gEn*MZ8qW`Dl`9;<5xcAxq z{`BqX^!c^_ro7+DIKAj?+5FGn{+^C*{mS<Fo5t(6=He0g`Q9rk)2~U-YPCI9wR*)7 z|K;a*9ep9^4ywVvwi!G+Q)TVO|2#f*FJplH=6ih?5C81na4+Iu`J*gIEmYO)U7NNS z#y)2UQUj`~_HGS(w-H)v?KPZR7I#u2cE_R8Ytho5<zByqvZG&u*tUBPDX%d<#<6^= zjhpzog1KL>2~M9I_DSMy`rf;L`0qRaosgQB0v+Ooj!=UJpdkaqun}s|fOD~ezISFy zu|l*0Xh1qhAyz@(IlnZoM8Qx&-#0ZSGtnu(LLu5f!9c;x#6rQy!Xg%F3>!2C4KWft zRGu81TA~oGAK>DqpdXT2Q4-6g@0OoeqF`gApzmg=U<fiLNI~DtNWl;^cn@M4D;R=C z&cOrY`mPlv?!hIAC8;1Cc6MC)&iOg{MZpD$$zT!v;vjb?1yk6#H)7};Bm{Csw7#da zvr}SmYKnpxNL4Isa2~`1DF8XdF{dQ8C=X<bzDsIZW^yXXP<=lIV+DQau(^?`r5V;? zbCA!WVOlX~?zHld;G1IY=l7cL4VWa*HRVEfMi7$+?_Q6IdRm5@0$v9uFesV1gcP_0 zPF%)er179(vGc@@N?omtfg4}5NV;4pED({N=9#iq^8TL6_h)C{m;YXuJ%8`{yXo(1 zukB)(@TZyekWU0>1JA+;k%!NZcJy|qC$KZ}d|+VCVR%rmd9#z)4>zWnOf@%pa%Kwu z5Z}9tPvPfpt;_a32O0j)pRzMj$&evnM$hw4KW@fIil4Nw4WFaB-T&l_Z6?0w47|=M zMK&3QO)mbV6J7IdW-7nsXQLJy$<xK>9;JSGa!37fucgqwo{0&P;?FsL>@?b^mfT$8 z+2(L8|H($l8b31zjY)U(o)rhD<me_((lBb$eO$@#z~f~6hfDeqXU+?s=0AGwOq8CG z%JL3LwV2?x-pRt<56_?XecpZai~*l{uks_q8#5&%WgZqWq@Dj0DN>m$xk<_ThJ~et zL9TA@K8-8&v43Vy`d&6IuBHB+q>KEI!{5T|X7Vy@SeCl==CAhLOi_l|*Ng$X|F)k^ z&}Zn{w6Bz}woq<YO<d5CM>^@+tMA;2@n)Q#t*QUw{jd3a_0I7%=Y#g$eg8DE;`3yS zNhOBPaprkxRm)tCoH+NW;3v<s`RzaC+5eTwi3$Eu+1H^z#nt8XG9Lw>X<MUD2zRi~ zbZT?>F@M$%{=@&4+}t^>^VSc+3)3Q)mMTg))X6buXbCECR;OrRcwftX%$@n?+3t%o zXUzS5zUg0W_zs_cC&X0h`;y&VjCKeGo_jOvPZX1h0)wjq^D77G7tF#3ShgJy+`+*A zfSJirql2X|!SF$o$OJ|g1#yvvtqUZkG_6fgU%^(oK+vSwtU#iqG5LXs1-oA3=>(QL zj6nu`^BOciaGh}wXlXqmAR5$OqTqZ&W>ag#1nDQttj>Y~GE+EIot-?GL>*o)2wEYt zs_oUnv=`AYG)km)G4MKXUl5of^h>mgUD<$h*}<p{f;p_46Z|bW`dY*fp8Q~BA+Oi8 z{lL@$<{E)_E&hk6KM;)IvTs~2*dQQiwW!-bQ0$PK)5HoDPC>=h6NHv9WjfrNAh$$* zXP3vs<tL&=*j!x=1AL}%pOP1CeY9xW!mx#Ai&q7*2h3ezcO~?SMi$psL0`A*MQ1Ob zd%;kmV<kDaThA?g!R!mNFE+mr{9^G-l&yJTa*tu3M7@uUn&@Vx&61m?FZWrtN*?P; zT(&V{jny@o*Im3vi#8<X7;fXL7N{1gX0`6CZB~9%Qn1Y;KE}qcL;FbRgQx=ag75<2 z9g=&5?g_l_;XnHM!|9KyKiq2g>p1ND<|}Fl_i(Oj@o>^g)Ll5~f}4f+4(|#_6``*k zen$!xHSB1M@U(HU@t0BEryA&yredbqsG^vw_*Q+c(p{y!3X@N|rSKQoMEcxw%2S)K zcwc>g-~z1(Ef$RrB4OHBG)lB$0xOnvgqwtX35i)VV|~QJ3YS8Uk1K`ZPI`2%JrWqT zG-Po}$ji1%TZ}?)x><%;I#+Hk>i)#~)Llg9XvZVxhk;!hzctb|l0#Zn`KJc&yi$6_ z?N#I}3tngAWvmy1GM8@2&uHGFDcaRF*K3Q{Jg?qUg`%3W3#BhIzj*n@=vU&e(qGo0 zx}pA|`(CMCHM^?4YW>w`D=Jrfyy|u3)>XGF_f{HTsl9Uf%J!AzEAL-+$efYclKmv> z%|(mVA4~Xh`%cTen={F>{rR11Ev9Eplug1j-d&ctFz4E(Yo9Kky0q$&)#9%qv)8>{ zICs@v=ie>gmhgoh_jO;e+4=dBbIEO7hbK=ww<6_>;j$9b(!ZsuyT0yf-ep{MtSYdo zwd!rv_b;5kbpERRmHoB%S1_9un<5)4+gi5mydT?i4vQR)ZTs7{zPG10smDyBRMOTc z%$U#MoOzz<zHBG6Li5P9O9@41MUqb$`5NENt-8r$w%Od<aJ8YdQTtihGpx^cpKaH@ zAm%6L)Xml{?IUz~^320IseMtGbena#b$9E`kCco!8lAiO)%IT*x%qSR?q<{;Z%Y!+ z2+p{i{CV}-nY!1v9s71G=2Oi5ovWXhov+PH&pW>Tc5?aUd0FyF`w#BB{;#=tar23V zXA>`7JYaZn<F$`$-N(3+bJOOQJ6Ts+t}U~A_T}2mgOP7)Zu}G%U*<i_yZiLw%445@ ze3p9NyYtn~qL|mQOY?ZPyKLW^7gQcw-dElHo0-3sf1dl~<1NcqrmuSLcs@PuTAb2) zzV+90(!Y6q)673|`~2=B)fd_y2|o>fTYNwKy!p-TSIbYGzn9;7U$cHo{e=H!|D_qD z81FPZYgp-U{J_-4TE`^|SRJoA@;9Aray@9PSm2Rx;@gDXpLw5iKQC`>y3lap?ZWSe zdJa!(t(EWN<mX<`Suc?&94K&cf5WbXlTFiD*DLK+I<55HWu}YgqN>HBi-i}>UL1eC z;`o%~9?5Hy!jHvuUG5M*QhGf3@#4p`A1xRErE_Ozfz3g?g%%HgDLr<r?AFt{7BOev zj~_xuRp+R>3tj9q?9}aiZ@F*|+qo~78kTPLUcMveo!&d)dF=V@`IFwC(tqx+vQurU zx~*54@4b08Gat<hn)oT?fLI9kyyd@^Ut7A*kK6b5{BN4JYI|*&r%#+w7~&zgjPtkA zR^!h`?VHbR?%KTM^qlE$W6V^!giKSNZ+36mebnUU`6~@aTsFlS&3Zg7c=Bg8bF1$j z^NQvf<R|RB`N{XR`ls5@`{Np;4#r-LUJ$)uTSCdw=cj&!URbqsbyfK5^?FgZ`;O(G zZQR<jH8Z<jV~d`Se$7t3v{?U%VHamD+W58Zb#%9Am+Mh;vmH4rZg<?$xM8s)^WCyl zzVhA`s^Z>jy|umW=ReEa_hahW@Tu{&w<c{#-Ed}M&iSx2VGpmpzI|uAtVX!rd42iY za+~%RvnRWs?3->q{mq_$#PGoF-5b0&c}Gdc+>A{P*t+#qZK>B+kKS<K>a}Tam)*L) zyK?vXHy>|Y4qF}?9`!wMeZu>*Rr`OPV_V$TRXd~B^0%CsoB6l;v%hxj^jy4h%ge)c z59?kwb}-kT?K^u`cb0DI+Je<fN<SqWI(YhiMg8Tw$8uKZFW)|0j;URxU9NuikGEeB zJGNK%Z|K`noBks<mwoHvCBm;_?pa=)dP((d-)lKLsfsPzk1t*Rxcc<_@A8*z!-`{` zR@~$~)VWA_zTdO?bL^&;zIyrc$>rp|-c|4CblMiL)!&o<A?L!)&(CYl&wcs*jeX_4 zuYWdjpA+wkONo86>q)`N;sbRH9<%?Jw_=lJvu>AZ-=%LI`%ZG6dCjA)-%~G#?_ED{ zw^+g3ODFzJeE2%>dj36+9g2HT?*92A?AO}o+l%wg--#?1uigG+-le@=zh`}yt~2?& zG4_>$t=%hIs}BhWo2`@YY*e>T{r{zI&kMz$iAP(`xqMc>?S5RXR$bpd?nlKR&uf!s zE<b9o{XgdSnI|{P_gDNeG7z;k{TK7)&*k;A<5%pz@&D4h)b}MfzWfcBT%Q&<eNSM0 z@dMr0x&L?1C>J)~`F`VjZTlH@FMdjV`S@;mkN^BS=I<?^e`B=3E#XT(xS(r9T=SCi zQ!?|?74$*PRs=6RGtV)vI1?torSFoNmX=zSng?3>5v^cis-K&gS6ZwP3tGtmZQp~N z*RWP@2zUt!xb>|cT$)q@=7Izb74-cQb5p?$a<HWkHBpHLX)c+0=}Czt#h_*`%uG-_ zodh$DARd93>5-aKmRgdToXDjQ^N0c{2*8bfm<6ELKM58XW3@onDL*F#k1Z8NscBpW z3Wmm925_KYW@>6|s*t7t7c(+c0Lv=m!Nm;CjM2qRElthQ#mo#$3^2qD%}p`Hj0`N$ z#SDx<Js^<9NcI|88lkJRur$DMi-n~nhFdHREHM0GX=sjQZ%I*NW=?7m7pONBoLQBs vU}&tM@0pjDuK<eeAO-!P{QMFHP{e>^s<<Svs018>mPQr^T&k+B{%%|VuBCCY literal 0 HcmV?d00001 diff --git a/vignettes/Ovelhas.Rmd b/vignettes/Ovelhas.Rmd new file mode 100644 index 0000000..d8b6cdd --- /dev/null +++ b/vignettes/Ovelhas.Rmd @@ -0,0 +1,240 @@ +--- +title: "Análise de Contagens - Quase-Verossimilhança" +author: > + Walmes M. Zeviani, + Eduardo E. Ribeiro Jr & + Cesar A. Taconeli +vignette: > + %\VignetteIndexEntry{Análise de Contagens - Quase-Verossimilhança} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r setup, include=FALSE} +source("_setup.R") +``` + +Dados referentes a um experimento delineado em blocos, com o objetivo de +investigar o efeito de uma intervenção, por parte do cuidador, no +comportamento de ovelhas. + +Para isso, foram considradas ovelhas de duas +linhagens distintas (pouco ou muito reativas), submetidas a dois tipos +diferentes de intervenção (observação ou observação + intervenção). + +A variável resposta aqui considerada é o número de mudanças na postura +corporal do animal ao longo do período de observação. + + +```{r, echo = FALSE, include=FALSE} +##### Carregamento e tratamento inicial dos dados +dados <- read.csv2('Dadoscomp.csv',sep=',') +dados$tratamento <- factor(dados$tratamento) +levels(dados$tratamento) <- c('Observ', 'Observ + Interv') +dados$linhagem <- factor(dados$linhagem) +levels(dados$linhagem) <- c('Pouco reativo', 'Muito reativo') +dados2 <- dados[1:38,c(1:5,30:53)] +dados3 <- dados[1:38,30:53] ### Somente as mudanças de postura durante a intervenção. +r1 <- rowSums(dados3[,1:3])-1 +table(r1) +r2 <- rowSums(dados3[,4:6])-1 +table(r2) +r4 <- rowSums(dados3[,12:16])-1 +table(r4) +d2 <- rowSums(dados[1:38,57:59])-1 +table(d2) + +datapost1 <- data.frame(r1, dados2[ ,c('tratamento', 'linhagem')]) +names(datapost1)[1] <- 'Nposturas' +datapost2 <- data.frame(r2, dados2[ ,c('tratamento', 'linhagem')]) +names(datapost2)[1] <- 'Nposturas' +datapost4 <- data.frame(r4, dados2[ ,c('tratamento', 'linhagem')]) +names(datapost4)[1] <- 'Nposturas' + +##### Pacotes requeridos +require('lmtest') +require('boot') +require('car') +require('RColorBrewer') +require('sandwich') +require('hnp') +``` + + +### Verificação do conteúdo e a estrutura dos dados. + +```{r} +str(datapost4) +summary(datapost4) +``` + + + +### Análise descritiva + +```{r} +tab <- data.frame(with(datapost4, table(tratamento, Nposturas))) + +myColours <- brewer.pal(2,"Blues") + +my.settings <- list( + superpose.polygon=list(col=myColours[2:5], border="transparent"), + strip.background=list(col=myColours[6]), + strip.border=list(col="black") +) + +bwplot(Nposturas ~ linhagem | tratamento, + data=datapost4, + main="Mudanças de postura vs tratamento e linhagem", + xlab="Linhagem", ylab="Frequência") + +### Variância e média amostrais por tratamento e linhagem. + +mdp <- aggregate(Nposturas ~ tratamento:linhagem, datapost4, function(x) c(mean = mean(x), var = var(x))) +mdp + +``` + + +### Regressão poisson com estimação por máxima verossimilhança. + +```{r} +ajusteps <- glm(Nposturas ~ tratamento + linhagem, data=datapost4, family=poisson) +summary(ajusteps) + +exp(coef(ajusteps)[2]) +### Estima-se que a frequência média de variação de postura no grupo com intervenção seja aproximadamente +### a metade em relação ao grupo sem intervenção. + +##### Estimação do parâmetro de dispersão. +X2 <- sum(resid(ajusteps,type='pearson')**2) +phichap <- X2/ajusteps$df.residual +phichap +``` + +### Diagnóstico do ajuste (gráficos). + +```{r} +##### Diagnóstico do modelo - gráficos padrão do R. +par(mfrow=c(2,2)) +plot(ajusteps, pch = 20, cex = 1.25) +``` + +```{r, echo = FALSE} +envelope=function(modelo){ + dados=na.omit(modelo$data) + nsim=100 + n=modelo$df.null+1 + r1=sort(rstandard(modelo,type='deviance')) + m1=matrix(0,nrow=n,ncol=nsim) + a2=simulate(modelo,nsim=nsim) + + for (i in 1:nsim){ + dados$y=a2[,i] + aj=update(modelo,y~.,data=dados) + m1[,i]=sort(rstandard(aj,type='deviance'))} + + li=apply(m1,1,quantile,0.025) + m=apply(m1,1,quantile,0.5) + ls=apply(m1,1,quantile,0.975) + + quantis=qnorm((1:n-0.5)/n) + + plot(rep(quantis,2),c(li,ls),type='n',xlab='Percentil da N(0,1)',ylab='Resíduos') + title('Gráfico Normal de Probabilidades') + lines(quantis,li,type='l') + lines(quantis,m,type='l',lty=2) + lines(quantis,ls,type='l') + points(quantis,r1,pch=16,cex=0.75) +} + +``` + +```{r} +##### Gráfico quantil-quantil com envelopes simulados. +par(mfrow=c(1,1)) +envelope(ajusteps) +``` + + +### Ajustando modelos por quase-verossimilhança. + +```{r} + +### Modelo quasi poisson (V(mu) = mu). +ajuste12 <- glm(r4 ~ tratamento+linhagem, data=datapost4, family = 'quasipoisson') +summary(ajuste12) + +### Forma alternativa de declarar o Modelo quase-poisson (V(mu) = mu). +ajuste13 <- glm(r4 ~ tratamento+linhagem, data=datapost4, family = quasi(variance = 'mu', link='log')) +summary(ajuste13) + +### Modelo de quase-verossimilhança (V(mu) = mu^2). +ajuste14 <- glm(r4 ~ tratamento+linhagem, data=datapost4, family = quasi(variance = 'mu^2', link='log')) +summary(ajuste14) + +### Gráficos de diagnóstico para o modelo de quase-verossimilhança. +par(mfrow = c(2,2)) +plot(ajuste14, pch = 20, cex = 1.25) + +### Gráficos quantil-quantil para os resíduos dos modelos Poisson e de Quase-Verossimilhança. +par(mfrow=c(1,2)) +qqnorm(resid(ajusteps,type='deviance'), pch = 20, main = 'Poisson', las = 1) +qqline(resid(ajusteps,type='deviance')) +qqnorm(resid(ajuste14,type='deviance'), pch = 20, main = 'QL', las = 1) +qqline(resid(ajuste14,type='deviance')) +``` + + +### Usando estimação robusta e bootstrap. + +```{r} + +estrb <- coeftest(ajusteps, vcov=sandwich) ### Estimador sanduíche +estrb + +### Usando bootstrap (R=999 simulações) +ajusteboot <- Boot(ajusteps) +plot(ajusteboot, index = 2) ### Distribuição bootstrap para o efeito de intervenção. +summary(ajusteboot) + + +``` + + +### Apanhado geral dos resultados. + +```{r} + +erroz <- rbind(summary(ajusteps)$coefficients[2,2:3], summary(ajuste13)$coefficients[2,2:3], + summary(ajuste14)$coefficients[2,2:3], estrb[2,2:3], c(summary(ajusteboot)[2,4], + mean(ajusteboot$t[,2]/summary(ajusteboot)[2,4]))) + +ics <- rbind(confint.default(ajusteps)[2,],confint.default(ajuste13)[2,], confint.default(ajuste14)[2,], +estrb[2,1] + c(-1.96,1.96) * estrb[2,2], mean(ajusteboot$t[,2])+c(-1.96,1.96)*summary(ajusteboot)[2,4]) + +quadres <- cbind(erroz, ics) + +rownames(quadres) <- c('Poisson', 'Quasi(mu)', 'Quasi(mu^2)', 'Robusto (sanduiche)', 'Bootstrap') + +### Quadro resumo para as estimativas produzidas pelos quatro modelos. +kable(quadres, format = "markdown", caption = "Comparativo dos modelos ajustados") + +### Vamos avaliar o efeito das observações com maiores resíduos nos achados do modelo +dadosexclud <- datapost4[-c(8,18,28),] +ajusteexclud <- glm(Nposturas ~ tratamento+linhagem, data=dadosexclud, family = quasi(variance = 'mu', link='log')) + +### Estimativas produzidas pelo modelo quasipoisson com e sem as três observações. + +c1 <- compareCoefs(ajuste13, ajusteexclud, print = FALSE) +colnames(c1) <- c('Est. com outliers','E.P. com outliers','Est. sem outliers','E.P. sem outliers') +kable(c1) + +### Efeito da intervenção desconsiderando as três observações. +exp(coef(ajusteexclud)[2]) + +### O efeito de intervenção aumenta, e torna-se mais significativo, mediante exclusão dos outliers. + +```` + + diff --git a/vignettes/Sinistros.Rmd b/vignettes/Sinistros.Rmd new file mode 100644 index 0000000..c6ec870 --- /dev/null +++ b/vignettes/Sinistros.Rmd @@ -0,0 +1,352 @@ +--- +title: "Análise de Contagens - Poisson e Binomial Negativa" +author: > + Walmes M. Zeviani, + Eduardo E. Ribeiro Jr & + Cesar A. Taconeli +vignette: > + %\VignetteIndexEntry{Análise de Contagens - Poisson e Binomial Negativa} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r setup, include=FALSE} +source("_setup.R") +``` + + +Dados referentes ao número de sinistros registrados por 16483 clientes de +uma seguradora de automóveis ao longo de um ano, contemplando as +seguintes variáveis: + +* **Sinistros**: Número de sinistros registrados; +* **Exposicao**: Período de cobertura do cliente durante o ano sob análise; +* **Tipo**: Tipo de veículo (hatch, monobloco, picape, sedan, wagon e suv); +* **Idade**: Idade do cliente (em anos); +* **Sexo**: M para masculino e F para feminino; +* **Civil**: Estado civil (Solteiro, Casado, Divorciado e Viuvo); +* **Valor**: Valor do veículo segurado (em reais). + + + +```{r, echo = FALSE, include=FALSE} + +require(lattice) +require(hnp) +require(MASS) +require(effects) + +# setwd("C:/Users/CCE/Dropbox/Backup Parana/Parana/Curso - dados discretos") +dados <- read.csv2('Baseauto2.csv', header=TRUE, sep=',') + +options(scipen = 3) ### Era zero. + +##### Preparando os dados. +names(dados) <- c('Bonus','Tipo','Estado','Idade','Sexo','Civil','Valor','Exposicao','Sinistros') +dados <- dados[,c('Tipo','Idade','Sexo','Civil','Valor','Exposicao','Sinistros')] +levels(dados$Tipo) <- c('outros','outros','outros','outros','hatch','outros','mono','picape','picape','picape','sedan','wagon','suv') +dados <- dados[-which(dados$Tipo=='outros'),] +dados$Tipo <- factor(dados$Tipo) +dados <- dados[which(dados$Valor != 0),] +dados$Civil <- relevel(dados$Civil, ref = 'Solteiro') +dados$lexpo <- log(dados$Exposicao) +dados$Valor <- dados$Valor/1000 + +``` + +### Verificação do conteúdo e a estrutura dos dados. + +```{r} +head(dados, 10) ### Dez primeiras linhas da base. +str(dados) +``` + +### Análise descritiva da distribuição do número de sinistros. + +```{r} +table(dados$Sinistros) ### Distribuição do números de sinistros. +taxageral <- sum(dados$Sinistros)/sum(dados$Exposicao); taxageral ### Taxa de sinistros na amostra. + +tab <- aggregate(cbind(Exposicao, Sinistros) ~ Sexo, data = dados, sum) +taxa <- with(tab, Sinistros/Exposicao) +tab <- cbind(tab, taxa); tab ### Distribuição do número de sinistros por sexo. + +dados$idadecat <- cut(dados$Idade, breaks=c(18,30,60, 92), include.lowest = T) +tab <- aggregate(cbind(Exposicao, Sinistros) ~ idadecat, data = dados, sum) +taxa <- with(tab, Sinistros/Exposicao) +tab <- cbind(tab, taxa); tab ### Distribuição do número de sinistros por sexo. + +tabidsex <- aggregate(cbind(Exposicao, Sinistros) ~ Sexo + idadecat, data = dados, sum) +Taxaidsex <- with(tabidsex, Sinistros/Exposicao) +tabidsex <- cbind(tabidsex, Taxaidsex); tabidsex ### Distribuição do número de sinistros por idade e sexo. + +tab <- aggregate(cbind(Exposicao, Sinistros) ~ Tipo, data = dados, sum) +taxa <- with(tab, Sinistros/Exposicao) +tab <- cbind(tab, taxa); tab ### Distribuição do número de sinistros por tipo de veículo. + +tab <- aggregate(cbind(Exposicao, Sinistros) ~ Civil, data = dados, sum) +taxa <- with(tab, Sinistros/Exposicao) +tab <- cbind(tab, taxa); tab ### Distribuição do número de sinistros por estado civil. + +dados$valorcat <- cut(dados$Valor, breaks=quantile(dados$Valor), include.lowest = T) +tab <- aggregate(cbind(Exposicao, Sinistros) ~ valorcat, data = dados, sum) +taxa <- with(tab, Sinistros/Exposicao) +tab <- cbind(tab, taxa); tab ### Distribuição do número de sinistros por valor do veículo. +``` + +## Regressão usando o modelo log-linear poisson. + +```{r} +dados <- na.omit(dados) +ajusteps <- glm(Sinistros ~ Tipo+Sexo+Idade+I(Idade**2)+Valor+Civil+offset(log(Exposicao)), data = dados, family=poisson) +summary(ajusteps) + +##### Estimação do parâmetro de dispersão. + +exp(coef(ajusteps)) + +X2 <- sum(resid(ajusteps,type='pearson')**2) +phichap <- X2/ajusteps$df.residual +phichap ### Indicador de superdispersão. +``` + +### Diagnóstico do ajuste (gráficos). + +```{r} +##### Diagnóstico do modelo - gráficos. +par(mfrow=c(2,2)) +plot(ajusteps) + + +par(mfrow=c(1,1)) +envelope=function(modelo){ + dados=na.omit(modelo$data) + nsim=100 + n=modelo$df.null+1 + r1=sort(rstandard(modelo,type='deviance')) + m1=matrix(0,nrow=n,ncol=nsim) + a2=simulate(modelo,nsim=nsim) + + for (i in 1:nsim){ + dados$y=a2[,i] + aj=update(modelo,y~.,data=dados) + m1[,i]=sort(rstandard(aj,type='deviance'))} + + li=apply(m1,1,quantile,0.025) + m=apply(m1,1,quantile,0.5) + ls=apply(m1,1,quantile,0.975) + + quantis=qnorm((1:n-0.5)/n) + + plot(rep(quantis,2),c(li,ls),type='n',xlab='Percentil da N(0,1)',ylab='Resíduos') + title('Gráfico Normal de Probabilidades') + lines(quantis,li,type='l') + lines(quantis,m,type='l',lty=2) + lines(quantis,ls,type='l') + points(quantis,r1,pch=16,cex=0.75) +} + +envelope(ajusteps) + +``` + + +### Re-ajuste do modelo associando um parâmetro ao termo offset (log-exposicao) + +```{r} +ajusteps2 <- glm(Sinistros ~ Tipo + Sexo + Idade +I(Idade**2) + Valor + Civil+log(Exposicao), data = dados, family=poisson) +summary(ajusteps2) +anova(ajusteps, ajusteps2, test = 'Chisq') +``` + + +### Regressão usando a distribuição binomial negativa. + +```{r} +ajustenb2 <- glm.nb(Sinistros ~ Tipo+Sexo+Idade+I(Idade**2)+Valor+Civil+log(Exposicao),data= dados) +summary(ajustenb2) + +### Verificando possibilidade de excluir estado civil e tipo de veículo do modelo. +ajustenb3 <- update(ajustenb2, ~.-(Civil+Tipo)) +anova(ajustenb2, ajustenb3) + +## Estimação do parâmetro de dispersão +X2 <- sum(resid(ajustenb3,type='pearson')**2) +phichap <- X2/ajustenb3$df.residual +phichap +``` + + +### Diagnóstico do ajuste (gráficos). + +```{r} +##### Diagnóstico do modelo - gráficos. +par(mfrow=c(2,2)) +plot(ajustenb3) +``` + + +```{r, echo = FALSE} +dadosnb3 <- dados[,c('Sexo','Idade','Valor','Exposicao','Sinistros')] + +par(mfrow=c(1,1)) +envelope=function(modelo){ + dados=na.omit(dadosnb3) + nsim=100 + n=modelo$df.null+1 + r1=sort(rstandard(modelo,type='deviance')) + m1=matrix(0,nrow=n,ncol=nsim) + a2=simulate(modelo,nsim=nsim) + + for (i in 1:nsim){ + dados$y=a2[,i] + aj=update(modelo,y~.,data=dados) + m1[,i]=sort(rstandard(aj,type='deviance'))} + + li=apply(m1,1,quantile,0.025) + m=apply(m1,1,quantile,0.5) + ls=apply(m1,1,quantile,0.975) + + quantis=qnorm((1:n-0.5)/n) + + plot(rep(quantis,2),c(li,ls),type='n',xlab='Percentil da N(0,1)',ylab='Resíduos') + title('Gráfico Normal de Probabilidades') + lines(quantis,li,type='l') + lines(quantis,m,type='l',lty=2) + lines(quantis,ls,type='l') + points(quantis,r1,pch=16,cex=0.75) +} +``` + + +```{r} +par(mfrow=c(1,1)) +envelope(ajustenb3) +``` + + + +### Explorando os efeitos das covariáveis. Estimativas pontuais e ICs (95%) + +```{r} +intervalos <- confint(ajustenb3) +estimat <- cbind(ajustenb3$coefficients, intervalos) +colnames(estimat)[1] <- 'Estimativa pontual' + +### Quadro de estimativas +round(estimat, 5) +``` + + +### Gráficos de efeitos + +```{r} + +dados$lexpo <- log(dados$Exposicao) +ajustenb3 <- glm.nb(Sinistros ~ Sexo+Idade+I(Idade**2)+Valor+lexpo,data= dados) + +efeitos <- allEffects(ajustenb3, given.values=c(lexpo=0)) + +trellis.par.set(list(axis.text = list(cex = 1.2))) + +plot(efeitos[[2]], type='response',main=list( + label="Taxa de sinistros vs. Idade", + cex=1.5), + xlab=list( + label="Idade (anos)", + cex=1.5), + ylab=list( + label="Taxa de sinistros", + cex=1.5)) + +plot(efeitos[[1]], type='response',main=list( + label="Taxa de sinistros vs. Sexo", + cex=1.5), + xlab=list( + label="Sexo", + cex=1.5), + ylab=list( + label="Taxa de sinistros", + cex=1.5)) + +plot(efeitos[[4]], type='response',main=list( + label="Taxa de sinistros vs. Valor do automóvel", + cex=1.5), + xlab=list( + label="Valor (x1000 reais)", + cex=1.5), + ylab=list( + label="Taxa de sinistros", + cex=1.5)) + +``` + + + + +```{r, echo = FALSE} + +## Frequências ajustadas pelas duas distribuições, com e sem covariaveis. + +### Poisson sem ajuste de covariáveis. +n <- nrow(dados) +mediasin <- mean(dados$Sinistros) +freqps <- round(n*dpois(0:10,mediasin)) + + +### Poisson com covariaveis +pred1 <- predict(ajusteps,type='response') +intervalo <- 0:10 +matprob <- matrix(0, nrow=nrow(dados), ncol=length(intervalo)) +probpois <- function(interv, taxa) + dpois(intervalo,taxa) +for(i in 1:nrow(dados)) + matprob[i,] <- probpois(interv = intervalo, taxa = pred1[i]) +pbarra <- colMeans(matprob) +freqpsaj <- round(n*pbarra) + + + +### Binomial negativa sem covariaveis. +ajustenb <- glm.nb(Sinistros ~ 1,data=dados) + +media <- exp(coefficients(ajustenb)) +shape <- ajustenb$theta +freqbn <- round(n*dnbinom(0:10, mu = media, size = shape)); freqbn + + +### Binomial negativa com covariaveis +pred2 <- predict(ajustenb3,type='response') + +intervalo <- 0:10 +matprob <- matrix(0,nrow=nrow(dados),ncol=length(intervalo)) +probnb <- function(interv, media, shape) + dnbinom(intervalo, mu = media, size = shape) +for(i in 1:nrow(dados)) + matprob[i,] <- probnb(interv = intervalo, media = pred2[i], shape = ajustenb3$theta) +pbarra <- colMeans(matprob) +frebnaj <- round(n*pbarra) +ams <- c(table(dados$Sinistros), rep(0,5)) +matfreq <- rbind(ams, freqps, freqpsaj, freqbn, frebnaj) +colnames(matfreq) <- 0:10 +rownames(matfreq) <- c('Amostra', 'Poisson não ajustada por covariáveis', 'Poisson ajustada por covariáveis', + 'BN não ajustada por covariáveis', 'BN ajustada por covariáveis') +``` + + +### Frequências amostrais e frequências ajustadas pelas distribuições Poisson e Binomial Negativa (sem e com inclusão de covariáveis) + +```{r, results = 'markup'} +kable(matfreq, format = "markdown", caption = "Frequências amostrais e freuências ajustadas para o número de sinistros") +``` + + + + + + + + + + + -- GitLab