diff --git a/.Rbuildignore b/.Rbuildignore index 1d8c2594a11be18b846dcf30026e62e472052c59..531e753cf4e3e71ca3247fd3589dc805e491e0ca 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -13,4 +13,4 @@ Examples/ \#*\# ^\.\#* Rplots.pdf -CONTRIBUTING.md \ No newline at end of file +CONTRIBUTING.md diff --git a/.gitignore b/.gitignore index 4440476ccc69734dfa8f0cc2b186ba14ce3a936f..6812a5ff024ecc9b4726c4073e1fcfbd0a3aba6e 100644 --- a/.gitignore +++ b/.gitignore @@ -12,6 +12,5 @@ .Rd2pdf5504 .Rd2pdf5516 .Rd2pdf* -data-raw/*.txt inst/doc Rplots.pdf diff --git a/DESCRIPTION b/DESCRIPTION index c08e335e3d4cef0235fb2e331281c35cfe5cd8f6..6ad4fecde1e2956ffe6c9b7c292530a9f6b15f05 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,8 +1,8 @@ Package: mcglm Type: Package Title: Fit multivariate covariance generalized linear models -Version: 0.0.1 -Date: 2015-07-06 +Version: 0.0.2 +Date: 2016-01-07 Authors@R: as.person(c( "Wagner Hugo Bonat <wbonat@ufpr.br> [aut, cre]", "Walmes Marques Zeviani <walmes@ufpr.br> [ctb]", diff --git a/Examples/Examples1.R b/Examples/Examples1.R index d1b6803771d736fdd9f876980e3817a6bedea8ca..d1ab22b7f47cb2b228eeccab53d84f9e5f4e8750 100755 --- a/Examples/Examples1.R +++ b/Examples/Examples1.R @@ -1,67 +1,80 @@ -# Set of examples 1 - Simulated univariate models ------------------------------ -# Author: Wagner Hugo Bonat LEG/IMADA ------------------------------------------ -# Date: 07/08/2015 ------------------------------------------------------------- -# Lastest updated: 28/08/2015 -------------------------------------------------- -#------------------------------------------------------------------------------- +# Set of examples 1 - Univariate models -------------------------------- +# Author: Wagner Hugo Bonat LEG/IMADA ---------------------------------- +# Date: 07/08/2015 ----------------------------------------------------- +# Lastest updated: 28/08/2015 ------------------------------------------ +#----------------------------------------------------------------------- rm(list=ls()) -# Loading extra package -------------------------------------------------------- +# Loading extra package ------------------------------------------------ require(mcglm) +require(Matrix) require(tweedie) require(dplyr) require(mvtnorm) -# Setting the seed ------------------------------------------------------------- +# Setting the seed ----------------------------------------------------- set.seed(2503) -# Case 1 - Linear regression model --------------------------------------------- +# Case 1 - Linear regression model ------------------------------------- covariate <- seq(-1,1, l = 100) X <- model.matrix(~ covariate) -mu1 <- mc_link_function(beta = c(1,0.8), X = X, offset = NULL, link = "identity") +mu1 <- mc_link_function(beta = c(1,0.8), X = X, offset = NULL, + link = "identity") y1 <- rnorm(100, mu1$mu, sd = 0.5) Z0 <- Diagonal(100, 1) data <- data.frame("y1" = y1, "covariate" = covariate) -# Linear Regression model ------------------------------------------------------- -fit1.id <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - data = data, control_algorithm = list("correct" = FALSE, verbose = FALSE)) +# Linear Regression model ---------------------------------------------- +fit1.id <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + data = data, + control_algorithm = list("correct" = FALSE, + "verbose" = FALSE)) summary(fit1.id) -# Using inverse covariance link function ----------------------------------------- -fit1.inv <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), +# Using the inverse covariance link function --------------------------- +fit1.inv <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), covariance = "inverse", data = data, - control_algorithm = list(verbose = FALSE, "correct" = FALSE)) + control_algorithm = list("verbose" = FALSE, + "correct" = FALSE)) summary(fit1.inv) -# Using exponential-matrix covariance link function ------------------------------- -fit1.expm <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), +# Using the exponential-matrix covariance link function ---------------- +fit1.expm <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), covariance = "expm", data = data, - control_algorithm = list(verbose = FALSE, "correct" = FALSE)) + control_algorithm = list("verbose" = FALSE, + "correct" = FALSE)) summary(fit1.expm) -# Comparing tau estimates using diferent covariance link functions ---------------- +# Comparing estimates of tau using diferent covariance link functions -- coef(fit1.id, type = "tau")$Estimates 1/coef(fit1.inv, type = "tau")$Estimates exp(coef(fit1.expm, type = "tau")$Estimates) -# Case 2 - Linear regression model with heterocedastic errors --------------------- +# Case 2 - Linear regression model with heteroscedasticity ------------- covariate <- seq(-1,1, l = 100) X <- model.matrix(~ covariate) -mu1 <- mc_link_function(beta = c(1,0.8), X = X, offset = NULL, link = "identity") +mu1 <- mc_link_function(beta = c(1,0.8), X = X, offset = NULL, + link = "identity") Z0 <- Diagonal(100, 1) Z1 <- Diagonal(100, c(rep(0,50),rep(1,50))) Sigma <- mc_matrix_linear_predictor(tau = c(0.2, 0.15), Z = list(Z0,Z1)) y1 <- rnorm(100, mu1$mu, sd = sqrt(diag(Sigma))) data <- data.frame("y1" = y1, "covariate" = covariate) -# Fitting using identity covariance function -------------------------------------- -fit2.id <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0,Z1)), data = data) +# Fitting using identity covariance function --------------------------- +fit2.id <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0,Z1)), + data = data) summary(fit2.id) -# Case 3 - Longitudinal model using compound symmetry ------------------------------ +# Case 3 - Longitudinal model using compound symmetry ------------------ covariate <- seq(-1,1, l = 200) X <- model.matrix(~ covariate) -mu1 <- mc_link_function(beta = c(1,0.8), X = X, offset = NULL, link = "identity") +mu1 <- mc_link_function(beta = c(1,0.8), X = X, offset = NULL, + link = "identity") Z0 <- Diagonal(200, 1) Z1.temp <- Matrix(rep(1,10)%*%t(rep(1,10))) Z1.list <- list() @@ -71,194 +84,243 @@ Sigma <- mc_matrix_linear_predictor(tau = c(0.2, 0.15), Z = list(Z0,Z1)) y1 <- as.numeric(rmvnorm(1, mean = mu1$mu, sigma = as.matrix(Sigma))) data <- data.frame("y1" = y1, "covariate" = covariate) -# Fitting using identity covariance function -------------------------------------- -fit3.id <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0,Z1)), data = data) +# Fitting using identity covariance function --------------------------- +fit3.id <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0,Z1)), data = data) summary(fit3.id) -# Fitting using exponential-matrix covariance function ---------------------------- -fit3.expm <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0,Z1)), - covariance = "expm", data = data) +# Fitting using exponential-matrix covariance function ----------------- +fit3.expm <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0,Z1)), + covariance = "expm", data = data) summary(fit3.expm) -# Case 4 - Logistic regression model ---------------------------------------------- +# Case 4 - Logistic regression model ----------------------------------- covariate <- seq(-1,1, l = 250) X <- model.matrix(~ covariate) -mu1 <- mc_link_function(beta = c(1,0.8), X = X, offset = NULL, link = "logit") +mu1 <- mc_link_function(beta = c(1,0.8), X = X, offset = NULL, + link = "logit") Z0 <- Diagonal(250, 1) y1 <- rbinom(250, prob = mu1$mu, size = 10)/10 data <- data.frame("y1" = y1, "covariate" = covariate) -# Logit link function ------------------------------------------------------------- -fit4.logit <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "logit", variance = "binomialP", Ntrial = list(rep(10,250)), data = data) +# Logit link function -------------------------------------------------- +fit4.logit <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "logit", variance = "binomialP", + Ntrial = list(rep(10,250)), data = data) summary(fit4.logit) -# Probit link function ------------------------------------------------------------- -fit4.probit <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "probit", variance = "binomialP", Ntrial = list(rep(10,250)), data = data) +# Probit link function ------------------------------------------------- +fit4.probit <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "probit", variance = "binomialP", + Ntrial = list(rep(10,250)), data = data) summary(fit4.probit) -# Cauchit link function ------------------------------------------------------------ -fit4.cauchit <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "cauchit", variance = "binomialP", Ntrial = list(rep(10,250)), data = data) +# Cauchit link function ------------------------------------------------ +fit4.cauchit <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "cauchit", variance = "binomialP", + Ntrial = list(rep(10,250)), data = data) summary(fit4.cauchit) -# Cloglog link function ------------------------------------------------------------ -fit4.cloglog <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "cloglog", variance = "binomialP", Ntrial = list(rep(10,250)), data = data) +# Cloglog link function ------------------------------------------------ +fit4.cloglog <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "cloglog", variance = "binomialP", + Ntrial = list(rep(10,250)), data = data) summary(fit4.cloglog) -# loglog link function -------------------------------------------------------------- -fit4.loglog <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "loglog", variance = "binomialP", Ntrial = list(rep(10,250)), data = data) +# loglog link function ------------------------------------------------- +fit4.loglog <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "loglog", variance = "binomialP", + Ntrial = list(rep(10,250)), data = data) summary(fit4.loglog) -# Example 5 - Logistic regression with extra power parameter in the variance function -fit5 <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "logit", variance = "binomialP", Ntrial = list(rep(10,250)), +# Example 5 - Logistic regression with extra power parameter ----------- +fit5 <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "logit", variance = "binomialP", + Ntrial = list(rep(10,250)), power_fixed = list(FALSE), data = data) - summary(fit5) -# Example 6 - Logistic regression with two extra power parameters in the variance function -# This model can be very hard to fit and require very carefull initial values and tunning. -fit6 <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "logit", variance = "binomialPQ", Ntrial = list(rep(10,250)), +# Example 6 - Logistic regression with two extra power parameters ------ +# This model can be very hard to fit and require very carefull +# initial values and tunning. +fit6 <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "logit", variance = "binomialPQ", + Ntrial = list(rep(10,250)), power_fixed = list(FALSE), data = data, - control_algorithm = list("method" = "chaser", "tunning" = 0.1, - "max_iter" = 1000, verbose = FALSE)) + control_algorithm = list("method" = "chaser", + "tunning" = 0.1, + "max_iter" = 1000, + "verbose" = FALSE)) summary(fit6) plot(fit6, type = "algorithm") -# Case 7 - Gamma regression model ------------------------------------------------- +# Case 7 - Gamma regression model -------------------------------------- covariate <- seq(-1,1, l = 100) X <- model.matrix(~ covariate) -mu1 <- mc_link_function(beta = c(1,0.8), X = X, offset = NULL, link = "log") +mu1 <- mc_link_function(beta = c(1,0.8), X = X, offset = NULL, + link = "log") Z0 <- Diagonal(100, 1) y1 <- rtweedie(100, mu = mu1$mu, power = 2, phi = 0.5) data <- data.frame("y1" = y1, "covariate" = covariate) -# Initial values ------------------------------------------------------------------- +# Initial values ------------------------------------------------------- list_initial = list() list_initial$regression <- list("resp1" = c(1,0)) list_initial$power <- list("resp1" = c(2)) list_initial$tau <- list("resp1" = c(0.1)) list_initial$rho = 0 -# Power parameter fixed ------------------------------------------------------------- -fit7 <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "log", variance = "tweedie", power_fixed = list(TRUE), +# Power parameter fixed ------------------------------------------------ +fit7 <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "log", variance = "tweedie", + power_fixed = list(TRUE), control_initial = list_initial, data = data) summary(fit7) plot(fit7, type = "algorithm") -# Estimating the power parameter ---------------------------------------------------- -fit7.power <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "log", variance = "tweedie", power_fixed = FALSE, data = data) +# Estimating the power parameter --------------------------------------- +fit7.power <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "log", variance = "tweedie", + control_initial = list_initial, + power_fixed = FALSE, data = data) summary(fit7.power) -# Case 8 - Inverse Gaussian regression model ---------------------------------------- +# Case 8 - Inverse Gaussian regression model --------------------------- covariate <- seq(-2,2, l = 200) X <- model.matrix(~ covariate) -mu1 <- mc_link_function(beta = c(1,0.8), X = X, offset = NULL, link = "log") +mu1 <- mc_link_function(beta = c(1,0.8), X = X, offset = NULL, + link = "log") Z0 <- Diagonal(200, 1) y1 <- rtweedie(200, mu = mu1$mu, power = 3, phi = 0.5) data <- data.frame("y1" = y1, "covariate" = covariate) -# Initial values list ---------------------------------------------------------------- +# Initial values list -------------------------------------------------- list_initial = list() list_initial$regression <- list("resp1" = c(1,0)) list_initial$power <- list("resp1" = c(3)) list_initial$tau <- list("resp1" = c(0.1)) list_initial$rho = 0 -# Power parameter fixed -------------------------------------------------------------- -fit8 <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "log", variance = "tweedie", data = data, control_initial = list_initial) +# Power parameter fixed ------------------------------------------------ +fit8 <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "log", variance = "tweedie", data = data, + control_initial = list_initial) summary(fit8) -# Estimating the power parameter ----------------------------------------------------- -fit8.power <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "log", variance = "tweedie", power_fixed = list(FALSE), data = data, +# Estimating the power parameter --------------------------------------- +fit8.power <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "log", variance = "tweedie", + power_fixed = list(FALSE), data = data, control_initial = list_initial) summary(fit8.power) plot(fit8.power, type = "algorithm") -# Case 9 - Poisson-Tweedie regression model ------------------------------------------- +# Case 9 - Poisson-Tweedie regression model ---------------------------- y1 <- rtweedie(200, mu = mu1$mu, power = 1.5, phi = 0.5) data <- data.frame("y1" = y1, "covariate" = covariate) -fit9 <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "log", variance = "tweedie", power_fixed = list(FALSE), data = data, - control_algorithm = list("method" = "chaser", "tunning" = 1)) +fit9 <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "log", variance = "tweedie", + power_fixed = list(FALSE), data = data, + control_algorithm = list("method" = "chaser", + "tunning" = 1)) summary(fit9) plot(fit9, type = "algorithm") -# Case 10 - Poisson regression model -------------------------------------------------- +# Case 10 - Poisson regression model ----------------------------------- y1 <- rtweedie(200, mu = mu1$mu, power = 1, phi = 1) data <- data.frame("y1" = y1, "covariate" = covariate) -fit10 <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "log", variance = "tweedie", power_fixed = list(FALSE), data = data, - control_algorithm = list("method" = "rc", "tunning" = 0.1)) +fit10 <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "log", variance = "tweedie", + power_fixed = list(FALSE), data = data, + control_algorithm = list("method" = "rc", + "tunning" = 0.1)) summary(fit10) -# Case 11 - Poisson-Tweedie regression model (Neymann-Type A) -------------------------- +# Case 11 - Poisson-Tweedie regression model (Neymann-Type A) ---------- # Neymann-Type A y1 <- rtweedie(200, mu = mu1$mu, power = 1, phi = 1) y1 <- rpois(200, lambda = y1) data <- data.frame("y1" = y1, "covariate" = covariate) -fit11 <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "log", variance = "poisson_tweedie", power_fixed = list(TRUE), data = data) +fit11 <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "log", variance = "poisson_tweedie", + power_fixed = list(TRUE), data = data) summary(fit11) -# Case 12 - Poisson-Tweedie regression model (Negative Binomial) ----------------------- +# Case 12 - Poisson-Tweedie regression model (Negative Binomial) ------- y1 <- rtweedie(200, mu = mu1$mu, power = 2, phi = 1.5) y1 <- rpois(200, lambda = y1) data <- data.frame("y1" = y1, "covariate" = covariate) -# Initial values list ------------------------------------------------------------------ +# Initial values list -------------------------------------------------- list_initial = list() list_initial$regression <- list("resp1" = c(1,0)) list_initial$power <- list("resp1" = c(2)) list_initial$tau <- list("resp1" = c(1)) list_initial$rho = 0 -fit12 <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "log", variance = "poisson_tweedie", power_fixed = list(FALSE), data = data, +fit12 <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "log", variance = "poisson_tweedie", + power_fixed = list(FALSE), data = data, control_initial = list_initial, - control_algorithm = list("method" = "rc", "tunning" = 0.2)) + control_algorithm = list("method" = "rc", + "tunning" = 0.2)) summary(fit12) -# Case 13 - Poisson-Tweedie regression model (PIG - Poisson Inverse Gaussian)--------- -y1 <- rtweedie(200, mu = mu1$mu, power = 3, phi = 1.5) +# Case 13 - Poisson-Tweedie regression model +# (PIG - Poisson Inverse Gaussian)--------- +y1 <- rtweedie(200, mu = mu1$mu, power = 3, phi = 0.1) y1 <- rpois(200, lambda = y1) data <- data.frame("y1" = y1, "covariate" = covariate) -# Initial values list ----------------------------------------------------------------- +# Initial values list -------------------------------------------------- list_initial = list() list_initial$regression <- list("resp1" = c(1,0.8)) list_initial$power <- list("resp1" = c(3)) -list_initial$tau <- list("resp1" = c(0.5)) +list_initial$tau <- list("resp1" = c(0.1)) list_initial$rho = 0 -fit13 <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "log", variance = "poisson_tweedie", data = data, control_initial = list_initial, - control_algorithm = list("method" = "rc", "tunning" = 0.1)) +fit13 <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "log", variance = "poisson_tweedie", data = data, + control_initial = list_initial, + power_fixed = FALSE, + control_algorithm = list("method" = "rc", + "tunning" = 1, + "max_iter" = 100)) summary(fit13) -# Case 14 - Poisson-Tweedie regression model (Pólya-Aeppli) --------------------------- +# Case 14 - Poisson-Tweedie regression model (Pólya-Aeppli) ------------ y1 <- rtweedie(200, mu = mu1$mu, power = 1.5, phi = 1.5) y1 <- rpois(200, lambda = y1) data <- data.frame("y1" = y1, "covariate" = covariate) -fit14 <- mcglm(linear_pred = c(y1 ~ covariate), matrix_pred = list("resp1" = list(Z0)), - link = "log", variance = "poisson_tweedie", power_fixed = FALSE, data = data) +fit14 <- mcglm(linear_pred = c(y1 ~ covariate), + matrix_pred = list("resp1" = list(Z0)), + link = "log", variance = "poisson_tweedie", + power_fixed = FALSE, data = data) summary(fit14) -# Methods ------------------------------------------------------------------------ +# Methods -------------------------------------------------------------- # print fit14 diff --git a/Examples/GLMExamples.R b/Examples/GLMExamples.R index 652f23a8f5c81a313263cd298c27df384d08a23f..aacd195912a23686aa489a57b9d10773abd2a120 100755 --- a/Examples/GLMExamples.R +++ b/Examples/GLMExamples.R @@ -1,35 +1,40 @@ -# Set of examples 2 - GLM examples ---------------------------------------------- -# Author: Wagner Hugo Bonat LEG/IMADA ------------------------------------------- -# Date: 08/08/2015 -------------------------------------------------------------- -#-------------------------------------------------------------------------------- +# Set of examples 2 - GLM examples ------------------------------------- +# Author: Wagner Hugo Bonat LEG/IMADA ---------------------------------- +# Date: 08/08/2015 ----------------------------------------------------- +#----------------------------------------------------------------------- rm(list=ls()) # Loading extra packages require(mcglm) - -# Case 1 ------------------------------------------------------------------------ +require(Matrix) +# Case 1 --------------------------------------------------------------- ## Dobson (1990) Page 93: Randomized Controlled Trial : counts <- c(18,17,15,20,10,20,25,13,12) outcome <- gl(3,1,9) treatment <- gl(3,3) print(d.AD <- data.frame(treatment, outcome, counts)) -# Orthodox Poisson model -fit.glm <- glm(counts ~ outcome + treatment, family = quasipoisson()) +# Orthodox Poisson model ----------------------------------------------- +fit.glm <- glm(counts ~ outcome + treatment, family = poisson()) summary(fit.glm) -# Quasi-Poisson model via mcglm--------------------------------------------------- +# Quasi-Poisson model via mcglm----------------------------------------- Z0 <- Diagonal(dim(d.AD)[1],1) -fit.qglm <- mcglm(linear_pred = c(counts ~ outcome + treatment), matrix_pred = list("resp1" = list(Z0)), +fit.qglm <- mcglm(linear_pred = c(counts ~ outcome + treatment), + matrix_pred = list("resp1" = list(Z0)), link = "log", variance = "tweedie", data = d.AD, - control_algorithm = list("verbose" = FALSE, "method" = "chaser", "tunning" = 0.8)) + control_algorithm = list("verbose" = FALSE, + "method" = "chaser", + "tunning" = 0.8)) summary(fit.qglm) -cbind("mcglm" = round(coef(fit.qglm, type = "beta")$Estimates,5), "glm" = round(coef(fit.glm),5)) -cbind("mcglm" = sqrt(diag(vcov(fit.qglm))), "glm" = c(sqrt(diag(vcov(fit.glm))),NA)) +cbind("mcglm" = round(coef(fit.qglm, type = "beta")$Estimates,5), + "glm" = round(coef(fit.glm),5)) +cbind("mcglm" = sqrt(diag(vcov(fit.qglm))), + "glm" = c(sqrt(diag(vcov(fit.glm))),NA)) plot(fit.qglm) plot(fit.qglm, type = "algorithm") -# Poisson-Tweedie model via mcglm------------------------------------------------ +# Poisson-Tweedie model via mcglm--------------------------------------- list_initial = list() list_initial$regression <- list("resp1" = coef(fit.glm) ) list_initial$power <- list("resp1" = c(1)) @@ -37,57 +42,70 @@ list_initial$tau <- list("resp1" = c(0.01)) list_initial$rho = 0 Z0 <- Diagonal(dim(d.AD)[1],1) -fit.pt <- mcglm(linear_pred = c(counts ~ outcome + treatment), matrix_pred = list("resp1" = list(Z0)), - link = "log", variance = "poisson_tweedie", - data = d.AD, control_initial = list_initial, - control_algorithm = list("correct" = TRUE, tol = 1e-5, - max_iter = 100, method = "chaser", "tunning" = 1)) +fit.pt <- mcglm(linear_pred = c(counts ~ outcome + treatment), + matrix_pred = list("resp1" = list(Z0)), + link = "log", variance = "poisson_tweedie", + power_fixed = TRUE, + data = d.AD, control_initial = list_initial, + control_algorithm = list("correct" = TRUE, + "verbose" = TRUE, + "tol" = 1e-5, + "max_iter" = 100, + "method" = "chaser", + "tunning" = 1)) summary(fit.pt) -cbind("mcglm" = round(coef(fit.pt, type = "beta")$Estimates,5), "glm" = round(coef(fit.glm),5)) -cbind("mcglm" = sqrt(diag(vcov(fit.pt))), "glm" = c(sqrt(diag(vcov(fit.glm))),NA)) +cbind("mcglm" = round(coef(fit.pt, type = "beta")$Estimates,5), + "glm" = round(coef(fit.glm),5)) +cbind("mcglm" = sqrt(diag(vcov(fit.pt))), + "glm" = c(sqrt(diag(vcov(fit.glm))),NA)) -# This model is unsuitable for this data, note that the dispersion parameter is negative, indicating -# underdispersion. Which agrees with my quasi Poisson model, but the glm function does not -# agree with this result. I have to understand this difference. +# This model is unsuitable for this data, note that the dispersion +# parameter is negative, indicating underdispersion. +# Which agrees with my quasi-Poisson model, but the glm function +# does not agree with this result. I have to understand this difference. -# Case 2 ------------------------------------------------------------------------ -# an example with offsets from Venables & Ripley (2002, p.189) +# Case 2 --------------------------------------------------------------- +# An example with offsets from Venables & Ripley (2002, p.189) # Loading the data set utils::data(anorexia, package = "MASS") -# Orthodox GLM fit -------------------------------------------------------------- +# Orthodox GLM fit ----------------------------------------------------- anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt), family = gaussian, data = anorexia) summary(anorex.1) -# Fitting by mcglm -------------------------------------------------------------- +# Fitting by mcglm ----------------------------------------------------- Z0 <- Diagonal(dim(anorexia)[1],1) -fit.anorexia <- mcglm(linear_pred = c(Postwt ~ Prewt + Treat), matrix_pred = list("resp1" = list(Z0)), - link = "identity", variance = "constant", offset = list(anorexia$Prewt), - power_fixed = list(TRUE), data = anorexia, - control_algorithm = list("correct" = FALSE)) +fit.anorexia <- mcglm(linear_pred = c(Postwt ~ Prewt + Treat), + matrix_pred = list("resp1" = list(Z0)), + link = "identity", variance = "constant", + offset = list(anorexia$Prewt), + power_fixed = TRUE, data = anorexia, + control_algorithm = list("correct" = FALSE)) summary(fit.anorexia) -# Comparing the results --------------------------------------------------------- +# Comparing the results ------------------------------------------------ cbind("mcglm" = round(coef(fit.anorexia, type = "beta")$Estimates,5), "glm" = round(coef(anorex.1),5)) cbind("mcglm" = sqrt(diag(vcov(fit.anorexia))), "glm" = c(sqrt(diag(vcov(anorex.1))),NA)) -# Case 3 ------------------------------------------------------------------------ +# Case 3 --------------------------------------------------------------- # A Gamma example, from McCullagh & Nelder (1989, pp.300-2) clotting <- data.frame( u = c(5,10,15,20,30,40,60,80,100), lot1 = c(118,58,42,35,27,25,21,19,18), lot2 = c(69,35,26,21,18,16,13,12,12)) -fit.lot1 <- glm(lot1 ~ log(u), data = clotting, family = Gamma(link = "inverse")) -fit.lot2 <- glm(lot2 ~ log(u), data = clotting, family = Gamma(link = "inverse")) +fit.lot1 <- glm(lot1 ~ log(u), data = clotting, + family = Gamma(link = "inverse")) +fit.lot2 <- glm(lot2 ~ log(u), data = clotting, + family = Gamma(link = "inverse")) summary(fit.lot1) -# Initial values ----------------------------------------------------------------- +# Initial values ------------------------------------------------------- list_initial = list() list_initial$regression <- list("resp1" = coef(fit.lot1)) list_initial$power <- list("resp1" = c(2)) @@ -95,10 +113,11 @@ list_initial$tau <- list("resp1" = summary(fit.lot1)$dispersion) list_initial$rho = 0 Z0 <- Diagonal(dim(clotting)[1],1) -# Fitting ------------------------------------------------------------------------ -fit.lot1.mcglm <- mcglm(linear_pred = c(lot1 ~ log(u)), matrix_pred = list("resp1" = list(Z0)), - link = "inverse", variance = "tweedie", - data = clotting, control_initial = list_initial) +# Fitting -------------------------------------------------------------- +fit.lot1.mcglm <- mcglm(linear_pred = c(lot1 ~ log(u)), + matrix_pred = list("resp1" = list(Z0)), + link = "inverse", variance = "tweedie", + data = clotting, control_initial = list_initial) summary(fit.lot1.mcglm) cbind("mcglm" = round(coef(fit.lot1.mcglm, type = "beta")$Estimates,5), @@ -106,13 +125,15 @@ cbind("mcglm" = round(coef(fit.lot1.mcglm, type = "beta")$Estimates,5), cbind("mcglm" = sqrt(diag(vcov(fit.lot1.mcglm))), "glm" = c(sqrt(diag(vcov(fit.lot1))),NA)) -# Initial values ----------------------------------------------------------------- +# Initial values ------------------------------------------------------- list_initial$regression <- list("resp1" = coef(fit.lot2)) list_initial$tau <- list("resp1" = c(var(1/clotting$lot2))) -# Fitting ------------------------------------------------------------------------ -fit.lot2.mcglm <- mcglm(linear_pred = c(lot2 ~ log(u)), matrix_pred = list("resp2" = list(Z0)), - link = "inverse", variance = "tweedie", data = clotting, +# Fitting -------------------------------------------------------------- +fit.lot2.mcglm <- mcglm(linear_pred = c(lot2 ~ log(u)), + matrix_pred = list("resp2" = list(Z0)), + link = "inverse", variance = "tweedie", + data = clotting, control_initial = list_initial) summary(fit.lot2.mcglm) @@ -121,24 +142,29 @@ cbind("mcglm" = round(coef(fit.lot2.mcglm, type = "beta")$Estimates,5), cbind("mcglm" = sqrt(diag(vcov(fit.lot2.mcglm))), "glm" = c(sqrt(diag(vcov(fit.lot2))),NA)) -# Bivariate Gamma model----------------------------------------------------------- +# Bivariate Gamma model------------------------------------------------- list_initial = list() -list_initial$regression <- list("resp1" = coef(fit.lot1), "resp2" = coef(fit.lot2)) +list_initial$regression <- list("resp1" = coef(fit.lot1), + "resp2" = coef(fit.lot2)) list_initial$power <- list("resp1" = c(2), "resp2" = c(2)) list_initial$tau <- list("resp1" = c(0.00149), "resp2" = c(0.001276)) list_initial$rho = 0.80 Z0 <- Diagonal(dim(clotting)[1],1) -fit.joint.mcglm <- mcglm(linear_pred = c(lot1 ~ log(u), lot2 ~ log(u)), matrix_pred = list(list(Z0), list(Z0)), - link = c("inverse", "inverse"), variance = c("tweedie", "tweedie"), - data = clotting, control_initial = list_initial, - control_algorithm = list("correct" = TRUE, "method" = "rc", "tunning" = 0.001, - max_iter = 100)) +fit.joint.mcglm <- mcglm(linear_pred = c(lot1 ~ log(u), lot2 ~ log(u)), + matrix_pred = list(list(Z0), list(Z0)), + link = c("inverse", "inverse"), + variance = c("tweedie", "tweedie"), + data = clotting, control_initial = list_initial, + control_algorithm = list("correct" = TRUE, + "method" = "rc", + "tunning" = 0.001, + "max_iter" = 100)) summary(fit.joint.mcglm) plot(fit.joint.mcglm, type = "algorithm") plot(fit.joint.mcglm) -# Bivariate Gamma model + log link function -------------------------------------- +# Bivariate Gamma model + log link function ---------------------------- list_initial = list() list_initial$regression <- list("resp1" = c(log(mean(clotting$lot1)),0), "resp2" = c(log(mean(clotting$lot2)),0)) @@ -147,43 +173,52 @@ list_initial$tau <- list("resp1" = 0.023, "resp2" = 0.024) list_initial$rho = 0 Z0 <- Diagonal(dim(clotting)[1],1) -fit.joint.log <- mcglm(linear_pred = c(lot1 ~ log(u), "resp2" = lot2 ~ log(u)), - matrix_pred = list(list(Z0),list(Z0)), link = c("log", "log"), - variance = c("tweedie", "tweedie"), data = clotting, +fit.joint.log <- mcglm(linear_pred = c("resp1" = lot1 ~ log(u), + "resp2" = lot2 ~ log(u)), + matrix_pred = list(list(Z0),list(Z0)), + link = c("log", "log"), + variance = c("tweedie", "tweedie"), + data = clotting, control_initial = list_initial) summary(fit.joint.log) plot(fit.joint.mcglm, type = "algorithm") plot(fit.joint.mcglm) -# Case 4 - Binomial regression models ---------------------------------------- +# Case 4 - Binomial regression models ---------------------------------- require(MASS) data(menarche) head(menarche) -data <- data.frame("resp" = menarche$Menarche/menarche$Total, "Ntrial" = menarche$Total, +data <- data.frame("resp" = menarche$Menarche/menarche$Total, + "Ntrial" = menarche$Total, "Age" = menarche$Age) -# Orthodox logistic regression model ------------------------------------------ -glm.out = glm(cbind(Menarche, Total-Menarche) ~ Age, family=binomial(logit), data=menarche) +# Orthodox logistic regression model ----------------------------------- +glm.out = glm(cbind(Menarche, Total-Menarche) ~ Age, + family=binomial(logit), data=menarche) -# Fitting --------------------------------------------------------------------- +# Fitting -------------------------------------------------------------- Z0 <- Diagonal(dim(data)[1],1) -fit.logit <- mcglm(linear_pred = c(resp ~ Age), matrix_pred = list("resp1" = list(Z0)), - link = "logit", variance = "binomialP", Ntrial = list(data$Ntrial), data = data) +fit.logit <- mcglm(linear_pred = c(resp ~ Age), + matrix_pred = list("resp1" = list(Z0)), + link = "logit", variance = "binomialP", + Ntrial = list(data$Ntrial), data = data) summary(fit.logit) plot(fit.logit, type = "algorithm") plot(fit.logit) -# Fitting with extra power parameter ------------------------------------------- -fit.logit.power <- mcglm(linear_pred = c(resp ~ Age), matrix_pred = list(list(Z0)), - link = "logit", variance = "binomialP", Ntrial = list(data$Ntrial), - power_fixed = FALSE, data = data) +# Fitting with extra power parameter ----------------------------------- +fit.logit.power <- mcglm(linear_pred = c(resp ~ Age), + matrix_pred = list(list(Z0)), + link = "logit", variance = "binomialP", + Ntrial = list(data$Ntrial), + power_fixed = FALSE, data = data) summary(fit.logit.power) plot(fit.logit.power, type = "algorithm") plot(fit.logit.power) -# All methods -------------------------------------------------------------------- +# All methods ---------------------------------------------------------- # print method fit.logit.power # coef method diff --git a/NAMESPACE b/NAMESPACE index ac113d4a61f1ee18f1ba84a70e91bf52faedef2f..21f9f2a5f88a4e1797b44235f974560ed2657eac 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -12,17 +12,14 @@ S3method(vcov,mcglm) export(fit_mcglm) export(mc_bias_corrected_std) export(mc_dexp_gold) -export(mc_influence) export(mc_initial_values) export(mc_link_function) export(mc_matrix_linear_predictor) -export(mc_qll) +export(mc_quasi_score) export(mc_robust_std) -export(mc_rw1) -export(mc_rw2) -export(mc_unstructured) +export(mc_sic) +export(mc_sic_covariance) export(mc_variance_function) export(mcglm) -export(qic.mcglm) import(Matrix) import(assertthat) diff --git a/R/mc_S3_methods.R b/R/mc_S3_methods.R index 04a6d6b56a2f0b9dd810ba2e09244c17c321ba0e..5cfe8a019db3429ff0edfdf3f1284b8a529b71b6 100644 --- a/R/mc_S3_methods.R +++ b/R/mc_S3_methods.R @@ -214,7 +214,7 @@ confint.mcglm <- function(object, parm, level = 0.95, ...) { ci <- temp$Estimates + temp$Std.error %o% fac colnames(ci) <- paste0(format(a, 2), "%") rownames(ci) <- temp$Parameters - return(ci[parm]) + return(ci[parm,]) } #' @title Extract Model Fitted Values of McGLM #' @name fitted.mcglm diff --git a/R/mc_bias_correct_std.R b/R/mc_bias_correct_std.R index cfe7f9f034596d795bef43104906868bb18a6cb5..c9c5c163d3c2b01c9eb11009f949a1e1c7331e46 100644 --- a/R/mc_bias_correct_std.R +++ b/R/mc_bias_correct_std.R @@ -11,17 +11,34 @@ #' @export mc_bias_corrected_std <- function(object, id) { - inv_M <- object$inv_S_beta - temp_data <- data.frame(res = object$residuals, id) - temp_data_group <- split(temp_data, temp_data$id) - D <- bdiag(lapply(object$mu_list, function(x) x$D)) - r_rT <- bdiag(lapply(temp_data_group, function(x) { + inv_M <- -object$inv_S_beta + temp_data <- data.frame(res = object$residuals, id) + temp_data_group <- split(temp_data, temp_data$id) + D <- bdiag(lapply(object$mu_list, function(x) x$D)) + R <- bdiag(lapply(temp_data_group, function(x) { tcrossprod(x[, 1]) })) - tD_invC <- t(D) %*% object$inv_C - H <- Matrix(D %*% inv_M %*% tD_invC, sparse = TRUE) - IH <- Diagonal(object$n_obs, 1) - H - inv_IH <- solve(IH) - output <- sqrt(diag(inv_M %*% tD_invC %*% inv_IH %*% r_rT %*% inv_IH %*% t(tD_invC) %*% inv_M)) + uni_id <- unique(id) + n_id <- length(uni_id) + Hi <- list() + Di <- list() + inv_Ci <- list() + for (i in 1:n_id) { + idTF <- id == uni_id[i] + if(sum(idTF) == 1) { + Di[[i]] <- Matrix(D[idTF,], nrow = sum(idTF), ncol = dim(D)[2]) + } else { + Di[[i]] <- D[idTF,] + } + inv_Ci[[i]] <- object$inv_C[idTF,idTF] + Hi[[i]] <- Di[[i]]%*%inv_M%*%t(Di[[i]])%*%inv_Ci[[i]] + } + H <- bdiag(Hi) + I <- Diagonal(dim(temp_data)[1], 1) + inv_IH <- solve(I - H) + Vbeta = inv_M%*%(t(D)%*%object$inv_C%*%inv_IH%*%R%*%inv_IH%*% + object$inv_C%*%D)%*%inv_M + output = sqrt(diag(Vbeta)) return(output) } + diff --git a/R/mc_build_sigma.R b/R/mc_build_sigma.R index d46aa5e5b8fe853f399c2fd393941ed2eb5c7cde..3e858d92821e8605673989574f4cf881220365e7 100644 --- a/R/mc_build_sigma.R +++ b/R/mc_build_sigma.R @@ -30,7 +30,9 @@ mc_build_sigma <- function(mu, Ntrial = 1, tau, power, Z, sparse, variance, Omega <- mc_build_omega(tau = tau, Z = Z, covariance_link = covariance, sparse = sparse) chol_Sigma <- chol(Omega$Omega) inv_chol_Sigma <- solve(chol_Sigma) - output <- list(Sigma_chol = chol_Sigma, Sigma_chol_inv = inv_chol_Sigma, D_Sigma = Omega$D_Omega) + output <- list(Sigma_chol = chol_Sigma, + Sigma_chol_inv = inv_chol_Sigma, + D_Sigma = Omega$D_Omega) } if (covariance == "inverse") { inv_Sigma <- mc_build_omega(tau = tau, Z = Z, covariance_link = "inverse", sparse = sparse) diff --git a/R/mc_influence.R b/R/mc_influence.R deleted file mode 100644 index 51e71ba81b3dd42a6438f44ec2f9eedc29a71f4d..0000000000000000000000000000000000000000 --- a/R/mc_influence.R +++ /dev/null @@ -1,92 +0,0 @@ -#' Influence measures -#' -#' @description Compute influence measures for multivariate covariance generalized linear models. -#' Leverage, DFBETA and Cook's distance for unit sample and observations. -#' -#' @param object An object of mcglm class. -#' @param id a vector which identifies the clusters. The length and order of id should be the -#' same as the number of observations. Data are assumed to be sorted so that observations on a cluster -#' are contiguous rows for all entities in the formula. -#' @return A matrix. Note that the function assumes that the data are in the correct order. -#' @export - -mc_influence <- function(object, id) { - inv_M <- -object$inv_S_beta - M <- solve(inv_M) - temp_data <- data.frame(res = object$residuals, id) - temp_data_group <- split(temp_data, temp_data$id) - D <- bdiag(lapply(object$mu_list, function(x) x$D)) - tD_invC <- t(D) %*% object$inv_C - H <- D %*% inv_M %*% tD_invC - leverage_obs <- diag(H) - leverage_group <- tapply(leverage_obs, id, sum) - I <- Diagonal(object$n_obs, 1) - n_group <- length(temp_data_group) - indexes <- matrix(NA, ncol = 2, nrow = n_group) - n_obs_group <- table(id) - indexes[1, ] <- c(1, as.numeric(n_obs_group[1])) - DFBETA_clust <- list() - D_temp <- D[c(indexes[1, 1]:indexes[1, 2]), ] - inv_C_temp <- object$inv_C[c(indexes[1, 1]:indexes[1, 2]), c(indexes[1, 1]:indexes[1, 2])] - C_temp <- object$C[c(indexes[1, 1]:indexes[1, 2]), c(indexes[1, 1]:indexes[1, 2])] - H_temp <- H[c(indexes[1, 1]:indexes[1, 2]), c(indexes[1, 1]:indexes[1, 2])] - res_temp <- object$residuals[indexes[1, 1]:indexes[1, 2]] - DFBETAOij <- list() - padroniza <- function(x, M) { - as.numeric((t(as.numeric(x)) %*% M %*% as.numeric(x))/dim(M)[1]) - } - dfbetaOij <- function(D_temp, C_temp, inv_C_temp, res_temp) { - DFBETA_temp <- matrix(NA, ncol = dim(D_temp)[2], nrow = dim(D_temp)[1]) - k = 1 - for (j in 1:length(res_temp)) { - Dij <- D_temp[j, k] - C_temp[k, -j] %*% inv_C_temp[-k, -j] %*% D_temp[-j, ] - rij <- res_temp[j] - C_temp[k, -j] %*% inv_C_temp[-k, -j] %*% res_temp[-j] - Vij <- C_temp[k, j] - C_temp[k, -j] %*% inv_C_temp[-k, -j] %*% C_temp[-j, k] - Hij <- try(Dij %*% object$inv_S_beta %*% t(Dij) %*% solve(Vij), silent = TRUE) - if (class(Hij) == "try-error") { - DFBETA_temp[j, ] <- NA - } - if (class(Hij) != "try-error") { - DFBETA_temp[j, ] <- as.numeric(t(object$inv_S_beta %*% t(Dij) %*% (rij/(Vij - (1 - Hij))))) - } - } - return(DFBETA_temp) - } - DFBETA_clust[[1]] <- inv_M %*% t(D_temp) %*% inv_C_temp %*% res_temp - DFBETAOij[[1]] <- dfbetaOij(D_temp, C_temp, inv_C_temp, res_temp) - for (i in 2:n_group) { - indexes[i, ] <- c(indexes[i - 1, ][2] + 1, n_obs_group[i] + indexes[i - 1, ][2]) - D_temp <- D[c(indexes[i, 1]:indexes[i, 2]), ] - inv_C_temp <- object$inv_C[c(indexes[i, 1]:indexes[i, 2]), c(indexes[i, 1]:indexes[i, 2])] - C_temp <- object$C[c(indexes[i, 1]:indexes[i, 2]), c(indexes[i, 1]:indexes[i, 2])] - H_temp <- H[c(indexes[i, 1]:indexes[i, 2]), c(indexes[i, 1]:indexes[i, 2])] - res_temp <- object$residuals[indexes[i, 1]:indexes[i, 2]] - D_temp <- matrix(D_temp, nrow = n_obs_group[i]) - DFBETA_clust[[i]] <- inv_M %*% t(D_temp) %*% inv_C_temp %*% res_temp - if (n_obs_group[i] == 1) { - DFBETAOij[[i]] <- t(as.matrix(DFBETA_clust[[i]])) - } - if (n_obs_group[i] != 1) { - DFBETAOij[[i]] <- dfbetaOij(D_temp, C_temp, inv_C_temp, res_temp) - } - } - DFBETA <- lapply(DFBETA_clust, as.matrix) - DFBETA <- lapply(DFBETA, t) - DFBETA <- plyr::ldply(DFBETA, data.frame) - names(DFBETA) <- object$beta_names[[1]] - DFBETAOij <- plyr::ldply(DFBETAOij, data.frame) - names(DFBETAOij) <- object$beta_names[[1]] - DCLSi <- apply(as.matrix(DFBETA), MARGIN = 1, FUN = padroniza, M = M) - DCLOij <- apply(as.matrix(DFBETAOij), MARGIN = 1, FUN = padroniza, M = M) - std.error <- coef(object, std.error = TRUE, type = "beta")$Std.error - DFBETA_temp <- t(apply(DFBETA, MARGIN = 1, FUN = function(x, std.error) { - as.numeric(x/std.error) - }, std.error = std.error)) - DFBETAOij_temp <- t(apply(DFBETAOij, MARGIN = 1, FUN = function(x, std.error) { - as.numeric(x/std.error) - }, std.error = std.error)) - output_clust <- data.frame(Leverage = leverage_group, DFBETA = DFBETA_temp, Cook = DCLSi) - output_obs <- data.frame(Leverage = leverage_obs, DFBETA = DFBETAOij_temp, Cook = DCLOij) - output <- list(Id = output_clust, Observations = output_obs) - return(output) -} diff --git a/R/mc_initial_values.R b/R/mc_initial_values.R index 53f2dcef07476066962882edf0d1da27aea1b400..bbbaa5cc51e56be156f7e10016cb4d57dc57651c 100644 --- a/R/mc_initial_values.R +++ b/R/mc_initial_values.R @@ -84,13 +84,13 @@ mc_initial_values <- function(linear_pred, matrix_pred, link, variance, covarian tau_extra <- lapply(matrix_pred, length) list_initial$tau <- list() for (i in 1:n_resp) { - if (covariance == "identity") { + if (covariance[i] == "identity") { list_initial$tau[[i]] <- as.numeric(c(tau0_initial[[i]], rep(0, c(tau_extra[[i]] - 1)))) } - if (covariance == "inverse") { + if (covariance[i] == "inverse") { list_initial$tau[[i]] <- as.numeric(c(1/tau0_initial[[i]], rep(0, c(tau_extra[[i]] - 1)))) } - if (covariance == "expm") { + if (covariance[i] == "expm") { list_initial$tau[[i]] <- as.numeric(c(exp(tau0_initial[[i]]), rep(0.1, c(tau_extra[[i]] - 1)))) } } diff --git a/R/mc_main_function.R b/R/mc_main_function.R index eda852cae44d13414286c4859b4bbe23ecb285b9..c884b3afda0a31ec8436224032b6cc01a32c0c3d 100644 --- a/R/mc_main_function.R +++ b/R/mc_main_function.R @@ -62,11 +62,19 @@ mcglm <- function(linear_pred, matrix_pred, link, variance, covariance, offset, Ntrial <- as.list(Ntrial) power_fixed = as.list(power_fixed) if (class(control_initial) != "list") { - control_initial <- mc_initial_values(linear_pred = linear_pred, matrix_pred = matrix_pred, link = link, variance = variance, - covariance = covariance, offset = offset, Ntrial = Ntrial, contrasts = contrasts, data = data) - cat("Automatic initial values selected.") + control_initial <- mc_initial_values(linear_pred = linear_pred, + matrix_pred = matrix_pred, + link = link, + variance = variance, + covariance = covariance, + offset = offset, + Ntrial = Ntrial, + contrasts = contrasts, + data = data) + cat("Automatic initial values selected.", "\n") } - con <- list(correct = TRUE, max_iter = 20, tol = 1e-04, method = "chaser", tunning = 1, verbose = FALSE) + con <- list(correct = TRUE, max_iter = 20, tol = 1e-04, + method = "chaser", tunning = 1, verbose = FALSE) con[(namc <- names(control_algorithm))] <- control_algorithm if (!is.null(contrasts)) { list_X <- list() @@ -101,6 +109,12 @@ mcglm <- function(linear_pred, matrix_pred, link, variance, covariance, offset, model_fit$con <- con model_fit$observed <- Matrix(y_vec, ncol = length(list_Y), nrow = dim(data)[1]) model_fit$list_X <- list_X + model_fit$matrix_pred <- matrix_pred + model_fit$Ntrial <- Ntrial + model_fit$offset <- offset + model_fit$power_fixed + model_fit$sparse <- sparse + model_fit$data <- data class(model_fit) <- "mcglm" } return(model_fit) diff --git a/R/mc_qic.R b/R/mc_qic.R deleted file mode 100644 index e51bd66ef74c6313cf7f620dc18922ad4b39cc31..0000000000000000000000000000000000000000 --- a/R/mc_qic.R +++ /dev/null @@ -1,39 +0,0 @@ -#' @title Compute Quasi Information Criterion (QIC) for McGLMs. -#' @name qic.mcglm -#' -#' @description \code{qic.mcglm} is a function which computes the QIC -#' for McGLMs. -#' -#' @param object An object of \code{mcglm} class. -#' @param object.iid An object of \code{mcglm} class contained the model -#' fitted using independent covariance structure. -#' -#' @return The QIC value. -#' -#' @author Wagner Hugo Bonat, \email{wbonat@@ufpr.br} -#' -#' @export - -qic.mcglm <- function(object, object.iid) { - mu <- fitted(object) - obs <- object$observed - n_resp <- dim(mu)[2] - Q <- matrix(NA, ncol = dim(mu)[2], nrow = dim(mu)[1]) - for (i in 1:n_resp) { - if (object$power_fixed[[i]] == FALSE) { - power <- coef(object, type = "power", response = i)$Estimate - } - if (object$power_fixed[[i]] == TRUE) { - power = object$list_initial$power[[i]] - } - Q[, i] <- mc_qll(y = obs[, i], - mu = mu[, i], - variance = object$variance[[i]], - power = power) - } - Vbeta <- -object$inv_S_beta - Vnull <- solve(-object.iid$inv_S_beta) - t1 <- -2 * sum(Q) - qic <- t1 + 2 * sum(diag(Vnull %*% Vbeta)) - return(list(Q = t1, qic = qic)) -} diff --git a/R/mc_qll.R b/R/mc_qll.R deleted file mode 100644 index e9e4c1432e4264effd8961018c1aab9e65f42046..0000000000000000000000000000000000000000 --- a/R/mc_qll.R +++ /dev/null @@ -1,37 +0,0 @@ -#' Compute quasi-likelihood function. -#' -#' Given a variance function mc_qll function computes the quasi-likelihood values. -#' @param y A vector of observed values. -#' @param mu A vector of fitted values. -#' @param variance Variance function (constant, tweedie, poisson_tweedie, binomial). -#' @param power Power parameter value. -#' @return The quasi-likelihood values. -#' @export - -mc_qll <- function(y, mu, variance, power) { - if (variance == "constant") { - qll <- -((y - mu)^2)/2 # Gaussian case - } - if (variance == "tweedie" & power == 1) { - qll <- y * log(mu) - mu # Poisson case - } - if (variance == "tweedie" & power == 2) { - -y/mu - log(mu) # Gamma case - } - if (variance == "tweedie" & power != 1 & power != 2) { - qll <- (mu^-power) * ((mu * y)/(1 - power) - (mu^2)/(2 - power)) # General Tweedie case - } - if (variance == "poisson_tweedie" & power == 1) { - qll <- (y * log(mu) - mu) + (y * log(mu) - mu) - } - if (variance == "poisson_tweedie" & power == 2) { - qll <- (y * log(mu) - mu) + (-y/mu - log(mu)) - } - if (variance == "poisson_tweedie" & power != 1 & power != 2) { - qll <- (y * log(mu) - mu) + (mu^-power) * ((mu * y)/(1 - power) - (mu^2)/(2 - power)) - } - if (variance == "binomial") { - qll <- y * log(mu/(1 - mu)) + log(1 - mu) # Binomial case - } - return(qll) -} diff --git a/R/mc_quasi_score.R b/R/mc_quasi_score.R index 6bdcee8db1fef74433f60e010519df7dda4f3a96..40d37cdc618b6d5d7d76eea6c3d5da0d5101bb0f 100644 --- a/R/mc_quasi_score.R +++ b/R/mc_quasi_score.R @@ -7,6 +7,7 @@ #' @param y_vec A vector. #' @param mu_vec A vector. #' @return The quasi-score vector, the Sensivity and variability matrices. +#' @export mc_quasi_score <- function(D, inv_C, y_vec, mu_vec) { res <- y_vec - mu_vec diff --git a/R/mc_rw1.R b/R/mc_rw1.R deleted file mode 100644 index 519ca718920c2c2093ea81b51235033884a02125..0000000000000000000000000000000000000000 --- a/R/mc_rw1.R +++ /dev/null @@ -1,29 +0,0 @@ -#' Random walk first order model -#' -#' @description Builds a random walk first order model matrix. -#' -#' @param n_time Number observations time. -#' @param intrinsic Logical indicating if the models is intrinsic (rho = 1) or not. -#' @return A matrix. Note that the function assumes that the data are in the correct order. -#' @export -mc_rw1 <- function(n_time, intrinsic = TRUE) { - R <- Matrix(0, nrow = n_time, ncol = n_time, sparse = TRUE) - ## Border restriction - ncol = n_time - R[1, c(1, 2)] <- c(1, -1) - R[ncol, c(ncol - 1, ncol)] <- c(-1, 1) - ## Body of matrix - n <- ncol - 1 - for (i in 2:n) { - R[i, c(i - 1, i, i + 1)] <- c(-1, 2, -1) - } - if (intrinsic == TRUE) { - output <- list(R) - } - if (intrinsic == FALSE) { - R1 <- Diagonal(n_time, diag(R)) - diag(R) <- 0 - output <- list(Z1 = R1, Z2 = R) - } - return(output) -} diff --git a/R/mc_rw2.R b/R/mc_rw2.R deleted file mode 100644 index 6788c1c4fb0a41e1eac185b7800438e672fdaaa4..0000000000000000000000000000000000000000 --- a/R/mc_rw2.R +++ /dev/null @@ -1,31 +0,0 @@ -#' Random walk second order model -#' -#' @description Builds a random walk second order model matrix. -#' -#' @param n_time Number observations time. -#' @param intrinsic Logical indicating if the models is intrinsic (rho = 1) or not. -#' @return A matrix. Note that the function assumes that the data are in the correct order. -#' @export -mc_rw2 <- function(n_time, intrinsic = TRUE) { - R <- Matrix(0, nrow = n_time, ncol = n_time, sparse = TRUE) - ## Border restriction - ncol = n_time - R[1, c(1, 2, 3)] <- c(1, -2, 1) - R[ncol, c(c(ncol - 2):ncol)] <- c(1, -2, 1) - R[2, c(1:4)] <- c(-2, 5, -4, 1) - R[c(ncol - 1), c(c(ncol - 3):c(ncol))] <- c(1, -4, 5, -2) - ## Body of matrix - n <- ncol - 2 - for (i in 3:n) { - R[i, c(i - 2, i - 1, i, i + 1, i + 2)] <- c(1, -4, 6, -4, 1) - } - if (intrinsic == TRUE) { - output <- list(R) - } - if (intrinsic == FALSE) { - R1 <- Diagonal(n_time, diag(R)) - diag(R) <- 0 - output <- list(Z1 = R1, Z2 = R) - } - return(output) -} diff --git a/R/mc_sensitivity.R b/R/mc_sensitivity.R index 169cc185e31b6cd63b0a30ff8ed6262568b302ae..64e2de5eae5725c2b261328e87bc0d1a9938824f 100644 --- a/R/mc_sensitivity.R +++ b/R/mc_sensitivity.R @@ -13,9 +13,9 @@ mc_sensitivity <- function(product) { Sensitivity1 <- matrix(0, n_par, n_par) for (i in 1:n_par) { for (j in 1:n_par) { - # Sensitivity_temp[i,j] <- -sum(diag(product[[i]]%*%product[[j]])) + #Sensitivity_temp[i,j] <- -sum(diag(product[[i]]%*%product[[j]])) Sensitivity[i, j] <- -sum(t(product[[i]]) * product[[j]]) - # Sensitivity1[i,j] <- -sum(product[[i]]*product[[j]]) + #Sensitivity1[i,j] <- -sum(product[[i]]*product[[j]]) } } # print(forceSymmetric(Sensitivity)) print(forceSymmetric(Sensitivity_temp)) print(forceSymmetric(Sensitivity1)) diff --git a/R/mc_sic.R b/R/mc_sic.R new file mode 100644 index 0000000000000000000000000000000000000000..e7b3ae338211e9a3bfef67cff6593bcc2e6a4cd7 --- /dev/null +++ b/R/mc_sic.R @@ -0,0 +1,57 @@ +#' Compute the score information criterion (SIC) for multivariate +#' covariance generalized linear models. +#' +#' @description Compute the SIC for McGLMS. +#' @param object an object representing a model of \code{mcglm} class. +#' @param scope a vector containing all covariate names to be tested. +#' @param data data frame containing the all variables envolved +#' @param penalty penalty term (default = 2). +#' @param response Indicate for which response variable SIC is computed. +#' @return A data frame with SIC values for each covariate in the scope +#' argument. +#' @export + +mc_sic <- function (object, scope, data, response, penalty = 2) { + SIC <- c() + df <- c() + df_total <- c() + TU <- c() + QQ <- c() + for(i in 1:length(scope)){ + ini_formula <- object$linear_pred[[response]] + ext_formula <- as.formula(paste("~", paste(ini_formula[3], + scope[i], sep = "+"))) + md <- model.frame(object$linear_pred[[response]], data = data) + Y = model.response(md) + ini_beta <- coef(object, type = "beta", response = response)$Estimates + ext_X <- model.matrix(ext_formula, data = data) + n_beta <- dim(ext_X)[2] + n_ini_beta <- length(ini_beta) + ext_beta <- c(ini_beta, rep(0, n_beta - n_ini_beta)) + n_total_beta <- length(ext_beta) + mu_temp <- mc_link_function(beta = ext_beta, X = ext_X, offset = NULL, + link = object$link[[response]]) + score_temp <- mc_quasi_score(D = mu_temp$D, inv_C = object$inv_C, + y_vec = Y, mu_vec = mu_temp$mu) + S11 <- score_temp$Variability[1:n_ini_beta,1:n_ini_beta] + S22 <- score_temp$Variability[c(n_ini_beta+1):n_total_beta, + c(n_ini_beta+1):n_total_beta] + S12 <- score_temp$Variability[1:n_ini_beta, + c(n_ini_beta+1):n_total_beta] + S21 <- score_temp$Variability[c(n_ini_beta+1):n_total_beta, + 1:n_ini_beta] + VB <- S22 - S21 %*% solve(S11) %*% S12 + Tu <- t(score_temp$Score[c(n_ini_beta+1):n_total_beta])%*% + solve(VB)%*%score_temp$Score[c(n_ini_beta+1):n_total_beta] + df[i] <- n_beta - n_ini_beta + SIC[i] <- -as.numeric(Tu) + penalty*n_beta + df_total[i] <- n_beta + TU[i] <- as.numeric(Tu) + QQ[i] <- qchisq(0.95, df = df[i]) + } + output <- data.frame("SIC" = SIC, "Covariance" = scope, + "df" = df, "df_total" = df_total, + "Tu" = TU, "Chisq" = QQ) + return(output) +} + diff --git a/R/mc_sic_covariance.R b/R/mc_sic_covariance.R new file mode 100644 index 0000000000000000000000000000000000000000..396eef6d12f618b0fdbc7e974dd526b20797451a --- /dev/null +++ b/R/mc_sic_covariance.R @@ -0,0 +1,83 @@ +#' Compute the score information criterion (SIC) for multivariate +#' covariance generalized linear models. +#' +#' @description Compute SIC for covariance parameters in McGLMS. +#' @param object an object representing a model of \code{mcglm} class. +#' @param scope a list of matrices to be tested in the matrix linear +#' predictor. +#' @param idx Indicator of matrices belong to the same effect. +#' @param data data frame containing all variables envolved in the model. +#' @param penalty penalty term (default = 2). +#' @param response Indicate for which response variable SIC is computed. +#' @return A data frame with SIC values for each matrix in the scope +#' argument. +#' @export + +mc_sic_covariance <- function(object, scope, idx, data, penalty = 2, + response) { + SIC <- c() + df <- c() + df_total <- c() + TU <- c() + QQ <- c() + n_terms <- length(unique(idx)) + for (j in 1:n_terms) { + tau <- coef(object, type = "tau", + response = response)$Estimates + n_tau <- length(tau) + n_tau_new <- length(idx[idx == j]) + list_tau_new <- list(c(tau, rep(0, n_tau_new))) + n_tau_total <- n_tau + n_tau_new + if(object$power_fixed[[response]]){ + list_power <- object$list_initial$power + } else { + list_power <- list(coef(object, type = "power", + response = response)$Estimates) + n_tau_total <- n_tau_total + 1 + n_tau <- n_tau + 1 + } + list_Z_new <- list(c(object$matrix_pred[[response]], scope[idx == j])) + if(length(object$mu_list) == 1){rho = 0} else { + rho = coef(object,type = "correlation")$Estimates + } + Cfeatures <- mc_build_C(list_mu = object$mu_list, + list_Ntrial = object$Ntrial, + rho = rho, list_tau = list_tau_new, + list_power = list_power, + list_Z = list_Z_new, + list_sparse = object$sparse, + list_variance = object$variance, + list_covariance = object$covariance, + list_power_fixed = object$power_fixed, + compute_C = TRUE) + temp_score <- mc_pearson(y_vec = object$observed, + mu_vec = object$mu_list[[response]]$mu, + Cfeatures = Cfeatures, correct = FALSE, + compute_variability = TRUE) + + J <- temp_score$Sensitivity + Sigma <- temp_score$Variability + Sigma22 <- Sigma[c(n_tau+1):n_tau_total,c(n_tau +1):n_tau_total] + J21 <- J[c(n_tau+1):n_tau_total, 1:n_tau] + J11 <- solve(J[1:n_tau,1:n_tau]) + Sigma12 <- Sigma[1:n_tau, c(n_tau+1):n_tau_total] + Sigma21 <- Sigma[c(n_tau+1):n_tau_total, 1:n_tau] + J12 <- J[1:n_tau,c(n_tau+1):n_tau_total] + Sigma11 <- Sigma[1:n_tau,1:n_tau] + + V2 <- Sigma22 - J21%*%J11%*%Sigma12 - Sigma21%*%J11%*%J12 + + J21%*%J11%*%Sigma11%*%J11%*%J12 + TU[j] <- t(temp_score$Score[c(n_tau+1):n_tau_total]%*%solve(V2)%*% + temp_score$Score[c(n_tau+1):n_tau_total]) + df[j] <- n_tau_new + SIC[j] <- -as.numeric(TU[j]) + penalty*n_tau_total + #TU[j] <- as.numeric(TU[j]) + QQ[j] <- qchisq(0.95, df = n_tau_new) + df_total[j] <- n_tau_total + print(j) + } + output <- data.frame("SIC" = SIC, "df" = df, "df_total" = df_total, + "Tu" = TU, "Chisq" = QQ) + return(output) +} + diff --git a/R/mc_unstructured.R b/R/mc_unstructured.R deleted file mode 100644 index afc67eb968e7129b9c2f16e6a47451f081222583..0000000000000000000000000000000000000000 --- a/R/mc_unstructured.R +++ /dev/null @@ -1,22 +0,0 @@ -#' Unstructured model -#' -#' @description Builds a unstructured model matrix. -#' -#' @param n_time Number of observations per unit sample. -#' @return A matrix. Note that the function assumes that the data are in the correct order. -#' @export - -mc_unstructured <- function(n_time) { - mat.temp <- Matrix(0, ncol = n_time, nrow = n_time, sparse = TRUE) - non.diagonal.terms <- list() - non.diagonal <- t(combn(n_time, 2)) - n.cor.par <- dim(non.diagonal)[1] - ## Covariance elementary matrices - for (i in 1:n.cor.par) { - non.diagonal.terms[i][[1]] <- mat.temp - non.diagonal.terms[i][[1]][non.diagonal[i, 1], non.diagonal[i, 2]] <- non.diagonal.terms[i][[1]][non.diagonal[i, - 2], non.diagonal[i, 1]] <- 1 - } - ## Output - return(non.diagonal.terms) -} diff --git a/R/mc_variance_function.R b/R/mc_variance_function.R index f6fb9a699fedf0468d230b2174689edbaf69a4ea..0d54ff4a0937c4d77cb8020cdca8f8ccdac42ec1 100644 --- a/R/mc_variance_function.R +++ b/R/mc_variance_function.R @@ -30,7 +30,8 @@ #' mc_variance_function(mu = mu$mu, power = c(2,1), Ntrial = 1, variance = 'binomialPQ', #' inverse = FALSE, derivative_power = TRUE, derivative_mu = TRUE) # Generic variance function --------------------------- -mc_variance_function <- function(mu, power, Ntrial, variance, inverse, derivative_power, derivative_mu) { +mc_variance_function <- function(mu, power, Ntrial, variance, inverse, + derivative_power, derivative_mu) { assert_that(is.logical(inverse)) assert_that(is.logical(derivative_power)) assert_that(is.logical(derivative_mu)) diff --git a/buildPkg.R b/buildPkg.R index 3675b4b73daf9d5dc9fc5405a03d8bd66adc09c1..5fbe49cdc1b0015d7fc5ee67af9fe7becc3dd305 100644 --- a/buildPkg.R +++ b/buildPkg.R @@ -1,11 +1,11 @@ ##---------------------------------------------------------------------- ## Script to build and verify the package. -if(!grepl(x=getwd(), pattern="/mcglm$")){ - if (Sys.info()["user"]=="walmes"){ +if (!grepl(x = getwd(), pattern = "/mcglm$")) { + if (Sys.info()["user"] == "walmes") { setwd("~/GitLab/mcglm") } - ## stop("Move to /mcglm directory.") + ## stop('Move to /mcglm directory.') cat(getwd(), "\n") } @@ -38,7 +38,7 @@ packageVersion("mcglm") ##---------------------------------------------------------------------- ## Build the package (it will be one directory up). -build(manual = TRUE, vignettes = FALSE) +build(manual = TRUE, vignettes = TRUE) # build the binary version for windows (not used) # build_win() @@ -58,7 +58,7 @@ build_vignettes() ## Generate the README.md. library(knitr) -knit(input="README.Rmd") +knit(input = "README.Rmd") ##---------------------------------------------------------------------- ## Examples. @@ -77,11 +77,11 @@ install.packages(pkg, repos = NULL) ## Test using devtools::install_git(). libTest <- path.expand("~/R-test/") -if (file.exists(libTest)){ +if (file.exists(libTest)) { file.remove(libTest) } dir.create(path = libTest) - + .libPaths(new = c(libTest, .libPaths())); .libPaths() install_git(url = "http://git.leg.ufpr.br/wbonat/mcglm.git", diff --git a/data-raw/ahs.R b/data-raw/ahs.R index fd48eb6bb15d7d2a7dcadb76395350f65f311aee..b12140b750b1ba49cc2746b442387f0856255b70 100644 --- a/data-raw/ahs.R +++ b/data-raw/ahs.R @@ -1,5 +1,5 @@ ##---------------------------------------------------------------------- -## Prepare de the data set. +## Prepare the data set. setwd("/home/walmes/GitLab/mcglm/data-raw") @@ -14,7 +14,7 @@ str(ahs) library(lattice) library(latticeExtra) -data(ahs, package="mcglm") +## data(ahs, package="mcglm") str(ahs) xt <- xtabs(~age+sex, data=ahs) @@ -47,4 +47,11 @@ useOuterStrips( ) ) +## dir.create("../data/") +save(ahs, file = "../data/ahs.RData") +rm(list = ls()) +load("../data/ahs.RData") +ls() +str(ahs) + ##---------------------------------------------------------------------- diff --git a/data-raw/ahs.txt b/data-raw/ahs.txt new file mode 100644 index 0000000000000000000000000000000000000000..a7c112a829d1f2e27797adbaa6dce3ada9a10ccc --- /dev/null +++ b/data-raw/ahs.txt @@ -0,0 +1,5195 @@ +##---------------------------------------------------------------------- +## This dataset is part of mcglm package. +## Visit http://git.leg.ufpr.br/wbonat/mcglm for details. +##---------------------------------------------------------------------- +sex age income levyplus freepoor freerepa illness actdays hscore chcond Ndoc Nndoc Nadm Nhosp Nmed +male 0.19 0 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.19 0 0 0 0 1 4 0 otherwise 3 0 0 0 1 +male 0.19 0 0 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.19 0 0 0 0 2 0 3 otherwise 0 0 0 0 1 +male 0.19 0 0 0 0 3 0 0 otherwise 0 0 0 0 2 +male 0.19 0 0 0 1 3 0 3 not limited 0 0 0 0 0 +male 0.19 0 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0 0 1 0 1 0 0 not limited 1 0 1 5 1 +male 0.19 0 0 1 0 1 1 3 otherwise 0 0 0 0 0 +male 0.19 0 1 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.19 0 1 0 0 0 0 0 otherwise 0 0 1 1 0 +male 0.19 0 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.19 0 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0 1 0 0 1 0 0 otherwise 0 0 0 0 2 +male 0.19 0 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0 1 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.19 0 1 0 0 4 4 2 not limited 0 0 0 0 2 +male 0.19 0.01 0 0 0 1 1 0 not limited 0 0 0 0 1 +male 0.19 0.01 0 0 0 3 0 6 otherwise 0 0 0 0 1 +male 0.19 0.01 0 0 0 4 0 2 otherwise 0 0 0 0 0 +male 0.19 0.01 0 0 1 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.01 0 1 0 3 0 1 limited 0 0 1 1 0 +male 0.19 0.01 1 0 0 2 0 1 not limited 0 0 0 0 0 +male 0.19 0.06 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.06 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.06 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.19 0.06 0 0 0 1 0 5 otherwise 0 0 1 7 0 +male 0.19 0.06 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.06 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.19 0.06 0 0 0 2 0 12 otherwise 1 0 0 0 0 +male 0.19 0.06 0 1 0 0 0 3 otherwise 0 0 0 0 1 +male 0.19 0.06 0 1 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.06 0 1 0 0 0 1 otherwise 0 0 1 2 0 +male 0.19 0.06 0 1 0 0 0 0 not limited 0 0 0 0 1 +male 0.19 0.06 0 1 0 1 0 2 not limited 0 0 0 0 0 +male 0.19 0.06 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.06 1 0 0 1 1 0 otherwise 0 0 0 0 0 +male 0.19 0.06 1 0 0 2 7 9 otherwise 0 7 1 7 0 +male 0.19 0.06 1 0 0 2 1 2 otherwise 0 0 0 0 0 +male 0.19 0.15 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.19 0.15 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.15 0 0 0 0 0 5 otherwise 0 0 0 0 0 +male 0.19 0.15 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.15 0 0 0 0 0 2 otherwise 0 0 0 0 1 +male 0.19 0.15 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.15 0 0 0 1 0 0 otherwise 1 0 0 0 0 +male 0.19 0.15 0 0 0 1 0 2 otherwise 1 1 0 0 3 +male 0.19 0.15 0 0 0 1 0 1 not limited 0 0 0 0 1 +male 0.19 0.15 0 0 0 1 0 2 otherwise 0 0 0 0 1 +male 0.19 0.15 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.19 0.15 0 0 0 2 1 0 otherwise 0 0 0 0 2 +male 0.19 0.15 0 0 0 2 0 5 otherwise 0 0 0 0 0 +male 0.19 0.15 0 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.19 0.15 0 0 0 2 1 0 otherwise 0 0 0 0 3 +male 0.19 0.15 0 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.19 0.15 0 0 0 4 0 4 limited 0 0 0 0 3 +male 0.19 0.15 0 1 0 0 0 3 otherwise 0 0 0 0 0 +male 0.19 0.15 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.15 0 1 0 0 0 0 limited 0 0 1 4 0 +male 0.19 0.15 0 1 0 0 0 7 otherwise 0 0 0 0 0 +male 0.19 0.15 0 1 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.15 0 1 0 1 0 4 otherwise 1 0 0 0 0 +male 0.19 0.15 0 1 0 1 0 0 limited 0 0 0 0 0 +male 0.19 0.15 0 1 0 2 0 2 otherwise 0 0 0 0 1 +male 0.19 0.15 0 1 0 3 0 0 otherwise 0 0 0 0 0 +male 0.19 0.15 1 0 0 0 0 1 not limited 0 0 0 0 0 +male 0.19 0.15 1 0 0 0 0 0 not limited 0 0 0 0 2 +male 0.19 0.15 1 0 0 0 0 0 otherwise 0 1 0 0 0 +male 0.19 0.15 1 0 0 1 0 0 otherwise 1 0 0 0 1 +male 0.19 0.15 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.15 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.15 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.19 0.15 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.15 1 0 0 1 0 0 otherwise 0 0 1 4 0 +male 0.19 0.15 1 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 1 0 0 otherwise 1 0 0 0 1 +male 0.19 0.25 0 0 0 1 1 1 otherwise 0 0 1 3 0 +male 0.19 0.25 0 0 0 1 0 3 not limited 0 0 0 0 0 +male 0.19 0.25 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.25 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.19 0.25 0 0 0 1 0 2 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 1 0 2 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.19 0.25 0 0 0 1 0 2 otherwise 0 0 0 0 1 +male 0.19 0.25 0 0 0 1 0 5 otherwise 0 0 0 0 1 +male 0.19 0.25 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 3 2 3 otherwise 2 0 0 0 0 +male 0.19 0.25 0 0 0 3 0 1 not limited 0 0 0 0 0 +male 0.19 0.25 0 0 0 3 0 3 otherwise 0 0 0 0 0 +male 0.19 0.25 0 0 0 3 0 0 not limited 0 0 0 0 1 +male 0.19 0.25 0 0 1 2 0 2 otherwise 1 0 1 80 1 +male 0.19 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 1 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.25 0 1 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 1 +male 0.19 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 1 0 1 0 0 otherwise 2 0 0 0 0 +male 0.19 0.25 0 1 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 0 1 0 1 0 0 otherwise 0 0 1 5 0 +male 0.19 0.25 0 1 0 1 0 3 otherwise 0 0 0 0 0 +male 0.19 0.25 0 1 0 1 0 3 otherwise 0 0 0 0 0 +male 0.19 0.25 0 1 0 1 2 1 otherwise 0 0 0 0 1 +male 0.19 0.25 0 1 0 1 0 1 otherwise 0 0 0 0 1 +male 0.19 0.25 0 1 0 2 0 0 otherwise 0 0 1 1 0 +male 0.19 0.25 0 1 0 3 0 1 otherwise 0 0 0 0 1 +male 0.19 0.25 0 1 0 5 0 1 otherwise 0 0 1 11 0 +male 0.19 0.25 1 0 0 0 0 1 otherwise 1 0 1 3 0 +male 0.19 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.19 0.25 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.19 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 1 0 0 1 0 0 limited 1 0 2 7 1 +male 0.19 0.25 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.19 0.25 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.25 1 0 0 1 1 0 otherwise 0 0 0 0 1 +male 0.19 0.25 1 0 0 2 14 2 limited 0 0 2 80 0 +male 0.19 0.25 1 0 0 2 0 3 not limited 0 0 1 1 1 +male 0.19 0.25 1 0 0 3 1 0 not limited 1 0 0 0 2 +male 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.19 0.35 0 0 0 0 0 5 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 0 0 0 otherwise 0 1 0 0 0 +male 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 1 2 0 otherwise 2 0 1 2 0 +male 0.19 0.35 0 0 0 1 14 1 otherwise 4 0 1 7 0 +male 0.19 0.35 0 0 0 1 0 0 limited 0 0 0 0 0 +male 0.19 0.35 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.35 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.35 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.19 0.35 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 1 0 3 not limited 0 0 0 0 0 +male 0.19 0.35 0 0 0 1 0 0 otherwise 0 0 0 0 2 +male 0.19 0.35 0 0 0 2 3 0 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 2 0 2 otherwise 0 0 0 0 1 +male 0.19 0.35 0 0 0 2 0 1 not limited 0 0 0 0 1 +male 0.19 0.35 0 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 2 0 4 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 2 0 6 otherwise 0 0 0 0 1 +male 0.19 0.35 0 0 0 2 0 0 otherwise 0 0 0 0 1 +male 0.19 0.35 0 0 0 3 7 4 limited 0 0 1 2 0 +male 0.19 0.35 0 0 0 3 0 2 otherwise 0 0 0 0 0 +male 0.19 0.35 0 0 0 4 2 0 otherwise 0 0 0 0 1 +male 0.19 0.35 0 1 0 0 0 2 limited 0 0 0 0 3 +male 0.19 0.35 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 0 1 0 0 0 0 otherwise 0 0 0 0 7 +male 0.19 0.35 0 1 0 1 0 0 otherwise 0 3 0 0 0 +male 0.19 0.35 0 1 0 3 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.35 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.19 0.35 1 0 0 1 2 0 not limited 1 0 0 0 0 +male 0.19 0.35 1 0 0 1 0 3 not limited 0 7 0 0 0 +male 0.19 0.35 1 0 0 1 1 0 otherwise 0 0 0 0 2 +male 0.19 0.35 1 0 0 1 0 2 not limited 0 0 0 0 1 +male 0.19 0.35 1 0 0 2 0 1 otherwise 0 0 1 1 0 +male 0.19 0.35 1 0 0 2 0 2 otherwise 0 1 0 0 1 +male 0.19 0.35 1 0 0 3 0 1 otherwise 0 0 0 0 1 +male 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 0 0 0 not limited 0 0 1 7 0 +male 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 2 +male 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 0 0 0 not limited 0 0 2 1 0 +male 0.19 0.45 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.19 0.45 0 0 0 0 0 4 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 1 0 0 otherwise 1 0 0 0 1 +male 0.19 0.45 0 0 0 1 14 2 otherwise 1 0 1 4 0 +male 0.19 0.45 0 0 0 1 14 0 otherwise 1 0 1 2 0 +male 0.19 0.45 0 0 0 1 14 3 otherwise 1 1 0 0 1 +male 0.19 0.45 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.19 0.45 0 0 0 1 0 3 not limited 0 0 0 0 1 +male 0.19 0.45 0 0 0 1 3 1 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 1 4 0 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 2 +male 0.19 0.45 0 0 0 1 0 0 not limited 0 0 0 0 2 +male 0.19 0.45 0 0 0 1 0 3 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 1 0 5 not limited 0 0 0 0 2 +male 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 1 0 1 otherwise 0 2 0 0 1 +male 0.19 0.45 0 0 0 2 5 1 not limited 1 0 0 0 3 +male 0.19 0.45 0 0 0 2 2 2 otherwise 1 0 1 7 1 +male 0.19 0.45 0 0 0 2 0 2 otherwise 0 0 1 4 0 +male 0.19 0.45 0 0 0 2 0 0 otherwise 0 0 1 6 1 +male 0.19 0.45 0 0 0 2 0 2 limited 0 0 0 0 2 +male 0.19 0.45 0 0 0 3 0 0 otherwise 0 0 0 0 1 +male 0.19 0.45 0 0 0 3 1 1 otherwise 0 0 0 0 0 +male 0.19 0.45 0 0 0 3 0 4 otherwise 0 0 0 0 1 +male 0.19 0.45 0 0 0 4 7 6 not limited 1 0 0 0 0 +male 0.19 0.45 0 0 0 4 0 5 not limited 0 0 1 1 1 +male 0.19 0.45 0 0 0 4 0 4 otherwise 0 0 0 0 1 +male 0.19 0.45 0 1 0 0 0 1 otherwise 0 0 1 22 0 +male 0.19 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.19 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.19 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 1 0 0 0 0 4 otherwise 0 0 0 0 1 +male 0.19 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.45 1 0 0 1 0 5 otherwise 2 0 0 0 1 +male 0.19 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.45 1 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.19 0.45 1 0 0 1 0 1 otherwise 0 0 1 7 0 +male 0.19 0.45 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.19 0.45 1 0 0 2 2 0 otherwise 1 0 0 0 0 +male 0.19 0.45 1 0 0 3 0 1 not limited 0 0 0 0 1 +male 0.19 0.45 1 0 0 3 0 1 limited 0 0 0 0 0 +male 0.19 0.45 1 0 0 3 0 0 otherwise 0 0 0 0 1 +male 0.19 0.45 1 0 0 5 0 0 not limited 0 0 0 0 0 +male 0.19 0.45 1 0 0 5 0 2 limited 0 1 0 0 0 +male 0.19 0.55 0 0 0 0 1 0 otherwise 1 0 0 0 0 +male 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.19 0.55 0 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 1 0 2 not limited 0 0 1 6 1 +male 0.19 0.55 0 0 0 1 3 2 limited 0 0 2 1 1 +male 0.19 0.55 0 0 0 1 14 0 not limited 0 0 1 7 0 +male 0.19 0.55 0 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.19 0.55 0 0 0 1 0 6 limited 0 0 1 1 1 +male 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.55 0 0 0 1 2 0 otherwise 0 0 0 0 2 +male 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 1 11 0 +male 0.19 0.55 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 1 11 0 +male 0.19 0.55 0 0 0 1 1 0 not limited 0 0 0 0 1 +male 0.19 0.55 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 1 0 3 otherwise 0 0 0 0 1 +male 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.55 0 0 0 2 0 7 otherwise 1 0 0 0 3 +male 0.19 0.55 0 0 0 2 14 2 otherwise 1 0 0 0 1 +male 0.19 0.55 0 0 0 2 0 1 otherwise 1 0 0 0 0 +male 0.19 0.55 0 0 0 2 0 2 otherwise 2 1 0 0 1 +male 0.19 0.55 0 0 0 2 0 1 otherwise 0 0 0 0 1 +male 0.19 0.55 0 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 2 0 0 not limited 0 0 1 2 1 +male 0.19 0.55 0 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 2 2 3 otherwise 0 0 0 0 0 +male 0.19 0.55 0 0 0 2 1 0 otherwise 0 0 0 0 4 +male 0.19 0.55 0 0 0 2 2 0 otherwise 0 0 0 0 2 +male 0.19 0.55 0 0 0 3 13 1 not limited 2 0 0 0 0 +male 0.19 0.55 0 0 0 4 5 2 otherwise 4 0 0 0 3 +male 0.19 0.55 0 0 0 4 0 1 not limited 0 0 0 0 1 +male 0.19 0.55 0 1 0 0 0 0 not limited 1 0 0 0 0 +male 0.19 0.55 0 1 0 0 0 3 otherwise 0 0 0 0 0 +male 0.19 0.55 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.55 1 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.19 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 1 0 0 0 0 0 otherwise 0 0 1 2 0 +male 0.19 0.55 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.55 1 0 0 1 0 0 otherwise 1 0 0 0 0 +male 0.19 0.55 1 0 0 1 0 0 not limited 0 0 1 5 0 +male 0.19 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 1 0 0 1 0 3 not limited 0 0 0 0 0 +male 0.19 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.55 1 0 0 1 0 2 not limited 0 0 0 0 2 +male 0.19 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 1 0 0 1 1 0 not limited 0 0 1 11 0 +male 0.19 0.55 1 0 0 1 0 3 otherwise 0 0 0 0 1 +male 0.19 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 1 0 0 2 5 0 not limited 2 0 0 0 1 +male 0.19 0.55 1 0 0 2 0 3 otherwise 0 0 0 0 2 +male 0.19 0.55 1 0 0 2 0 2 otherwise 0 0 0 0 0 +male 0.19 0.55 1 0 0 2 1 1 otherwise 0 0 0 0 0 +male 0.19 0.55 1 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.19 0.55 1 0 0 3 6 1 otherwise 1 0 0 0 2 +male 0.19 0.55 1 0 0 3 0 0 not limited 0 0 0 0 2 +male 0.19 0.55 1 0 0 3 0 0 not limited 0 0 0 0 0 +male 0.19 0.65 0 0 0 0 0 1 otherwise 0 1 1 2 0 +male 0.19 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.19 0.65 0 0 0 0 0 0 otherwise 0 0 3 11 0 +male 0.19 0.65 0 0 0 0 0 0 otherwise 0 0 1 3 0 +male 0.19 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.65 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.19 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.65 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.19 0.65 0 0 0 1 0 3 otherwise 0 0 0 0 0 +male 0.19 0.65 0 0 0 1 0 2 not limited 0 0 2 1 1 +male 0.19 0.65 0 0 0 1 0 11 otherwise 0 0 0 0 1 +male 0.19 0.65 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.19 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.65 0 0 0 2 0 0 not limited 1 0 1 11 0 +male 0.19 0.65 0 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.19 0.65 0 0 0 3 0 0 limited 1 0 0 0 3 +male 0.19 0.65 0 0 0 3 0 4 limited 0 0 0 0 2 +male 0.19 0.65 0 0 0 3 0 0 not limited 0 0 1 22 1 +male 0.19 0.65 0 0 0 3 0 1 not limited 0 0 0 0 0 +male 0.19 0.65 0 0 0 3 0 1 not limited 0 0 0 0 0 +male 0.19 0.65 0 0 0 5 1 1 otherwise 0 0 0 0 0 +male 0.19 0.65 0 1 0 1 0 1 otherwise 0 1 0 0 0 +male 0.19 0.65 0 1 0 2 0 1 otherwise 0 0 0 0 0 +male 0.19 0.65 1 0 0 0 0 0 otherwise 1 0 0 0 0 +male 0.19 0.65 1 0 0 0 0 0 otherwise 0 0 1 1 0 +male 0.19 0.65 1 0 0 0 0 0 not limited 0 0 0 0 2 +male 0.19 0.65 1 0 0 0 0 4 otherwise 0 0 1 2 0 +male 0.19 0.65 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.19 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.65 1 0 0 1 0 4 otherwise 0 0 1 2 0 +male 0.19 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.65 1 0 0 1 1 0 not limited 0 0 0 0 0 +male 0.19 0.65 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.19 0.65 1 0 0 2 0 0 otherwise 2 0 0 0 0 +male 0.19 0.65 1 0 0 2 0 0 otherwise 0 0 2 11 1 +male 0.19 0.65 1 0 0 5 0 6 limited 0 0 0 0 1 +male 0.19 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.75 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.75 0 0 0 1 0 1 not limited 2 0 1 1 1 +male 0.19 0.75 0 0 0 1 8 1 otherwise 2 0 0 0 2 +male 0.19 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.75 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.19 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.19 0.75 0 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.19 0.75 0 0 0 2 0 2 otherwise 0 0 0 0 0 +male 0.19 0.75 0 1 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.75 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.75 1 0 0 0 0 2 otherwise 0 0 0 0 0 +male 0.19 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.75 1 0 0 1 0 1 not limited 0 0 1 5 0 +male 0.19 0.75 1 0 0 2 0 2 not limited 0 0 0 0 0 +male 0.19 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.9 0 0 0 0 0 1 not limited 0 0 0 0 0 +male 0.19 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.19 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.19 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 0.9 0 0 0 1 0 0 not limited 0 0 1 5 1 +male 0.19 0.9 0 0 0 1 0 3 otherwise 0 0 0 0 0 +male 0.19 0.9 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.19 0.9 0 0 0 3 0 0 otherwise 1 0 1 4 2 +male 0.19 0.9 0 0 1 0 0 1 otherwise 0 0 0 0 0 +male 0.19 0.9 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.19 0.9 1 0 0 1 0 0 otherwise 0 1 0 0 3 +male 0.19 0.9 1 0 0 1 0 2 not limited 0 0 0 0 0 +male 0.19 0.9 1 0 0 2 0 2 otherwise 0 0 1 1 0 +male 0.19 0.9 1 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.19 0.9 1 0 0 2 1 1 otherwise 0 0 1 1 1 +male 0.19 1.1 0 0 0 0 0 2 otherwise 0 0 0 0 1 +male 0.19 1.1 0 0 0 2 7 0 otherwise 1 0 0 0 0 +male 0.19 1.1 0 0 0 4 0 9 limited 0 1 1 1 0 +male 0.19 1.1 1 0 0 1 0 0 not limited 0 1 1 2 2 +male 0.19 1.3 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.19 1.5 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0 0 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.22 0 0 0 0 2 0 2 not limited 0 2 2 11 0 +male 0.22 0 0 1 0 1 14 1 not limited 7 2 1 11 4 +male 0.22 0 1 0 0 1 0 6 otherwise 0 0 0 0 2 +male 0.22 0.01 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.01 0 0 0 2 0 4 otherwise 0 1 0 0 1 +male 0.22 0.01 0 1 0 2 0 2 otherwise 0 0 0 0 0 +male 0.22 0.06 0 0 0 0 1 0 otherwise 2 0 0 0 0 +male 0.22 0.06 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.06 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.06 0 0 0 1 0 2 not limited 0 0 0 0 1 +male 0.22 0.06 0 0 0 2 0 1 otherwise 2 0 0 0 0 +male 0.22 0.06 0 1 0 1 0 2 not limited 0 0 0 0 0 +male 0.22 0.06 0 1 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.06 1 0 0 0 0 0 limited 1 0 0 0 1 +male 0.22 0.06 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.06 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.06 1 0 0 0 0 1 otherwise 0 0 0 0 2 +male 0.22 0.06 1 0 0 1 0 6 otherwise 1 0 0 0 1 +male 0.22 0.06 1 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.22 0.15 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.15 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.15 0 0 0 1 0 0 otherwise 0 1 0 0 1 +male 0.22 0.15 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.15 0 0 0 1 1 1 not limited 0 0 0 0 1 +male 0.22 0.15 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.15 0 0 0 2 0 2 otherwise 0 1 0 0 1 +male 0.22 0.15 0 0 0 3 0 0 not limited 0 0 0 0 0 +male 0.22 0.15 0 1 0 0 0 4 otherwise 0 0 0 0 0 +male 0.22 0.15 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.15 0 1 0 1 0 2 otherwise 0 2 0 0 0 +male 0.22 0.15 0 1 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.15 0 1 0 2 0 1 not limited 0 0 0 0 0 +male 0.22 0.15 0 1 0 3 0 4 not limited 0 2 0 0 0 +male 0.22 0.15 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.15 1 0 0 0 0 0 otherwise 0 0 1 1 0 +male 0.22 0.15 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.15 1 0 0 1 0 0 otherwise 1 6 0 0 2 +male 0.22 0.15 1 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.22 0.15 1 0 0 1 0 3 not limited 0 0 0 0 0 +male 0.22 0.15 1 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.22 0.15 1 0 0 1 0 0 not limited 0 0 1 1 0 +male 0.22 0.15 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.15 1 0 0 1 0 2 otherwise 0 0 0 0 0 +male 0.22 0.15 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.15 1 0 0 2 5 2 not limited 2 0 0 0 1 +male 0.22 0.15 1 0 0 2 9 1 not limited 1 0 1 2 0 +male 0.22 0.15 1 0 0 2 1 0 not limited 0 0 1 1 0 +male 0.22 0.15 1 0 0 4 0 0 limited 0 0 0 0 1 +male 0.22 0.15 1 0 0 4 0 8 not limited 0 0 1 1 0 +male 0.22 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.25 0 0 0 0 0 4 not limited 0 0 0 0 0 +male 0.22 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.25 0 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.22 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.25 0 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.22 0.25 0 0 0 0 0 2 not limited 0 0 0 0 0 +male 0.22 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.25 0 0 0 1 6 3 limited 1 0 0 0 1 +male 0.22 0.25 0 0 0 1 1 0 not limited 0 0 0 0 1 +male 0.22 0.25 0 0 0 1 0 3 not limited 0 0 0 0 0 +male 0.22 0.25 0 0 0 1 0 3 otherwise 0 0 0 0 1 +male 0.22 0.25 0 0 0 1 0 0 otherwise 0 1 0 0 1 +male 0.22 0.25 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.25 0 0 0 1 0 1 not limited 0 0 0 0 1 +male 0.22 0.25 0 0 0 3 0 2 otherwise 0 0 0 0 0 +male 0.22 0.25 0 0 0 4 0 0 not limited 0 0 0 0 1 +male 0.22 0.25 0 0 1 2 0 12 limited 1 0 1 80 5 +male 0.22 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.25 0 1 0 0 0 8 otherwise 0 0 0 0 0 +male 0.22 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.25 0 1 0 0 0 2 otherwise 0 0 0 0 0 +male 0.22 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.25 0 1 0 1 3 5 not limited 0 2 0 0 3 +male 0.22 0.25 0 1 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.25 0 1 0 1 0 1 otherwise 0 0 0 0 1 +male 0.22 0.25 0 1 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 0.25 0 1 0 2 0 5 otherwise 0 0 0 0 0 +male 0.22 0.25 0 1 0 3 9 2 not limited 0 0 0 0 0 +male 0.22 0.25 0 1 0 3 0 2 not limited 0 0 1 1 0 +male 0.22 0.25 0 1 0 3 0 1 not limited 0 1 1 22 2 +male 0.22 0.25 0 1 0 4 0 3 limited 0 0 0 0 0 +male 0.22 0.25 1 0 0 0 0 0 not limited 2 0 0 0 0 +male 0.22 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.25 1 0 0 1 0 0 not limited 0 0 1 1 0 +male 0.22 0.25 1 0 0 1 0 2 not limited 0 0 0 0 0 +male 0.22 0.25 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.25 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.25 1 0 0 2 0 5 not limited 0 0 0 0 0 +male 0.22 0.25 1 0 0 3 0 2 otherwise 0 0 0 0 1 +male 0.22 0.25 1 0 0 3 0 1 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 1 7 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 1 3 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 2 0 0 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 1 0 2 not limited 0 0 1 3 0 +male 0.22 0.35 0 0 0 1 0 4 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 0 0 2 2 4 not limited 1 0 0 0 2 +male 0.22 0.35 0 0 0 2 0 0 not limited 2 0 0 0 0 +male 0.22 0.35 0 0 0 3 0 2 not limited 0 2 0 0 0 +male 0.22 0.35 0 0 0 4 0 3 not limited 2 0 0 0 0 +male 0.22 0.35 0 0 0 5 0 11 otherwise 0 0 0 0 2 +male 0.22 0.35 0 1 0 0 0 1 otherwise 0 0 1 3 0 +male 0.22 0.35 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 1 0 1 0 2 not limited 0 0 0 0 1 +male 0.22 0.35 0 1 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 1 0 2 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 0 1 0 2 0 4 otherwise 0 0 0 0 0 +male 0.22 0.35 1 0 0 0 0 0 otherwise 0 0 1 5 0 +male 0.22 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 1 0 0 1 1 0 otherwise 0 0 0 0 0 +male 0.22 0.35 1 0 0 1 0 1 not limited 0 1 0 0 0 +male 0.22 0.35 1 0 0 1 2 1 otherwise 0 0 0 0 3 +male 0.22 0.35 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.35 1 0 0 2 0 0 not limited 1 0 0 0 0 +male 0.22 0.35 1 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.22 0.35 1 0 0 2 0 0 not limited 0 1 1 3 0 +male 0.22 0.35 1 0 0 2 0 2 not limited 0 0 0 0 2 +male 0.22 0.35 1 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.22 0.45 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.45 0 0 0 0 0 2 otherwise 0 0 0 0 1 +male 0.22 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.45 0 0 0 0 0 2 not limited 0 0 0 0 0 +male 0.22 0.45 0 0 0 0 0 2 not limited 0 0 0 0 1 +male 0.22 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.45 0 0 0 0 0 5 otherwise 0 0 0 0 0 +male 0.22 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.45 0 0 0 1 0 0 otherwise 2 0 0 0 0 +male 0.22 0.45 0 0 0 1 12 1 otherwise 4 0 1 4 0 +male 0.22 0.45 0 0 0 1 0 1 otherwise 1 2 0 0 2 +male 0.22 0.45 0 0 0 1 0 1 otherwise 1 0 0 0 1 +male 0.22 0.45 0 0 0 1 0 2 otherwise 0 0 0 0 0 +male 0.22 0.45 0 0 0 1 0 3 otherwise 0 0 0 0 1 +male 0.22 0.45 0 0 0 1 0 2 otherwise 0 0 0 0 1 +male 0.22 0.45 0 0 0 2 0 1 otherwise 1 1 0 0 0 +male 0.22 0.45 0 0 0 2 0 12 otherwise 0 0 0 0 0 +male 0.22 0.45 0 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.22 0.45 0 0 0 2 0 3 not limited 0 0 0 0 1 +male 0.22 0.45 0 0 0 3 0 2 not limited 0 0 0 0 0 +male 0.22 0.45 0 0 0 3 0 3 otherwise 0 0 0 0 0 +male 0.22 0.45 0 0 0 3 0 5 not limited 0 0 0 0 0 +male 0.22 0.45 0 0 0 5 2 0 limited 0 0 1 80 1 +male 0.22 0.45 0 0 0 5 0 9 otherwise 0 0 0 0 0 +male 0.22 0.45 0 1 0 0 0 7 otherwise 0 0 0 0 0 +male 0.22 0.45 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.45 0 1 0 2 14 9 otherwise 1 0 0 0 2 +male 0.22 0.45 0 1 0 3 3 2 limited 0 0 0 0 2 +male 0.22 0.45 0 1 0 3 2 0 not limited 0 1 0 0 1 +male 0.22 0.45 0 1 0 4 0 4 limited 0 0 0 0 0 +male 0.22 0.45 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.22 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.45 1 0 0 0 0 1 not limited 0 0 0 0 1 +male 0.22 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.45 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.45 1 0 0 1 0 0 otherwise 0 0 2 2 1 +male 0.22 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.45 1 0 0 1 1 0 otherwise 0 0 0 0 0 +male 0.22 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.45 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.22 0.45 1 0 0 2 0 4 not limited 0 0 0 0 0 +male 0.22 0.45 1 0 0 2 0 0 not limited 0 0 0 0 2 +male 0.22 0.45 1 0 0 3 0 9 not limited 0 0 0 0 2 +male 0.22 0.45 1 0 0 3 0 8 otherwise 0 2 0 0 0 +male 0.22 0.45 1 0 0 3 0 8 otherwise 0 2 0 0 0 +male 0.22 0.45 1 0 0 4 0 1 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.55 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.55 0 0 0 0 0 0 not limited 0 0 1 1 0 +male 0.22 0.55 0 0 0 0 0 2 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.55 0 0 0 0 0 1 otherwise 0 0 1 4 0 +male 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.22 0.55 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 0 0 2 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 0 0 3 otherwise 0 2 0 0 0 +male 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 0 0 0 otherwise 0 1 0 0 0 +male 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.55 0 0 0 1 3 0 otherwise 5 0 0 0 1 +male 0.22 0.55 0 0 0 1 0 0 not limited 1 0 0 0 0 +male 0.22 0.55 0 0 0 1 0 0 otherwise 0 0 1 2 0 +male 0.22 0.55 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 1 0 2 limited 0 0 0 0 0 +male 0.22 0.55 0 0 0 1 2 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 1 0 3 otherwise 0 0 0 0 1 +male 0.22 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 2 +male 0.22 0.55 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.55 0 0 0 1 1 0 limited 0 0 0 0 0 +male 0.22 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.55 0 0 0 1 0 3 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 2 14 1 limited 1 0 1 11 2 +male 0.22 0.55 0 0 0 2 0 0 otherwise 1 0 0 0 0 +male 0.22 0.55 0 0 0 2 0 1 not limited 0 0 1 22 0 +male 0.22 0.55 0 0 0 2 0 1 otherwise 0 0 0 0 1 +male 0.22 0.55 0 0 0 2 5 2 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 2 0 0 otherwise 0 0 0 0 2 +male 0.22 0.55 0 0 0 2 1 4 otherwise 0 0 0 0 0 +male 0.22 0.55 0 0 0 3 0 0 otherwise 2 0 0 0 0 +male 0.22 0.55 0 0 0 3 0 4 not limited 0 0 1 5 1 +male 0.22 0.55 0 0 0 3 0 0 otherwise 0 0 0 0 1 +male 0.22 0.55 0 0 0 3 0 5 not limited 0 0 0 0 0 +male 0.22 0.55 0 0 0 4 1 1 not limited 0 0 0 0 0 +male 0.22 0.55 0 0 0 4 0 2 not limited 0 0 0 0 0 +male 0.22 0.55 0 0 0 4 0 6 otherwise 0 0 0 0 0 +male 0.22 0.55 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 1 0 1 0 2 otherwise 0 0 0 0 0 +male 0.22 0.55 0 1 0 1 0 1 not limited 0 0 0 0 1 +male 0.22 0.55 0 1 0 2 5 1 otherwise 0 0 0 0 1 +male 0.22 0.55 0 1 0 2 14 1 limited 0 10 0 0 0 +male 0.22 0.55 0 1 0 2 0 1 otherwise 0 0 1 4 0 +male 0.22 0.55 0 1 0 2 0 3 otherwise 0 0 0 0 0 +male 0.22 0.55 0 1 0 2 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 0 1 0 3 0 1 not limited 0 0 0 0 0 +male 0.22 0.55 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 0 0 1 not limited 0 1 1 1 1 +male 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 0 0 2 not limited 0 0 0 0 0 +male 0.22 0.55 1 0 0 0 0 0 limited 0 0 1 2 1 +male 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 0 0 3 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 0 0 2 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 0.55 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.22 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.55 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 0.55 1 0 0 1 0 3 not limited 0 0 0 0 1 +male 0.22 0.55 1 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 2 0 1 otherwise 0 0 1 4 0 +male 0.22 0.55 1 0 0 2 0 2 not limited 0 0 0 0 0 +male 0.22 0.55 1 0 0 2 0 0 not limited 0 0 0 0 1 +male 0.22 0.55 1 0 0 2 0 2 limited 0 0 0 0 1 +male 0.22 0.55 1 0 0 4 0 0 otherwise 0 0 1 2 0 +male 0.22 0.55 1 0 0 4 0 0 otherwise 0 0 0 0 0 +male 0.22 0.55 1 0 0 5 0 1 not limited 0 0 0 0 3 +male 0.22 0.65 0 0 0 0 0 0 otherwise 0 0 1 1 0 +male 0.22 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 0 0 0 otherwise 0 0 1 7 0 +male 0.22 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.22 0.65 0 0 0 0 0 3 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.65 0 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.22 0.65 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.65 0 0 0 1 0 0 otherwise 1 0 0 0 1 +male 0.22 0.65 0 0 0 1 0 1 otherwise 1 0 1 1 0 +male 0.22 0.65 0 0 0 1 0 1 otherwise 1 1 0 0 5 +male 0.22 0.65 0 0 0 1 1 0 otherwise 1 0 0 0 0 +male 0.22 0.65 0 0 0 1 1 0 otherwise 2 0 0 0 0 +male 0.22 0.65 0 0 0 1 10 2 otherwise 4 7 0 0 1 +male 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 1 4 0 +male 0.22 0.65 0 0 0 1 0 0 not limited 0 0 0 0 3 +male 0.22 0.65 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 1 1 1 +male 0.22 0.65 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.22 0.65 0 0 0 1 14 0 limited 0 0 4 5 0 +male 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 1 0 2 not limited 0 0 0 0 0 +male 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 0.65 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.65 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 2 8 0 otherwise 1 0 0 0 0 +male 0.22 0.65 0 0 0 2 0 7 otherwise 2 0 0 0 0 +male 0.22 0.65 0 0 0 2 0 0 not limited 0 0 0 0 1 +male 0.22 0.65 0 0 0 2 0 2 otherwise 0 0 1 3 1 +male 0.22 0.65 0 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.22 0.65 0 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 2 0 4 not limited 0 0 0 0 0 +male 0.22 0.65 0 0 0 3 0 2 otherwise 1 0 0 0 1 +male 0.22 0.65 0 0 0 3 0 2 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 3 0 0 not limited 0 0 0 0 1 +male 0.22 0.65 0 0 0 3 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 0 0 4 0 8 not limited 1 0 1 1 1 +male 0.22 0.65 0 0 0 4 4 2 otherwise 2 0 0 0 0 +male 0.22 0.65 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 0 1 0 1 2 1 limited 0 0 0 0 0 +male 0.22 0.65 0 1 0 1 0 3 otherwise 0 0 0 0 0 +male 0.22 0.65 0 1 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.65 1 0 0 0 0 2 limited 1 0 0 0 2 +male 0.22 0.65 1 0 0 0 0 1 otherwise 1 0 1 2 0 +male 0.22 0.65 1 0 0 0 0 2 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 1 otherwise 0 0 1 3 1 +male 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 1 5 1 +male 0.22 0.65 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.65 1 0 0 1 1 11 not limited 1 0 0 0 2 +male 0.22 0.65 1 0 0 1 0 0 otherwise 1 0 0 0 1 +male 0.22 0.65 1 0 0 1 14 1 otherwise 4 7 3 6 0 +male 0.22 0.65 1 0 0 1 0 1 not limited 0 0 1 1 2 +male 0.22 0.65 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 0.65 1 0 0 1 0 0 otherwise 0 0 1 7 1 +male 0.22 0.65 1 0 0 1 0 0 otherwise 0 1 0 0 1 +male 0.22 0.65 1 0 0 1 9 0 otherwise 0 0 0 0 1 +male 0.22 0.65 1 0 0 2 1 1 otherwise 0 0 0 0 0 +male 0.22 0.65 1 0 0 2 0 2 otherwise 0 0 0 0 1 +male 0.22 0.65 1 0 0 3 0 0 otherwise 2 0 0 0 2 +male 0.22 0.65 1 0 0 3 14 1 otherwise 1 0 2 3 1 +male 0.22 0.65 1 0 0 3 5 1 not limited 0 0 0 0 2 +male 0.22 0.75 0 0 0 0 0 0 otherwise 1 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 1 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 2 limited 0 1 1 22 1 +male 0.22 0.75 0 0 0 0 0 1 otherwise 0 0 0 0 2 +male 0.22 0.75 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 1 3 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 1 not limited 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.75 0 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.22 0.75 0 0 0 1 0 2 otherwise 1 0 1 45 1 +male 0.22 0.75 0 0 0 1 0 0 otherwise 1 0 0 0 0 +male 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 1 7 0 +male 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 1 0 2 not limited 0 0 0 0 0 +male 0.22 0.75 0 0 0 1 14 3 limited 0 3 1 11 0 +male 0.22 0.75 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.22 0.75 0 0 0 1 1 0 not limited 0 0 0 0 2 +male 0.22 0.75 0 0 0 1 0 1 not limited 0 0 2 22 3 +male 0.22 0.75 0 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.22 0.75 0 0 0 1 1 0 not limited 0 0 0 0 1 +male 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.75 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 1 2 1 limited 0 0 0 0 1 +male 0.22 0.75 0 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.22 0.75 0 0 0 1 0 0 limited 0 0 0 0 1 +male 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 1 5 0 +male 0.22 0.75 0 0 0 1 0 0 limited 0 0 0 0 0 +male 0.22 0.75 0 0 0 2 0 3 not limited 1 1 0 0 0 +male 0.22 0.75 0 0 0 2 0 4 not limited 0 0 1 5 0 +male 0.22 0.75 0 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 2 0 0 otherwise 0 0 1 5 0 +male 0.22 0.75 0 0 0 2 0 1 otherwise 0 0 0 0 1 +male 0.22 0.75 0 0 0 2 0 3 not limited 0 0 0 0 0 +male 0.22 0.75 0 0 0 2 0 2 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 3 2 1 not limited 2 2 0 0 1 +male 0.22 0.75 0 0 0 3 0 0 not limited 0 0 0 0 0 +male 0.22 0.75 0 0 0 3 0 0 otherwise 0 0 1 6 2 +male 0.22 0.75 0 0 0 3 0 1 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 4 0 3 not limited 1 0 0 0 0 +male 0.22 0.75 0 0 0 4 1 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 0 0 5 0 6 not limited 1 0 0 0 0 +male 0.22 0.75 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 0 1 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.75 0 1 0 4 0 4 limited 0 0 0 0 2 +male 0.22 0.75 1 0 0 0 0 0 not limited 1 0 0 0 1 +male 0.22 0.75 1 0 0 0 0 1 otherwise 1 2 0 0 0 +male 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 0 0 2 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 1 5 0 +male 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.75 1 0 0 0 0 0 not limited 0 0 1 7 0 +male 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 0 0 2 limited 0 0 1 1 0 +male 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 0 0 6 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 1 0 1 otherwise 1 0 0 0 2 +male 0.22 0.75 1 0 0 1 0 2 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 1 1 1 otherwise 0 0 0 0 1 +male 0.22 0.75 1 0 0 1 1 0 limited 0 0 0 0 0 +male 0.22 0.75 1 0 0 1 0 1 otherwise 0 0 1 5 0 +male 0.22 0.75 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 2 0 0 otherwise 1 0 0 0 2 +male 0.22 0.75 1 0 0 2 0 1 not limited 1 0 0 0 0 +male 0.22 0.75 1 0 0 2 0 0 limited 2 0 1 45 0 +male 0.22 0.75 1 0 0 2 0 0 not limited 0 0 0 0 1 +male 0.22 0.75 1 0 0 2 0 2 otherwise 0 0 0 0 1 +male 0.22 0.75 1 0 0 2 0 6 not limited 0 0 0 0 1 +male 0.22 0.75 1 0 0 2 1 1 not limited 0 0 0 0 0 +male 0.22 0.75 1 0 0 2 0 2 otherwise 0 0 1 11 2 +male 0.22 0.75 1 0 0 2 0 0 not limited 0 2 1 3 0 +male 0.22 0.75 1 0 0 2 0 0 otherwise 0 0 0 0 1 +male 0.22 0.75 1 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 3 6 3 not limited 1 0 0 0 0 +male 0.22 0.75 1 0 0 3 0 0 not limited 0 0 0 0 3 +male 0.22 0.75 1 0 0 3 0 3 not limited 0 0 0 0 0 +male 0.22 0.75 1 0 0 3 0 0 otherwise 0 0 0 0 0 +male 0.22 0.75 1 0 0 4 0 3 not limited 0 0 0 0 0 +male 0.22 0.75 1 0 0 5 0 5 not limited 1 0 1 5 8 +male 0.22 0.9 0 0 0 0 14 1 not limited 2 0 1 4 1 +male 0.22 0.9 0 0 0 0 0 0 otherwise 1 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 3 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 not limited 0 0 1 6 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 4 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 2 not limited 0 0 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 not limited 0 1 0 0 0 +male 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 1 otherwise 1 0 0 0 0 +male 0.22 0.9 0 0 0 1 11 1 otherwise 4 0 0 0 0 +male 0.22 0.9 0 0 0 1 10 6 not limited 3 0 1 3 3 +male 0.22 0.9 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 1 11 0 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.22 0.9 0 0 0 1 0 1 not limited 0 0 0 0 1 +male 0.22 0.9 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 8 otherwise 0 1 0 0 0 +male 0.22 0.9 0 0 0 1 0 4 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 1 not limited 0 0 0 0 2 +male 0.22 0.9 0 0 0 1 1 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 1 11 1 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 0.9 0 0 0 2 1 3 otherwise 1 0 0 0 1 +male 0.22 0.9 0 0 0 2 5 5 otherwise 1 0 0 0 0 +male 0.22 0.9 0 0 0 2 0 0 not limited 0 0 0 0 1 +male 0.22 0.9 0 0 0 2 1 0 otherwise 0 0 1 2 1 +male 0.22 0.9 0 0 0 2 0 1 not limited 0 0 0 0 1 +male 0.22 0.9 0 0 0 2 4 0 otherwise 0 2 1 3 0 +male 0.22 0.9 0 0 0 2 0 0 otherwise 0 0 0 0 1 +male 0.22 0.9 0 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 3 4 0 otherwise 1 0 0 0 2 +male 0.22 0.9 0 0 0 3 0 2 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 3 0 5 limited 0 0 0 0 0 +male 0.22 0.9 0 0 0 3 0 2 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 3 2 6 not limited 0 0 1 45 0 +male 0.22 0.9 0 0 0 3 2 0 limited 0 0 0 0 1 +male 0.22 0.9 0 0 0 4 7 4 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 0 4 0 1 limited 0 0 0 0 1 +male 0.22 0.9 0 0 0 5 4 3 otherwise 0 0 0 0 0 +male 0.22 0.9 0 0 1 1 0 0 otherwise 0 0 0 0 2 +male 0.22 0.9 0 0 1 2 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 0 1 0 2 1 1 otherwise 0 0 2 1 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 1 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 limited 0 0 1 1 1 +male 0.22 0.9 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 1 not limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 1 not limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 0.9 1 0 0 1 0 5 not limited 1 0 0 0 2 +male 0.22 0.9 1 0 0 1 2 2 otherwise 1 0 0 0 3 +male 0.22 0.9 1 0 0 1 0 0 otherwise 1 0 0 0 0 +male 0.22 0.9 1 0 0 1 3 1 not limited 1 0 0 0 2 +male 0.22 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.22 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 1 0 0 limited 0 0 0 0 1 +male 0.22 0.9 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.22 0.9 1 0 0 1 0 0 otherwise 0 0 1 4 0 +male 0.22 0.9 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.22 0.9 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 1 0 2 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 1 0 1 not limited 0 1 0 0 0 +male 0.22 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 2 0 2 otherwise 1 0 0 0 0 +male 0.22 0.9 1 0 0 2 0 0 otherwise 0 0 1 4 0 +male 0.22 0.9 1 0 0 2 0 0 limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 2 0 2 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 2 1 1 not limited 0 0 1 11 1 +male 0.22 0.9 1 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 2 0 9 not limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 2 0 1 not limited 0 0 0 0 1 +male 0.22 0.9 1 0 0 2 0 1 not limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 2 0 1 otherwise 0 0 1 3 1 +male 0.22 0.9 1 0 0 2 0 2 not limited 0 0 0 0 1 +male 0.22 0.9 1 0 0 3 0 1 not limited 0 0 0 0 1 +male 0.22 0.9 1 0 0 3 1 0 limited 0 0 0 0 3 +male 0.22 0.9 1 0 0 3 0 0 not limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 3 0 1 otherwise 0 0 0 0 1 +male 0.22 0.9 1 0 0 3 1 0 otherwise 0 0 0 0 2 +male 0.22 0.9 1 0 0 3 0 1 not limited 0 0 0 0 1 +male 0.22 0.9 1 0 0 3 0 1 not limited 0 0 0 0 0 +male 0.22 0.9 1 0 0 3 0 0 otherwise 0 0 0 0 0 +male 0.22 0.9 1 0 0 4 0 3 otherwise 0 0 1 2 1 +male 0.22 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 1.1 0 0 0 1 0 0 otherwise 1 0 4 5 1 +male 0.22 1.1 0 0 0 1 0 0 otherwise 1 0 0 0 1 +male 0.22 1.1 0 0 0 1 0 1 not limited 0 0 0 0 1 +male 0.22 1.1 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 1.1 0 0 0 1 14 0 otherwise 0 0 0 0 0 +male 0.22 1.1 0 0 0 1 3 0 otherwise 0 7 0 0 2 +male 0.22 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 0 0 0 1 0 2 not limited 0 0 0 0 0 +male 0.22 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 5 +male 0.22 1.1 0 0 0 1 0 0 otherwise 0 0 1 1 0 +male 0.22 1.1 0 0 0 2 0 0 not limited 3 0 0 0 1 +male 0.22 1.1 0 0 0 2 0 2 otherwise 0 0 0 0 0 +male 0.22 1.1 0 0 0 2 4 1 otherwise 0 0 0 0 2 +male 0.22 1.1 0 0 0 3 0 4 otherwise 0 0 1 4 0 +male 0.22 1.1 0 0 0 3 0 0 limited 0 0 0 0 1 +male 0.22 1.1 0 0 0 3 1 0 not limited 0 0 0 0 1 +male 0.22 1.1 0 0 0 5 14 1 limited 0 0 0 0 2 +male 0.22 1.1 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 1 11 1 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 1.1 1 0 0 0 0 2 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 not limited 0 0 1 11 0 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 3 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 2 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 1.1 1 0 0 1 1 0 otherwise 1 0 0 0 2 +male 0.22 1.1 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.22 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 3 +male 0.22 1.1 1 0 0 1 0 0 limited 0 0 1 4 0 +male 0.22 1.1 1 0 0 1 0 0 limited 0 0 0 0 0 +male 0.22 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 1.1 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 1 0 7 otherwise 0 0 1 4 1 +male 0.22 1.1 1 0 0 1 0 3 otherwise 0 1 0 0 0 +male 0.22 1.1 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 1.1 1 0 0 1 0 4 not limited 0 1 0 0 1 +male 0.22 1.1 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.22 1.1 1 0 0 2 7 1 not limited 1 0 2 1 0 +male 0.22 1.1 1 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.22 1.1 1 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 2 0 3 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 2 0 5 otherwise 0 0 0 0 2 +male 0.22 1.1 1 0 0 3 0 0 limited 1 1 0 0 1 +male 0.22 1.1 1 0 0 3 0 0 not limited 1 0 0 0 1 +male 0.22 1.1 1 0 0 3 0 2 otherwise 0 1 0 0 2 +male 0.22 1.1 1 0 0 3 0 1 otherwise 0 0 0 0 1 +male 0.22 1.1 1 0 0 3 0 0 otherwise 0 0 0 0 0 +male 0.22 1.1 1 0 0 3 0 0 not limited 0 0 0 0 2 +male 0.22 1.1 1 0 0 3 0 2 not limited 0 0 0 0 2 +male 0.22 1.1 1 0 0 4 1 3 not limited 1 0 1 2 2 +male 0.22 1.1 1 0 0 5 0 1 otherwise 0 0 0 0 0 +male 0.22 1.3 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 1.3 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.3 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.3 0 0 0 0 0 0 otherwise 0 0 1 7 0 +male 0.22 1.3 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 1.3 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 1.3 0 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.22 1.3 0 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.22 1.3 0 0 0 2 0 3 limited 0 0 0 0 1 +male 0.22 1.3 0 0 0 3 0 0 not limited 0 0 0 0 1 +male 0.22 1.3 0 0 0 4 0 3 not limited 0 0 0 0 0 +male 0.22 1.3 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 1.3 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.22 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.3 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.22 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.3 1 0 0 3 0 0 not limited 0 0 1 11 2 +male 0.22 1.3 1 0 0 4 0 1 otherwise 1 0 0 0 2 +male 0.22 1.5 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.5 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.22 1.5 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.22 1.5 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 1.5 0 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.22 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.22 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.22 1.5 1 0 0 1 0 3 limited 4 0 0 0 1 +male 0.22 1.5 1 0 0 1 1 1 not limited 0 0 0 0 0 +male 0.22 1.5 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.22 1.5 1 0 0 2 14 5 otherwise 1 0 0 0 2 +male 0.22 1.5 1 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.22 1.5 1 0 0 3 8 1 otherwise 1 2 0 0 3 +male 0.22 1.5 1 0 0 5 0 0 not limited 1 0 0 0 2 +male 0.27 0.01 0 0 0 5 2 4 limited 0 0 0 0 2 +male 0.27 0.01 0 1 0 2 1 8 not limited 0 0 1 1 1 +male 0.27 0.06 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.06 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.27 0.06 1 0 0 1 0 0 limited 0 0 0 0 0 +male 0.27 0.15 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.15 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.27 0.15 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.15 0 1 0 2 0 6 otherwise 0 0 0 0 0 +male 0.27 0.15 0 1 0 5 0 2 not limited 0 0 0 0 1 +male 0.27 0.15 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.27 0.25 0 0 0 1 3 0 otherwise 0 0 0 0 1 +male 0.27 0.25 0 0 0 1 0 3 limited 0 0 0 0 1 +male 0.27 0.25 0 0 1 0 0 0 limited 0 0 0 0 1 +male 0.27 0.25 0 0 1 1 0 0 limited 0 0 0 0 3 +male 0.27 0.25 0 0 1 1 14 0 limited 0 0 0 0 0 +male 0.27 0.25 0 0 1 1 0 0 limited 0 0 0 0 0 +male 0.27 0.25 0 0 1 3 0 3 limited 1 0 1 80 0 +male 0.27 0.25 0 1 0 1 7 2 otherwise 0 0 0 0 1 +male 0.27 0.25 0 1 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.25 0 1 0 3 0 1 not limited 0 0 0 0 0 +male 0.27 0.25 0 1 0 3 0 0 not limited 0 0 0 0 0 +male 0.27 0.25 1 0 0 0 0 5 otherwise 0 0 1 1 1 +male 0.27 0.25 1 0 0 1 14 2 not limited 0 9 1 45 1 +male 0.27 0.25 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.25 1 0 0 1 0 8 otherwise 0 0 0 0 1 +male 0.27 0.25 1 0 0 2 0 0 not limited 2 0 0 0 1 +male 0.27 0.35 0 0 0 0 0 0 otherwise 1 0 0 0 0 +male 0.27 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.35 0 0 0 0 0 0 otherwise 0 0 1 2 0 +male 0.27 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.35 0 0 0 1 0 8 not limited 0 0 0 0 0 +male 0.27 0.35 0 0 0 1 1 4 otherwise 0 0 0 0 5 +male 0.27 0.35 0 0 0 1 2 0 otherwise 0 0 0 0 1 +male 0.27 0.35 0 0 0 2 5 10 otherwise 0 0 0 0 2 +male 0.27 0.35 0 0 0 4 0 1 not limited 0 0 0 0 3 +male 0.27 0.35 0 0 1 2 0 4 not limited 0 0 0 0 1 +male 0.27 0.35 1 0 0 1 3 0 otherwise 1 0 0 0 0 +male 0.27 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.45 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.27 0.45 0 0 0 1 0 5 otherwise 0 0 0 0 3 +male 0.27 0.45 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.27 0.45 0 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.27 0.45 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.27 0.45 0 0 0 5 3 3 otherwise 0 0 0 0 2 +male 0.27 0.45 0 1 0 2 0 1 not limited 0 0 0 0 1 +male 0.27 0.45 0 1 0 4 3 12 otherwise 0 0 1 7 0 +male 0.27 0.45 0 1 0 4 0 2 not limited 0 0 0 0 0 +male 0.27 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.27 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.45 1 0 0 5 0 0 not limited 0 0 0 0 1 +male 0.27 0.55 0 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.27 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.55 0 0 0 0 0 0 not limited 0 0 0 0 4 +male 0.27 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.27 0.55 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.27 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.55 0 0 0 1 0 3 otherwise 0 0 0 0 0 +male 0.27 0.55 0 0 0 3 2 1 otherwise 1 0 0 0 1 +male 0.27 0.55 0 0 0 3 0 0 otherwise 0 0 0 0 0 +male 0.27 0.55 0 0 0 4 8 8 otherwise 2 0 2 7 2 +male 0.27 0.55 0 1 0 0 0 8 otherwise 0 0 0 0 1 +male 0.27 0.55 0 1 0 2 0 2 not limited 0 0 0 0 2 +male 0.27 0.55 1 0 0 2 0 0 not limited 2 0 0 0 0 +male 0.27 0.55 1 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.27 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.65 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.27 0.65 0 0 0 0 0 0 limited 0 0 1 4 0 +male 0.27 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.65 0 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.27 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.65 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.27 0.65 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.27 0.65 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.27 0.65 0 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.27 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.27 0.65 0 0 0 3 0 3 limited 0 0 0 0 0 +male 0.27 0.65 0 0 0 5 3 3 not limited 3 0 0 0 1 +male 0.27 0.65 1 0 0 0 0 0 otherwise 1 0 0 0 1 +male 0.27 0.65 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.27 0.65 1 0 0 0 0 1 limited 0 0 0 0 1 +male 0.27 0.65 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.27 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.65 1 0 0 1 3 1 otherwise 1 0 0 0 2 +male 0.27 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.27 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.65 1 0 0 2 0 0 not limited 0 0 0 0 1 +male 0.27 0.75 0 0 0 0 0 1 otherwise 0 0 0 0 2 +male 0.27 0.75 0 0 0 0 0 0 limited 0 0 0 0 0 +male 0.27 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.75 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.27 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.27 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.27 0.75 0 0 0 1 0 0 limited 0 0 0 0 1 +male 0.27 0.75 0 0 0 1 0 0 limited 0 0 0 0 0 +male 0.27 0.75 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.27 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.75 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.27 0.75 0 0 0 2 2 0 limited 0 0 0 0 1 +male 0.27 0.75 0 0 0 2 0 0 otherwise 0 0 1 3 1 +male 0.27 0.75 0 0 0 2 0 4 not limited 0 0 0 0 1 +male 0.27 0.75 0 0 0 3 0 7 not limited 1 0 0 0 1 +male 0.27 0.75 0 0 0 3 0 5 otherwise 0 0 0 0 0 +male 0.27 0.75 0 0 0 4 0 1 not limited 0 0 0 0 5 +male 0.27 0.75 0 1 0 1 0 1 otherwise 0 0 0 0 0 +male 0.27 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.75 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.27 0.75 1 0 0 0 0 7 otherwise 0 0 0 0 0 +male 0.27 0.75 1 0 0 0 4 0 not limited 0 0 1 4 0 +male 0.27 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.75 1 0 0 1 0 0 otherwise 0 0 1 2 1 +male 0.27 0.75 1 0 0 1 1 0 not limited 0 0 0 0 0 +male 0.27 0.75 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.27 0.75 1 0 0 1 2 2 limited 0 2 0 0 0 +male 0.27 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.27 0.75 1 0 0 2 0 4 otherwise 0 0 0 0 0 +male 0.27 0.75 1 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.27 0.75 1 0 0 2 0 1 not limited 0 0 0 0 0 +male 0.27 0.75 1 0 0 4 2 1 not limited 1 0 0 0 4 +male 0.27 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.27 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 0 0 4 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.27 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 0 0 5 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 1 0 0 not limited 1 0 0 0 0 +male 0.27 0.9 0 0 0 1 0 0 not limited 1 0 1 2 0 +male 0.27 0.9 0 0 0 1 0 1 otherwise 0 0 0 0 2 +male 0.27 0.9 0 0 0 1 0 1 limited 0 0 0 0 1 +male 0.27 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.27 0.9 0 0 0 1 0 1 otherwise 0 0 1 4 0 +male 0.27 0.9 0 0 0 1 0 0 limited 0 0 0 0 0 +male 0.27 0.9 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.27 0.9 0 0 0 1 0 3 not limited 0 0 0 0 1 +male 0.27 0.9 0 0 0 1 0 0 limited 0 0 0 0 1 +male 0.27 0.9 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.27 0.9 0 0 0 1 0 4 not limited 0 0 1 1 0 +male 0.27 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.27 0.9 0 0 0 2 1 11 not limited 1 0 0 0 0 +male 0.27 0.9 0 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 0 0 0 2 0 0 not limited 0 0 0 0 2 +male 0.27 0.9 0 0 0 2 0 3 limited 0 0 0 0 0 +male 0.27 0.9 0 0 0 2 0 0 limited 0 0 0 0 0 +male 0.27 0.9 0 0 0 2 0 0 not limited 0 0 1 1 1 +male 0.27 0.9 0 0 0 2 0 5 not limited 0 0 0 0 1 +male 0.27 0.9 0 0 0 2 0 0 otherwise 0 0 0 0 1 +male 0.27 0.9 0 0 0 3 5 1 limited 3 0 0 0 1 +male 0.27 0.9 0 0 0 3 0 1 not limited 0 0 0 0 1 +male 0.27 0.9 0 0 0 3 0 1 not limited 0 0 0 0 0 +male 0.27 0.9 0 0 0 4 6 5 not limited 0 0 1 3 2 +male 0.27 0.9 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.27 0.9 1 0 0 0 0 1 limited 0 0 0 0 0 +male 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.27 0.9 1 0 0 0 0 1 not limited 0 0 0 0 0 +male 0.27 0.9 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 1 1 0 +male 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 1 5 2 otherwise 2 0 0 0 2 +male 0.27 0.9 1 0 0 1 3 0 otherwise 1 0 0 0 0 +male 0.27 0.9 1 0 0 1 4 1 limited 1 6 1 11 0 +male 0.27 0.9 1 0 0 1 1 0 otherwise 1 0 0 0 0 +male 0.27 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 1 0 0 otherwise 0 1 0 0 0 +male 0.27 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 1 0 4 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.27 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 0.9 1 0 0 1 1 2 not limited 0 0 0 0 1 +male 0.27 0.9 1 0 0 1 0 0 limited 0 0 0 0 0 +male 0.27 0.9 1 0 0 2 1 0 otherwise 1 0 0 0 1 +male 0.27 0.9 1 0 0 2 5 1 limited 1 2 0 0 2 +male 0.27 0.9 1 0 0 2 4 1 otherwise 1 0 0 0 2 +male 0.27 0.9 1 0 0 2 0 3 not limited 0 0 0 0 0 +male 0.27 0.9 1 0 0 2 2 2 otherwise 0 0 0 0 2 +male 0.27 0.9 1 0 0 2 0 0 limited 0 0 0 0 1 +male 0.27 0.9 1 0 0 3 0 0 limited 0 0 0 0 0 +male 0.27 0.9 1 0 0 4 0 2 not limited 0 0 0 0 1 +male 0.27 1.1 0 0 0 0 0 2 otherwise 0 0 1 2 0 +male 0.27 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 0 0 0 otherwise 0 0 1 2 0 +male 0.27 1.1 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.27 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.27 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 1 0 0 not limited 0 0 1 7 0 +male 0.27 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 1 0 2 otherwise 0 0 0 0 0 +male 0.27 1.1 0 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.27 1.1 0 0 0 1 0 0 limited 0 2 0 0 0 +male 0.27 1.1 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.27 1.1 0 0 0 2 0 1 otherwise 1 0 0 0 1 +male 0.27 1.1 0 0 0 2 0 1 not limited 0 0 1 7 2 +male 0.27 1.1 0 0 0 2 0 3 otherwise 0 0 3 4 0 +male 0.27 1.1 0 0 0 2 0 0 not limited 0 0 0 0 2 +male 0.27 1.1 0 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.27 1.1 0 0 0 2 0 3 otherwise 0 0 0 0 2 +male 0.27 1.1 0 0 0 3 0 3 not limited 0 1 0 0 1 +male 0.27 1.1 0 0 0 4 0 1 otherwise 0 2 0 0 1 +male 0.27 1.1 1 0 0 0 0 0 otherwise 0 0 1 5 0 +male 0.27 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.27 1.1 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.27 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.27 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 2 +male 0.27 1.1 1 0 0 0 0 0 otherwise 0 0 1 11 0 +male 0.27 1.1 1 0 0 0 0 0 otherwise 0 1 0 0 0 +male 0.27 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.27 1.1 1 0 0 0 0 1 not limited 0 0 0 0 0 +male 0.27 1.1 1 0 0 1 1 0 limited 1 0 0 0 1 +male 0.27 1.1 1 0 0 1 0 3 otherwise 2 0 0 0 1 +male 0.27 1.1 1 0 0 1 0 4 limited 0 0 0 0 0 +male 0.27 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 1.1 1 0 0 1 0 0 otherwise 0 1 0 0 1 +male 0.27 1.1 1 0 0 1 0 1 not limited 0 0 0 0 3 +male 0.27 1.1 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.27 1.1 1 0 0 1 1 0 otherwise 0 0 0 0 0 +male 0.27 1.1 1 0 0 2 3 3 otherwise 1 0 0 0 3 +male 0.27 1.1 1 0 0 2 0 0 otherwise 0 0 0 0 1 +male 0.27 1.1 1 0 0 2 0 4 not limited 0 0 0 0 0 +male 0.27 1.1 1 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.27 1.1 1 0 0 2 0 11 otherwise 0 3 0 0 0 +male 0.27 1.1 1 0 0 2 0 0 not limited 0 0 0 0 2 +male 0.27 1.1 1 0 0 2 0 0 not limited 0 0 0 0 1 +male 0.27 1.1 1 0 0 3 2 5 otherwise 1 1 0 0 0 +male 0.27 1.1 1 0 0 4 2 3 otherwise 0 0 0 0 4 +male 0.27 1.3 0 0 0 0 0 1 otherwise 1 0 0 0 0 +male 0.27 1.3 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.27 1.3 0 0 0 0 0 2 otherwise 0 0 0 0 1 +male 0.27 1.3 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.27 1.3 0 0 0 0 0 1 otherwise 0 0 0 0 3 +male 0.27 1.3 0 0 0 1 14 7 not limited 5 0 0 0 2 +male 0.27 1.3 0 0 0 1 0 0 limited 0 0 0 0 0 +male 0.27 1.3 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.27 1.3 0 0 0 1 0 0 limited 0 0 0 0 0 +male 0.27 1.3 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.27 1.3 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 1.3 0 0 0 2 0 0 otherwise 3 0 0 0 0 +male 0.27 1.3 0 0 0 2 0 3 otherwise 0 0 0 0 1 +male 0.27 1.3 1 0 0 0 0 0 otherwise 0 1 0 0 1 +male 0.27 1.3 1 0 0 0 0 0 not limited 0 0 3 3 3 +male 0.27 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.3 1 0 0 0 0 3 otherwise 0 0 0 0 0 +male 0.27 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.3 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.27 1.3 1 0 0 1 2 3 limited 1 0 0 0 1 +male 0.27 1.3 1 0 0 1 2 1 limited 0 0 0 0 3 +male 0.27 1.3 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 1.3 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 1.3 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 1.3 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 1.3 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 1.3 1 0 0 2 7 0 otherwise 2 0 0 0 0 +male 0.27 1.3 1 0 0 2 0 4 not limited 0 0 0 0 1 +male 0.27 1.3 1 0 0 2 3 1 not limited 0 0 0 0 1 +male 0.27 1.3 1 0 0 5 0 0 not limited 1 0 0 0 1 +male 0.27 1.5 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.27 1.5 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.5 0 0 0 1 14 5 otherwise 1 0 0 0 0 +male 0.27 1.5 0 0 0 1 0 0 limited 0 0 0 0 0 +male 0.27 1.5 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.27 1.5 0 0 0 1 0 3 otherwise 0 0 0 0 0 +male 0.27 1.5 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 1.5 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.27 1.5 0 0 0 2 0 0 otherwise 0 0 0 0 1 +male 0.27 1.5 0 0 0 2 0 2 otherwise 0 0 1 11 1 +male 0.27 1.5 0 0 0 2 0 3 not limited 0 0 0 0 0 +male 0.27 1.5 0 0 0 3 1 0 not limited 0 0 0 0 1 +male 0.27 1.5 0 0 0 3 0 0 otherwise 0 0 0 0 0 +male 0.27 1.5 0 0 0 5 0 0 not limited 1 0 0 0 2 +male 0.27 1.5 0 0 0 5 0 3 not limited 0 1 0 0 4 +male 0.27 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.5 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.27 1.5 1 0 0 0 1 1 otherwise 0 0 0 0 0 +male 0.27 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.27 1.5 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.27 1.5 1 0 0 1 0 0 not limited 1 0 0 0 1 +male 0.27 1.5 1 0 0 1 4 1 limited 2 0 0 0 0 +male 0.27 1.5 1 0 0 1 0 2 otherwise 0 0 0 0 1 +male 0.27 1.5 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.27 1.5 1 0 0 1 14 2 otherwise 0 1 0 0 0 +male 0.27 1.5 1 0 0 1 0 1 not limited 0 0 0 0 1 +male 0.27 1.5 1 0 0 1 0 1 limited 0 0 0 0 0 +male 0.27 1.5 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.27 1.5 1 0 0 1 0 0 not limited 0 1 0 0 0 +male 0.27 1.5 1 0 0 1 0 3 otherwise 0 0 0 0 0 +male 0.27 1.5 1 0 0 2 0 1 limited 1 0 2 7 1 +male 0.27 1.5 1 0 0 2 0 0 not limited 0 0 0 0 3 +male 0.27 1.5 1 0 0 3 0 2 limited 0 0 0 0 2 +male 0.27 1.5 1 0 0 4 0 0 not limited 0 0 0 0 0 +male 0.32 0 0 0 0 3 2 7 not limited 0 1 0 0 0 +male 0.32 0.01 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.15 0 0 0 0 0 8 limited 0 0 0 0 1 +male 0.32 0.15 0 1 0 2 5 3 otherwise 0 0 0 0 1 +male 0.32 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.25 0 0 0 1 0 0 otherwise 1 0 0 0 0 +male 0.32 0.25 0 0 0 2 0 0 otherwise 0 0 0 0 1 +male 0.32 0.25 0 0 1 2 0 2 limited 1 1 0 0 2 +male 0.32 0.25 0 0 1 2 0 4 not limited 1 0 1 11 1 +male 0.32 0.25 0 0 1 2 0 1 not limited 0 0 0 0 0 +male 0.32 0.25 0 0 1 3 0 4 limited 1 0 0 0 2 +male 0.32 0.25 0 1 0 1 0 5 otherwise 0 0 0 0 1 +male 0.32 0.25 1 0 0 2 14 1 limited 1 0 0 0 4 +male 0.32 0.25 1 0 0 2 1 0 otherwise 0 7 0 0 1 +male 0.32 0.35 0 0 0 0 0 3 not limited 0 0 0 0 0 +male 0.32 0.35 0 0 0 5 0 2 limited 0 0 0 0 1 +male 0.32 0.35 1 0 0 0 0 3 not limited 1 0 0 0 0 +male 0.32 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.32 0.45 0 0 0 2 0 0 not limited 2 0 0 0 2 +male 0.32 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.45 1 0 0 4 0 8 otherwise 1 0 0 0 0 +male 0.32 0.45 1 0 0 4 0 0 not limited 0 3 1 11 1 +male 0.32 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.55 0 0 0 2 0 7 not limited 0 0 0 0 0 +male 0.32 0.55 0 0 0 2 0 5 limited 0 0 0 0 2 +male 0.32 0.55 0 0 0 4 0 4 not limited 0 0 0 0 1 +male 0.32 0.55 1 0 0 0 0 1 not limited 0 0 0 0 2 +male 0.32 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.32 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.55 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.32 0.55 1 0 0 1 5 0 otherwise 1 0 0 0 0 +male 0.32 0.55 1 0 0 2 1 0 otherwise 0 0 0 0 2 +male 0.32 0.55 1 0 0 3 0 0 otherwise 0 0 0 0 1 +male 0.32 0.65 0 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.32 0.65 0 0 0 1 0 0 not limited 0 0 0 0 2 +male 0.32 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 2 +male 0.32 0.65 0 0 0 1 0 0 limited 0 0 0 0 2 +male 0.32 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.32 0.65 0 0 0 1 0 2 otherwise 0 0 0 0 0 +male 0.32 0.65 0 0 0 2 0 3 not limited 0 0 0 0 0 +male 0.32 0.65 0 0 0 4 0 12 not limited 1 0 1 6 2 +male 0.32 0.65 1 0 0 0 0 0 limited 0 0 0 0 1 +male 0.32 0.65 1 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.32 0.65 1 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.32 0.65 1 0 0 2 0 0 otherwise 1 0 0 0 0 +male 0.32 0.65 1 0 0 5 0 5 not limited 0 0 0 0 1 +male 0.32 0.75 0 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.32 0.75 0 0 0 0 0 0 otherwise 0 0 1 1 0 +male 0.32 0.75 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.32 0.75 0 0 0 1 0 1 not limited 1 1 0 0 1 +male 0.32 0.75 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.32 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.32 0.75 0 0 0 1 0 12 otherwise 0 0 1 1 2 +male 0.32 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.32 0.75 0 0 0 2 0 7 otherwise 1 0 0 0 2 +male 0.32 0.75 0 0 0 2 1 1 otherwise 1 0 0 0 2 +male 0.32 0.75 0 0 0 2 0 0 otherwise 0 0 1 1 0 +male 0.32 0.75 0 0 0 2 0 1 not limited 0 0 0 0 0 +male 0.32 0.75 0 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.32 0.75 0 0 0 4 0 3 limited 1 0 0 0 1 +male 0.32 0.75 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.75 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.32 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.75 1 0 0 0 0 0 limited 0 1 0 0 1 +male 0.32 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.75 1 0 0 0 0 0 otherwise 0 1 0 0 0 +male 0.32 0.75 1 0 0 2 0 4 otherwise 0 0 0 0 0 +male 0.32 0.75 1 0 0 3 0 0 otherwise 0 0 0 0 1 +male 0.32 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.9 0 0 0 0 0 4 otherwise 0 0 0 0 0 +male 0.32 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.32 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.9 0 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.32 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.9 0 0 0 0 0 1 not limited 0 0 2 5 0 +male 0.32 0.9 0 0 0 0 0 0 not limited 0 0 0 0 2 +male 0.32 0.9 0 0 0 0 0 2 otherwise 0 0 0 0 0 +male 0.32 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.9 0 0 0 1 0 5 not limited 0 1 0 0 0 +male 0.32 0.9 0 0 0 1 0 0 limited 0 0 0 0 0 +male 0.32 0.9 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.32 0.9 0 0 0 1 0 4 limited 0 0 0 0 0 +male 0.32 0.9 0 0 0 1 0 6 otherwise 0 0 0 0 0 +male 0.32 0.9 0 0 0 2 0 4 otherwise 0 0 0 0 2 +male 0.32 0.9 0 0 0 5 9 3 limited 2 0 3 5 7 +male 0.32 0.9 0 1 0 0 14 2 limited 0 0 1 22 0 +male 0.32 0.9 1 0 0 0 0 5 not limited 0 0 0 0 1 +male 0.32 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 0.9 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.32 0.9 1 0 0 0 0 3 otherwise 0 0 0 0 1 +male 0.32 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 2 +male 0.32 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.32 0.9 1 0 0 1 0 0 not limited 0 0 0 0 2 +male 0.32 0.9 1 0 0 1 0 10 not limited 0 0 0 0 2 +male 0.32 0.9 1 0 0 1 0 1 not limited 0 0 0 0 1 +male 0.32 0.9 1 0 0 2 3 2 otherwise 1 0 0 0 4 +male 0.32 0.9 1 0 0 2 0 1 otherwise 2 0 0 0 1 +male 0.32 0.9 1 0 0 2 12 3 not limited 3 0 0 0 3 +male 0.32 0.9 1 0 0 2 0 0 not limited 0 0 0 0 1 +male 0.32 0.9 1 0 0 2 0 0 not limited 0 0 0 0 1 +male 0.32 0.9 1 0 0 2 1 4 otherwise 0 0 0 0 0 +male 0.32 1.1 0 0 0 0 0 3 otherwise 0 0 0 0 0 +male 0.32 1.1 0 0 0 0 0 1 otherwise 0 1 0 0 2 +male 0.32 1.1 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.32 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.1 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.32 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.1 0 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.32 1.1 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.32 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.32 1.1 0 0 0 2 0 9 otherwise 0 0 0 0 1 +male 0.32 1.1 0 0 0 2 0 0 otherwise 0 0 0 0 1 +male 0.32 1.1 0 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.32 1.1 0 0 0 3 0 3 not limited 1 0 0 0 2 +male 0.32 1.1 0 0 0 3 0 0 not limited 0 0 1 11 1 +male 0.32 1.1 0 1 0 2 0 9 not limited 0 0 3 11 0 +male 0.32 1.1 1 0 0 0 0 0 not limited 0 0 0 0 2 +male 0.32 1.1 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.32 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.32 1.1 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.32 1.1 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.32 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.1 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.32 1.1 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.32 1.1 1 0 0 1 0 0 not limited 0 0 0 0 2 +male 0.32 1.1 1 0 0 1 0 5 otherwise 0 0 1 1 1 +male 0.32 1.1 1 0 0 1 5 2 not limited 0 2 0 0 1 +male 0.32 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.32 1.1 1 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.32 1.1 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.32 1.1 1 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.32 1.1 1 0 0 2 1 0 not limited 0 0 0 0 2 +male 0.32 1.1 1 0 0 2 3 0 otherwise 0 1 0 0 0 +male 0.32 1.1 1 0 0 4 0 8 limited 0 1 0 0 1 +male 0.32 1.3 0 0 0 0 0 12 otherwise 1 0 0 0 0 +male 0.32 1.3 0 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.32 1.3 0 0 0 1 7 3 not limited 1 0 0 0 6 +male 0.32 1.3 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.32 1.3 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.32 1.3 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.32 1.3 0 0 0 3 0 0 otherwise 0 0 0 0 2 +male 0.32 1.3 1 0 0 0 0 0 otherwise 0 1 0 0 0 +male 0.32 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.3 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.32 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.3 1 0 0 1 0 3 not limited 0 0 0 0 2 +male 0.32 1.3 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.32 1.3 1 0 0 1 0 0 otherwise 0 0 0 0 2 +male 0.32 1.3 1 0 0 1 0 2 not limited 0 0 0 0 0 +male 0.32 1.3 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.32 1.3 1 0 0 1 0 1 not limited 0 0 0 0 1 +male 0.32 1.3 1 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.32 1.3 1 0 0 2 4 12 not limited 0 4 0 0 4 +male 0.32 1.3 1 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.32 1.3 1 0 0 4 0 1 not limited 0 0 0 0 2 +male 0.32 1.3 1 0 0 5 14 9 limited 2 2 1 11 2 +male 0.32 1.5 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.5 0 0 0 0 0 0 limited 0 0 1 1 0 +male 0.32 1.5 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.32 1.5 0 0 0 0 0 4 otherwise 0 0 0 0 0 +male 0.32 1.5 0 0 0 0 0 2 not limited 0 0 0 0 1 +male 0.32 1.5 0 0 0 1 4 6 otherwise 1 0 0 0 4 +male 0.32 1.5 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.32 1.5 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.32 1.5 0 0 0 4 0 3 not limited 0 0 0 0 1 +male 0.32 1.5 1 0 0 0 0 0 not limited 1 0 0 0 1 +male 0.32 1.5 1 0 0 0 0 0 otherwise 1 0 0 0 0 +male 0.32 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.5 1 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.32 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.32 1.5 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.32 1.5 1 0 0 1 0 0 not limited 1 0 0 0 1 +male 0.32 1.5 1 0 0 1 0 2 otherwise 0 0 2 2 0 +male 0.32 1.5 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.32 1.5 1 0 0 1 1 3 not limited 0 1 0 0 2 +male 0.32 1.5 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.32 1.5 1 0 0 1 0 2 otherwise 0 0 0 0 0 +male 0.32 1.5 1 0 0 1 1 0 not limited 0 0 0 0 0 +male 0.32 1.5 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.32 1.5 1 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.32 1.5 1 0 0 2 0 1 otherwise 1 1 0 0 3 +male 0.32 1.5 1 0 0 2 0 4 not limited 1 0 0 0 1 +male 0.32 1.5 1 0 0 2 0 0 otherwise 1 0 0 0 1 +male 0.32 1.5 1 0 0 2 2 2 not limited 0 0 0 0 2 +male 0.32 1.5 1 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.32 1.5 1 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.32 1.5 1 0 0 3 0 5 limited 0 0 0 0 0 +male 0.32 1.5 1 0 0 4 0 2 limited 0 0 0 0 5 +male 0.37 0.06 0 0 0 2 12 0 otherwise 0 0 0 0 3 +male 0.37 0.15 0 0 0 5 14 2 limited 0 0 0 0 4 +male 0.37 0.15 0 0 1 0 0 0 limited 0 0 0 0 0 +male 0.37 0.15 1 0 0 3 0 0 not limited 0 0 0 0 2 +male 0.37 0.25 0 0 0 1 0 1 otherwise 0 1 0 0 3 +male 0.37 0.25 1 0 0 1 0 1 otherwise 0 0 0 0 3 +male 0.37 0.35 0 0 0 0 0 0 otherwise 0 0 2 1 0 +male 0.37 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.37 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.37 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.37 0.45 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.37 0.45 1 0 0 1 0 4 limited 0 0 0 0 0 +male 0.37 0.45 1 0 0 1 0 1 not limited 0 0 0 0 6 +male 0.37 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.37 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.37 0.55 1 0 0 2 0 8 otherwise 0 0 0 0 1 +male 0.37 0.55 1 0 0 3 7 12 limited 3 0 0 0 1 +male 0.37 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.37 0.65 0 0 0 1 0 0 otherwise 1 0 0 0 1 +male 0.37 0.65 0 0 0 4 0 5 otherwise 0 0 0 0 0 +male 0.37 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.37 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.37 0.65 1 0 0 1 0 0 otherwise 0 0 2 1 0 +male 0.37 0.65 1 0 0 2 5 0 not limited 2 0 0 0 2 +male 0.37 0.65 1 0 0 2 0 1 otherwise 0 0 0 0 0 +male 0.37 0.75 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.37 0.75 0 0 0 1 0 0 otherwise 1 0 0 0 1 +male 0.37 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.37 0.75 1 0 0 1 0 0 limited 1 0 0 0 0 +male 0.37 0.75 1 0 0 1 3 2 not limited 0 0 0 0 3 +male 0.37 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.37 0.75 1 0 0 4 0 5 otherwise 0 0 0 0 1 +male 0.37 0.9 0 0 0 1 3 1 not limited 0 0 0 0 1 +male 0.37 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.37 0.9 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.37 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.37 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.37 0.9 0 0 0 1 0 0 otherwise 0 1 0 0 0 +male 0.37 0.9 0 0 0 2 0 3 otherwise 0 0 0 0 0 +male 0.37 0.9 0 0 0 5 0 4 otherwise 0 0 1 2 0 +male 0.37 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.37 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.37 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.37 0.9 1 0 0 3 2 4 limited 0 2 0 0 0 +male 0.37 0.9 1 0 0 4 2 2 otherwise 1 0 0 0 2 +male 0.37 1.1 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.37 1.1 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.37 1.1 0 0 0 4 0 4 otherwise 0 0 0 0 2 +male 0.37 1.1 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.37 1.1 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.37 1.1 1 0 0 1 0 0 otherwise 0 0 1 11 1 +male 0.37 1.1 1 0 0 1 0 4 otherwise 0 0 0 0 0 +male 0.37 1.1 1 0 0 2 0 7 limited 1 0 0 0 3 +male 0.37 1.1 1 0 0 3 1 1 not limited 0 0 0 0 1 +male 0.37 1.1 1 0 0 3 0 2 otherwise 0 0 1 2 0 +male 0.37 1.1 1 0 0 3 4 3 otherwise 0 0 0 0 2 +male 0.37 1.3 0 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.37 1.3 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.37 1.3 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.37 1.3 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.37 1.3 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.37 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 3 +male 0.37 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.37 1.3 1 0 0 0 0 1 not limited 0 0 0 0 0 +male 0.37 1.3 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.37 1.3 1 0 0 2 0 3 not limited 1 0 0 0 0 +male 0.37 1.3 1 0 0 2 0 1 not limited 0 0 0 0 1 +male 0.37 1.3 1 0 0 2 0 0 not limited 0 0 0 0 1 +male 0.37 1.3 1 0 0 3 1 1 limited 0 0 0 0 0 +male 0.37 1.5 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.37 1.5 0 0 0 1 3 2 not limited 1 0 0 0 2 +male 0.37 1.5 0 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.37 1.5 0 0 0 2 0 1 otherwise 0 0 0 0 1 +male 0.37 1.5 1 0 0 0 0 1 otherwise 1 0 0 0 0 +male 0.37 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.37 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.37 1.5 1 0 0 0 0 0 not limited 0 0 0 0 3 +male 0.37 1.5 1 0 0 1 0 0 otherwise 0 0 1 11 1 +male 0.37 1.5 1 0 0 1 0 8 otherwise 0 0 0 0 0 +male 0.37 1.5 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.37 1.5 1 0 0 1 0 0 not limited 0 0 0 0 2 +male 0.37 1.5 1 0 0 1 0 5 not limited 0 1 0 0 2 +male 0.37 1.5 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.37 1.5 1 0 0 2 0 0 not limited 0 0 0 0 1 +male 0.37 1.5 1 0 0 2 0 1 otherwise 0 0 0 0 2 +male 0.42 0.06 0 1 0 2 0 0 otherwise 0 0 0 0 0 +male 0.42 0.15 0 0 0 0 0 3 otherwise 0 0 0 0 0 +male 0.42 0.15 0 0 0 1 14 6 otherwise 1 0 0 0 2 +male 0.42 0.15 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.42 0.25 0 0 0 1 2 0 otherwise 0 0 0 0 0 +male 0.42 0.25 0 0 1 1 0 6 limited 0 0 0 0 5 +male 0.42 0.25 0 0 1 4 5 4 limited 0 0 0 0 6 +male 0.42 0.25 0 0 1 5 14 7 limited 2 0 0 0 5 +male 0.42 0.25 0 1 0 1 0 1 not limited 0 0 0 0 1 +male 0.42 0.35 0 1 0 0 0 0 otherwise 0 0 0 0 1 +male 0.42 0.35 1 0 0 2 0 0 otherwise 0 0 0 0 1 +male 0.42 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.42 0.45 0 0 0 2 0 0 limited 0 0 0 0 1 +male 0.42 0.45 0 1 0 0 0 1 limited 0 0 0 0 0 +male 0.42 0.45 1 0 0 2 0 1 limited 0 0 0 0 1 +male 0.42 0.65 0 0 0 1 0 0 not limited 0 0 0 0 3 +male 0.42 0.65 0 0 0 3 6 0 limited 1 0 0 0 0 +male 0.42 0.65 0 0 1 2 14 12 limited 1 0 0 0 2 +male 0.42 0.65 0 1 0 1 0 2 otherwise 0 0 0 0 1 +male 0.42 0.65 1 0 0 2 2 0 otherwise 1 0 0 0 2 +male 0.42 0.65 1 0 0 4 14 5 limited 6 0 2 11 3 +male 0.42 0.75 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.42 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.42 0.75 0 0 0 1 1 0 otherwise 0 0 0 0 0 +male 0.42 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.42 0.75 0 1 0 2 0 0 not limited 0 0 0 0 0 +male 0.42 0.75 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.42 0.75 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.42 0.75 1 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.42 0.9 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.42 0.9 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.42 0.9 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.42 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.42 0.9 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.42 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.42 0.9 0 0 0 1 0 2 otherwise 0 0 0 0 1 +male 0.42 0.9 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.42 0.9 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.42 0.9 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.42 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.42 0.9 1 0 0 0 0 0 otherwise 0 0 1 1 1 +male 0.42 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.42 0.9 1 0 0 2 2 3 limited 0 2 0 0 3 +male 0.42 0.9 1 0 0 2 0 9 not limited 0 0 0 0 2 +male 0.42 0.9 1 0 0 2 3 0 not limited 0 0 0 0 1 +male 0.42 1.1 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.42 1.1 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.42 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.42 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.42 1.1 0 0 0 3 0 0 limited 0 0 0 0 2 +male 0.42 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.42 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 3 +male 0.42 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.42 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.42 1.1 1 0 0 1 0 4 not limited 1 0 0 0 0 +male 0.42 1.1 1 0 0 1 0 2 limited 0 0 0 0 3 +male 0.42 1.1 1 0 0 2 11 0 limited 6 0 2 11 0 +male 0.42 1.1 1 0 0 2 0 0 otherwise 0 0 0 0 3 +male 0.42 1.1 1 0 0 3 0 0 not limited 1 0 0 0 1 +male 0.42 1.3 0 0 0 2 0 0 not limited 0 0 0 0 4 +male 0.42 1.3 0 0 0 3 0 1 limited 1 0 0 0 1 +male 0.42 1.3 0 0 0 3 0 1 not limited 0 0 0 0 0 +male 0.42 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.42 1.3 1 0 0 1 0 1 otherwise 1 0 0 0 1 +male 0.42 1.3 1 0 0 1 0 0 not limited 0 0 1 3 0 +male 0.42 1.5 0 0 0 0 0 0 limited 0 0 0 0 0 +male 0.42 1.5 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.42 1.5 0 0 0 0 0 0 not limited 0 0 0 0 2 +male 0.42 1.5 0 0 0 1 0 1 not limited 1 0 0 0 0 +male 0.42 1.5 0 0 0 4 0 4 not limited 1 0 0 0 4 +male 0.42 1.5 0 0 0 4 0 5 limited 0 0 0 0 2 +male 0.42 1.5 1 0 0 0 0 0 otherwise 1 0 1 1 0 +male 0.42 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.42 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.42 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.42 1.5 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.42 1.5 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.42 1.5 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.42 1.5 1 0 0 1 0 1 otherwise 0 0 0 0 1 +male 0.42 1.5 1 0 0 2 0 0 limited 0 1 0 0 2 +male 0.42 1.5 1 0 0 4 0 3 not limited 0 2 0 0 2 +male 0.47 0 0 0 0 3 0 1 not limited 0 0 0 0 0 +male 0.47 0 0 1 0 0 0 0 not limited 0 0 0 0 0 +male 0.47 0 1 0 0 1 0 3 otherwise 0 0 0 0 0 +male 0.47 0.15 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 0.15 0 0 1 2 0 1 not limited 0 0 0 0 2 +male 0.47 0.15 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.47 0.25 0 0 0 4 1 6 not limited 0 0 0 0 3 +male 0.47 0.25 0 0 1 1 0 4 not limited 1 0 0 0 0 +male 0.47 0.25 0 0 1 2 0 0 limited 0 2 1 45 1 +male 0.47 0.25 0 0 1 3 3 1 limited 0 1 3 4 1 +male 0.47 0.25 0 1 0 0 0 4 otherwise 0 0 0 0 0 +male 0.47 0.35 0 0 1 0 0 1 otherwise 0 0 0 0 1 +male 0.47 0.35 0 0 1 1 0 0 limited 0 0 0 0 1 +male 0.47 0.35 0 1 0 1 0 0 not limited 0 0 0 0 1 +male 0.47 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 0.35 1 0 0 5 0 5 limited 0 1 1 22 8 +male 0.47 0.45 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.47 0.45 1 0 0 5 0 3 not limited 0 0 0 0 1 +male 0.47 0.55 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.47 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.47 0.55 0 0 1 1 0 0 limited 1 1 0 0 1 +male 0.47 0.65 0 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.47 0.65 1 0 0 0 0 0 otherwise 1 0 0 0 0 +male 0.47 0.65 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.47 0.65 1 0 0 0 0 0 otherwise 0 0 1 22 0 +male 0.47 0.65 1 0 0 0 0 0 otherwise 0 1 0 0 0 +male 0.47 0.65 1 0 0 1 0 0 otherwise 1 0 0 0 1 +male 0.47 0.65 1 0 0 3 0 0 otherwise 0 0 0 0 0 +male 0.47 0.65 1 0 0 5 0 0 not limited 0 1 0 0 1 +male 0.47 0.75 0 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.47 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 0.75 0 0 0 4 0 6 not limited 0 0 0 0 1 +male 0.47 0.75 1 0 0 0 0 0 not limited 1 0 0 0 0 +male 0.47 0.75 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.47 0.75 1 0 0 0 0 2 otherwise 0 0 0 0 1 +male 0.47 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 0.75 1 0 0 1 0 3 otherwise 1 0 0 0 0 +male 0.47 0.75 1 0 0 1 14 6 not limited 2 0 2 11 1 +male 0.47 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.47 0.75 1 0 0 5 14 7 limited 2 0 0 0 5 +male 0.47 0.9 0 0 0 0 0 0 not limited 0 0 0 0 3 +male 0.47 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 0.9 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.47 0.9 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.47 0.9 0 0 0 1 0 6 otherwise 0 0 0 0 1 +male 0.47 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 0.9 1 0 0 1 0 0 not limited 1 0 0 0 1 +male 0.47 0.9 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.47 0.9 1 0 0 1 0 1 not limited 0 0 0 0 4 +male 0.47 0.9 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.47 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.47 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.47 0.9 1 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.47 0.9 1 0 0 3 3 0 limited 1 0 0 0 1 +male 0.47 0.9 1 0 0 3 0 0 limited 0 0 1 7 0 +male 0.47 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.47 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.47 1.1 0 0 0 5 0 6 limited 0 0 0 0 3 +male 0.47 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 1.1 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.47 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 1.1 1 0 0 1 1 0 not limited 1 0 2 11 1 +male 0.47 1.3 0 0 0 0 0 0 not limited 0 0 0 0 2 +male 0.47 1.3 0 0 0 2 0 4 not limited 0 1 0 0 1 +male 0.47 1.3 1 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.47 1.3 1 0 0 1 0 7 not limited 0 0 0 0 0 +male 0.47 1.3 1 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.47 1.3 1 0 0 2 0 1 limited 0 0 0 0 0 +male 0.47 1.3 1 0 0 2 0 0 not limited 0 1 0 0 2 +male 0.47 1.5 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.47 1.5 0 0 0 1 1 1 not limited 0 0 0 0 2 +male 0.47 1.5 0 0 0 2 0 0 not limited 1 0 0 0 2 +male 0.47 1.5 1 0 0 0 0 0 otherwise 1 0 0 0 0 +male 0.47 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 1.5 1 0 0 0 0 1 otherwise 0 1 0 0 0 +male 0.47 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.47 1.5 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.47 1.5 1 0 0 1 0 2 limited 0 0 0 0 1 +male 0.47 1.5 1 0 0 1 0 4 otherwise 0 0 0 0 0 +male 0.47 1.5 1 0 0 1 0 1 limited 0 0 0 0 1 +male 0.47 1.5 1 0 0 2 2 0 otherwise 2 0 0 0 0 +male 0.47 1.5 1 0 0 2 1 1 otherwise 1 3 1 3 1 +male 0.47 1.5 1 0 0 2 0 0 not limited 0 0 0 0 3 +male 0.52 0 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.52 0 1 0 0 2 5 5 not limited 0 0 0 0 0 +male 0.52 0.06 0 0 0 0 0 0 not limited 0 0 0 0 2 +male 0.52 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.52 0.25 0 0 1 0 0 1 limited 0 2 0 0 0 +male 0.52 0.25 0 0 1 1 0 0 limited 0 0 0 0 2 +male 0.52 0.25 0 0 1 2 0 0 limited 0 0 0 0 0 +male 0.52 0.25 0 0 1 3 0 3 limited 1 0 0 0 1 +male 0.52 0.25 0 0 1 4 2 7 otherwise 1 0 0 0 3 +male 0.52 0.25 0 0 1 4 0 0 limited 1 3 1 4 6 +male 0.52 0.25 0 0 1 5 14 7 limited 8 5 3 5 6 +male 0.52 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 0.25 1 0 0 1 0 0 otherwise 2 0 0 0 1 +male 0.52 0.35 0 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.52 0.35 0 0 1 1 0 2 not limited 0 0 1 1 1 +male 0.52 0.35 0 0 1 5 5 11 limited 2 0 2 1 8 +male 0.52 0.35 0 1 0 1 14 6 limited 1 0 1 1 4 +male 0.52 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 0.45 1 0 0 3 0 0 not limited 0 0 0 0 0 +male 0.52 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 0.55 0 0 0 4 0 3 not limited 0 0 0 0 3 +male 0.52 0.55 0 0 1 5 0 4 not limited 4 0 0 0 1 +male 0.52 0.55 1 0 0 2 0 7 limited 0 1 0 0 0 +male 0.52 0.65 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.52 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 0.65 0 0 0 2 0 2 otherwise 0 0 0 0 2 +male 0.52 0.65 0 0 0 3 2 0 not limited 0 0 0 0 4 +male 0.52 0.65 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.52 0.65 1 0 0 1 0 0 not limited 0 0 0 0 2 +male 0.52 0.65 1 0 0 2 5 6 otherwise 1 1 0 0 1 +male 0.52 0.65 1 0 0 2 0 0 limited 0 0 0 0 0 +male 0.52 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 0.75 0 0 0 0 0 0 limited 0 0 0 0 1 +male 0.52 0.75 0 0 0 0 1 0 otherwise 0 0 0 0 0 +male 0.52 0.75 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.52 0.75 0 0 0 2 0 0 not limited 0 0 0 0 1 +male 0.52 0.75 0 0 0 4 0 4 not limited 0 0 0 0 1 +male 0.52 0.75 0 0 0 5 3 4 not limited 0 0 0 0 1 +male 0.52 0.75 0 1 0 2 14 6 limited 0 0 0 0 2 +male 0.52 0.75 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.52 0.75 1 0 0 1 1 1 limited 3 0 2 4 1 +male 0.52 0.75 1 0 0 1 0 0 not limited 0 0 0 0 4 +male 0.52 0.75 1 0 0 3 14 6 limited 1 4 1 11 3 +male 0.52 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 0.9 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.52 0.9 0 0 0 1 0 0 not limited 0 0 0 0 3 +male 0.52 0.9 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.52 0.9 0 0 0 5 0 11 limited 1 0 0 0 3 +male 0.52 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.52 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 2 +male 0.52 0.9 1 0 0 2 0 1 limited 0 0 0 0 1 +male 0.52 1.1 0 0 0 0 0 0 limited 0 0 0 0 0 +male 0.52 1.1 0 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.52 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 2 +male 0.52 1.1 0 0 0 1 3 0 otherwise 5 0 1 2 0 +male 0.52 1.1 0 0 0 1 0 1 otherwise 0 0 0 0 0 +male 0.52 1.1 0 0 0 2 5 0 otherwise 0 0 1 6 1 +male 0.52 1.1 0 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.52 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 1.1 1 0 0 0 0 1 not limited 0 0 0 0 0 +male 0.52 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 1.1 1 0 0 0 0 1 not limited 0 0 0 0 0 +male 0.52 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.52 1.1 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.52 1.1 1 0 0 1 0 0 not limited 0 1 0 0 1 +male 0.52 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.52 1.1 1 0 0 2 0 0 not limited 2 0 1 4 0 +male 0.52 1.1 1 0 0 3 0 0 not limited 0 0 0 0 3 +male 0.52 1.3 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.52 1.3 0 0 0 1 0 0 otherwise 0 0 0 0 1 +male 0.52 1.3 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.52 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 1.3 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.52 1.3 1 0 0 2 0 2 not limited 1 0 3 2 3 +male 0.52 1.3 1 0 0 4 0 6 limited 0 0 0 0 3 +male 0.52 1.5 0 0 0 0 0 0 limited 0 0 0 0 1 +male 0.52 1.5 1 0 0 0 0 0 otherwise 1 0 0 0 0 +male 0.52 1.5 1 0 0 0 0 1 limited 0 0 0 0 1 +male 0.52 1.5 1 0 0 0 0 0 otherwise 0 0 1 2 1 +male 0.52 1.5 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.52 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.52 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.52 1.5 1 0 0 1 0 1 limited 0 0 0 0 3 +male 0.52 1.5 1 0 0 2 0 0 otherwise 0 0 0 0 3 +male 0.52 1.5 1 0 0 3 0 0 not limited 1 0 0 0 1 +male 0.52 1.5 1 0 0 3 0 0 not limited 0 0 0 0 3 +male 0.57 0 0 1 0 2 0 0 limited 0 0 1 7 0 +male 0.57 0.01 0 0 0 1 9 4 otherwise 8 0 1 11 0 +male 0.57 0.01 0 0 1 1 0 0 not limited 0 0 0 0 3 +male 0.57 0.01 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.57 0.15 1 0 0 3 0 1 not limited 0 0 1 1 4 +male 0.57 0.15 1 0 0 5 2 0 limited 0 1 1 1 5 +male 0.57 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.57 0.25 0 0 0 2 0 2 limited 0 0 0 0 2 +male 0.57 0.25 0 0 0 3 0 0 limited 1 0 0 0 5 +male 0.57 0.25 0 0 0 5 1 10 limited 1 0 0 0 0 +male 0.57 0.25 0 0 1 0 0 0 limited 0 0 0 0 0 +male 0.57 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +male 0.57 0.25 0 0 1 1 0 0 limited 0 0 0 0 1 +male 0.57 0.25 0 0 1 2 0 1 limited 0 0 0 0 2 +male 0.57 0.25 0 0 1 2 0 6 limited 0 2 1 45 5 +male 0.57 0.25 0 0 1 3 0 2 limited 0 0 0 0 2 +male 0.57 0.25 0 0 1 3 0 0 not limited 0 0 0 0 0 +male 0.57 0.25 0 0 1 4 0 2 not limited 0 0 0 0 2 +male 0.57 0.25 0 0 1 5 0 6 otherwise 1 0 0 0 2 +male 0.57 0.25 0 1 0 2 0 5 limited 0 0 1 1 2 +male 0.57 0.25 1 0 0 3 0 0 otherwise 0 0 0 0 0 +male 0.57 0.35 0 0 0 1 0 0 not limited 0 1 0 0 3 +male 0.57 0.35 0 0 0 2 0 6 not limited 0 0 0 0 0 +male 0.57 0.35 0 0 1 4 0 1 limited 0 0 1 80 4 +male 0.57 0.35 1 0 0 4 2 3 not limited 0 0 0 0 1 +male 0.57 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.57 0.55 0 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.57 0.55 1 0 0 1 4 1 limited 1 0 0 0 2 +male 0.57 0.65 0 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.57 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.57 0.65 0 0 0 1 12 0 otherwise 1 0 1 11 0 +male 0.57 0.65 0 0 0 1 0 4 otherwise 0 0 0 0 2 +male 0.57 0.65 0 0 0 3 0 0 otherwise 0 0 0 0 0 +male 0.57 0.65 0 0 0 3 0 2 otherwise 0 0 0 0 0 +male 0.57 0.65 0 0 0 5 0 0 otherwise 0 0 0 0 1 +male 0.57 0.65 0 0 1 5 0 0 limited 1 0 0 0 5 +male 0.57 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.57 0.65 1 0 0 1 0 3 not limited 1 0 0 0 0 +male 0.57 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.57 0.65 1 0 0 2 0 0 not limited 0 0 1 11 5 +male 0.57 0.65 1 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.57 0.65 1 0 0 3 14 4 limited 1 0 3 7 3 +male 0.57 0.65 1 0 0 3 0 0 limited 0 0 0 0 0 +male 0.57 0.75 0 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.57 0.75 0 0 0 1 4 0 otherwise 1 0 0 0 0 +male 0.57 0.75 0 0 0 1 2 1 not limited 1 0 1 5 7 +male 0.57 0.75 0 0 0 2 0 1 limited 0 0 0 0 1 +male 0.57 0.75 1 0 0 4 0 0 not limited 1 0 0 0 2 +male 0.57 0.75 1 0 0 4 14 1 not limited 4 0 0 0 3 +male 0.57 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.57 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.57 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 2 +male 0.57 0.9 0 0 0 1 0 3 not limited 0 0 0 0 1 +male 0.57 0.9 0 0 0 1 2 0 otherwise 0 0 0 0 0 +male 0.57 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.57 0.9 0 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.57 0.9 0 0 0 3 0 0 not limited 1 0 1 3 5 +male 0.57 0.9 0 0 0 5 10 4 not limited 2 0 1 6 3 +male 0.57 0.9 1 0 0 0 0 1 otherwise 0 0 0 0 1 +male 0.57 0.9 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.57 0.9 1 0 0 0 0 1 limited 0 1 2 5 3 +male 0.57 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.57 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.57 0.9 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.57 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.57 0.9 1 0 0 1 0 0 otherwise 1 0 0 0 0 +male 0.57 0.9 1 0 0 1 0 3 otherwise 0 0 0 0 0 +male 0.57 0.9 1 0 0 1 2 1 limited 0 0 0 0 1 +male 0.57 0.9 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.57 0.9 1 0 0 1 0 2 otherwise 0 0 0 0 1 +male 0.57 0.9 1 0 0 2 0 0 limited 2 0 0 0 0 +male 0.57 0.9 1 0 0 3 0 0 not limited 0 0 0 0 0 +male 0.57 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.57 1.1 0 0 1 3 8 1 not limited 2 0 1 11 1 +male 0.57 1.1 1 0 0 0 0 0 not limited 1 0 0 0 1 +male 0.57 1.1 1 0 0 1 0 1 not limited 0 0 0 0 1 +male 0.57 1.1 1 0 0 2 0 1 not limited 0 0 0 0 1 +male 0.57 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.57 1.3 1 0 0 1 0 0 limited 0 0 0 0 2 +male 0.57 1.5 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.57 1.5 0 0 1 0 0 0 not limited 1 0 0 0 5 +male 0.57 1.5 1 0 0 0 0 0 not limited 0 0 0 0 3 +male 0.57 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.57 1.5 1 0 0 4 0 0 limited 1 4 0 0 6 +male 0.62 0 1 0 0 4 0 0 limited 0 0 0 0 2 +male 0.62 0.06 1 0 0 5 0 2 not limited 0 1 0 0 1 +male 0.62 0.15 0 0 1 0 0 0 limited 0 0 0 0 1 +male 0.62 0.15 0 0 1 1 0 0 limited 0 0 0 0 5 +male 0.62 0.15 0 0 1 3 0 0 limited 0 0 0 0 2 +male 0.62 0.15 1 0 0 0 0 0 otherwise 0 0 2 3 1 +male 0.62 0.15 1 0 0 0 0 0 not limited 0 0 0 0 3 +male 0.62 0.25 0 0 1 0 0 0 not limited 0 0 0 0 2 +male 0.62 0.25 0 0 1 0 0 0 otherwise 0 0 4 2 0 +male 0.62 0.25 0 0 1 0 0 0 not limited 0 0 0 0 1 +male 0.62 0.25 0 0 1 1 0 0 limited 1 7 0 0 0 +male 0.62 0.25 0 0 1 1 0 0 limited 0 0 0 0 0 +male 0.62 0.25 0 0 1 1 0 0 not limited 0 0 0 0 0 +male 0.62 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +male 0.62 0.25 0 0 1 1 0 0 limited 0 0 0 0 0 +male 0.62 0.25 0 0 1 2 0 0 limited 1 1 0 0 2 +male 0.62 0.25 0 0 1 2 0 1 limited 0 0 0 0 2 +male 0.62 0.25 0 0 1 2 0 1 limited 0 0 0 0 2 +male 0.62 0.25 0 0 1 2 0 3 limited 0 1 1 22 8 +male 0.62 0.25 0 0 1 2 0 0 limited 0 0 0 0 3 +male 0.62 0.25 0 0 1 3 0 0 limited 1 0 0 0 1 +male 0.62 0.25 0 0 1 3 0 0 not limited 0 0 0 0 3 +male 0.62 0.25 0 0 1 3 0 2 limited 0 0 0 0 3 +male 0.62 0.25 0 0 1 3 0 0 limited 0 0 0 0 3 +male 0.62 0.25 0 0 1 3 0 3 limited 0 0 0 0 0 +male 0.62 0.25 0 0 1 4 13 0 not limited 3 0 0 0 5 +male 0.62 0.25 0 0 1 4 0 1 limited 0 0 0 0 6 +male 0.62 0.25 0 0 1 4 0 0 otherwise 0 0 1 1 0 +male 0.62 0.25 0 0 1 4 0 1 limited 0 0 0 0 1 +male 0.62 0.25 0 0 1 5 14 10 limited 9 0 5 11 8 +male 0.62 0.25 0 0 1 5 0 1 limited 0 0 0 0 0 +male 0.62 0.25 0 1 0 1 0 2 otherwise 0 0 0 0 1 +male 0.62 0.25 1 0 0 0 0 0 limited 0 0 0 0 2 +male 0.62 0.25 1 0 0 2 0 0 limited 2 0 0 0 4 +male 0.62 0.25 1 0 0 5 14 8 limited 0 0 2 7 7 +male 0.62 0.35 0 0 0 2 0 0 otherwise 0 0 0 0 0 +male 0.62 0.35 0 0 0 4 0 2 limited 0 0 0 0 1 +male 0.62 0.35 0 0 1 1 0 0 limited 1 0 0 0 1 +male 0.62 0.35 0 0 1 1 0 0 limited 0 4 1 7 2 +male 0.62 0.35 0 0 1 1 14 0 limited 0 0 0 0 2 +male 0.62 0.35 0 0 1 4 0 5 limited 0 0 0 0 4 +male 0.62 0.35 0 0 1 5 0 11 limited 1 0 2 3 5 +male 0.62 0.35 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.62 0.35 1 0 0 0 0 1 otherwise 0 0 0 0 0 +male 0.62 0.35 1 0 0 3 0 0 not limited 2 0 1 45 2 +male 0.62 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.62 0.45 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.62 0.45 0 0 1 2 0 3 not limited 0 0 0 0 2 +male 0.62 0.45 1 0 0 2 0 0 limited 0 0 0 0 3 +male 0.62 0.45 1 0 0 5 0 4 limited 3 0 0 0 3 +male 0.62 0.45 1 0 0 5 1 8 limited 2 0 1 7 8 +male 0.62 0.55 0 0 0 1 0 0 limited 0 0 0 0 1 +male 0.62 0.55 0 0 0 2 0 0 not limited 1 0 1 7 3 +male 0.62 0.55 1 0 0 3 0 3 limited 0 0 0 0 3 +male 0.62 0.55 1 0 0 3 0 0 otherwise 0 0 0 0 1 +male 0.62 0.55 1 0 0 5 2 0 not limited 0 0 0 0 2 +male 0.62 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.62 0.65 0 0 0 1 0 0 otherwise 0 1 0 0 0 +male 0.62 0.65 0 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.62 0.65 0 0 1 1 0 0 not limited 0 0 0 0 2 +male 0.62 0.65 1 0 0 0 0 0 not limited 0 4 0 0 2 +male 0.62 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.62 0.65 1 0 0 4 0 0 not limited 0 0 2 11 3 +male 0.62 0.65 1 0 0 4 0 5 not limited 0 0 0 0 0 +male 0.62 0.65 1 0 0 5 2 1 not limited 1 0 0 0 3 +male 0.62 0.75 0 0 0 0 0 2 not limited 0 0 0 0 0 +male 0.62 0.75 0 0 1 2 0 2 limited 1 0 0 0 1 +male 0.62 0.75 1 0 0 1 14 2 otherwise 1 5 0 0 0 +male 0.62 0.75 1 0 0 1 0 0 otherwise 0 0 1 1 0 +male 0.62 0.75 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.62 0.75 1 0 0 2 0 1 limited 0 0 0 0 2 +male 0.62 0.75 1 0 0 3 14 3 limited 0 0 1 11 0 +male 0.62 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.62 0.9 0 0 0 0 0 0 limited 0 0 0 0 0 +male 0.62 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.62 0.9 0 0 0 3 2 0 not limited 1 0 0 0 1 +male 0.62 0.9 1 0 0 0 14 2 not limited 0 0 1 22 2 +male 0.62 0.9 1 0 0 0 0 1 not limited 0 0 0 0 4 +male 0.62 0.9 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.62 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.62 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.62 0.9 1 0 0 1 0 0 otherwise 1 0 0 0 0 +male 0.62 0.9 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.62 0.9 1 0 0 1 0 1 not limited 0 0 0 0 0 +male 0.62 0.9 1 0 0 2 0 0 not limited 0 0 0 0 5 +male 0.62 0.9 1 0 0 2 0 0 not limited 0 0 0 0 1 +male 0.62 0.9 1 0 0 4 0 1 otherwise 0 0 0 0 0 +male 0.62 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.62 1.1 0 0 0 1 0 5 otherwise 0 0 0 0 1 +male 0.62 1.1 1 0 0 0 0 0 limited 0 0 0 0 4 +male 0.62 1.1 1 0 0 0 0 0 limited 0 0 0 0 2 +male 0.62 1.1 1 0 0 1 2 4 not limited 1 0 0 0 3 +male 0.62 1.1 1 0 0 3 0 3 otherwise 0 0 0 0 2 +male 0.62 1.1 1 0 0 3 0 5 not limited 0 0 0 0 3 +male 0.62 1.1 1 0 0 4 0 3 not limited 0 0 0 0 3 +male 0.62 1.3 0 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.62 1.3 1 0 0 1 0 0 not limited 0 0 0 0 3 +male 0.62 1.5 1 0 0 0 0 4 not limited 1 0 1 4 3 +male 0.62 1.5 1 0 0 0 0 1 not limited 2 0 0 0 2 +male 0.62 1.5 1 0 0 0 0 0 not limited 0 0 1 6 1 +male 0.62 1.5 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.62 1.5 1 0 0 0 0 0 limited 0 0 0 0 0 +male 0.62 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.62 1.5 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.62 1.5 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.62 1.5 1 0 0 4 14 8 otherwise 1 0 0 0 2 +male 0.67 0.01 0 0 1 2 0 1 not limited 0 0 0 0 1 +male 0.67 0.06 0 0 1 2 1 0 not limited 0 0 0 0 1 +male 0.67 0.06 1 0 0 5 0 8 not limited 0 0 0 0 2 +male 0.67 0.15 0 0 1 0 0 0 otherwise 0 0 1 45 3 +male 0.67 0.15 0 0 1 0 0 2 not limited 0 0 1 11 0 +male 0.67 0.15 0 0 1 1 0 0 not limited 0 0 0 0 3 +male 0.67 0.15 0 0 1 1 0 0 otherwise 0 1 0 0 0 +male 0.67 0.15 0 0 1 2 0 0 not limited 1 0 0 0 2 +male 0.67 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.67 0.25 0 0 1 0 0 0 not limited 0 0 0 0 1 +male 0.67 0.25 0 0 1 0 0 1 not limited 0 0 0 0 3 +male 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.67 0.25 0 0 1 0 0 1 otherwise 0 0 0 0 0 +male 0.67 0.25 0 0 1 0 0 0 not limited 0 0 0 0 0 +male 0.67 0.25 0 0 1 1 0 0 not limited 1 0 0 0 1 +male 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 3 +male 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +male 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +male 0.67 0.25 0 0 1 1 10 6 not limited 0 0 0 0 0 +male 0.67 0.25 0 0 1 2 0 0 not limited 1 0 0 0 7 +male 0.67 0.25 0 0 1 2 0 2 not limited 1 1 0 0 1 +male 0.67 0.25 0 0 1 2 14 5 not limited 8 0 1 22 4 +male 0.67 0.25 0 0 1 2 0 5 not limited 0 0 0 0 1 +male 0.67 0.25 0 0 1 2 0 0 not limited 0 6 0 0 4 +male 0.67 0.25 0 0 1 2 0 0 not limited 0 0 1 2 0 +male 0.67 0.25 0 0 1 2 0 0 not limited 0 1 0 0 0 +male 0.67 0.25 0 0 1 2 0 0 otherwise 0 0 0 0 0 +male 0.67 0.25 0 0 1 2 0 1 otherwise 0 0 0 0 0 +male 0.67 0.25 0 0 1 3 0 7 not limited 1 0 0 0 3 +male 0.67 0.25 0 0 1 3 14 2 not limited 1 0 1 22 0 +male 0.67 0.25 0 0 1 3 0 0 not limited 1 0 0 0 1 +male 0.67 0.25 0 0 1 3 0 0 not limited 0 0 1 6 0 +male 0.67 0.25 0 0 1 3 7 8 limited 0 0 1 22 4 +male 0.67 0.25 0 0 1 3 14 3 limited 0 0 0 0 2 +male 0.67 0.25 0 0 1 4 0 3 limited 0 0 1 11 1 +male 0.67 0.25 0 0 1 5 0 6 not limited 0 7 0 0 1 +male 0.67 0.25 0 1 0 0 0 0 not limited 0 0 0 0 0 +male 0.67 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.67 0.25 1 0 0 1 0 3 not limited 1 0 0 0 2 +male 0.67 0.25 1 0 0 1 14 1 not limited 0 3 1 45 0 +male 0.67 0.25 1 0 0 4 7 3 not limited 0 0 0 0 8 +male 0.67 0.25 1 0 0 5 14 3 not limited 6 0 1 1 5 +male 0.67 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.67 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.67 0.35 0 0 0 3 0 2 not limited 1 0 2 45 3 +male 0.67 0.35 0 0 1 0 0 0 otherwise 0 0 0 0 1 +male 0.67 0.35 0 0 1 1 0 0 not limited 0 0 0 0 2 +male 0.67 0.35 0 0 1 1 0 0 not limited 0 1 0 0 1 +male 0.67 0.35 0 0 1 1 0 0 not limited 0 0 0 0 1 +male 0.67 0.35 0 0 1 2 0 0 not limited 0 0 0 0 1 +male 0.67 0.35 0 0 1 2 0 4 not limited 0 0 0 0 2 +male 0.67 0.35 0 0 1 2 0 1 not limited 0 0 0 0 3 +male 0.67 0.35 0 0 1 3 14 4 otherwise 0 0 1 22 2 +male 0.67 0.35 0 0 1 4 14 7 limited 0 0 0 0 6 +male 0.67 0.35 0 0 1 5 0 0 not limited 0 0 1 11 1 +male 0.67 0.35 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.67 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.67 0.35 1 0 0 1 0 0 not limited 0 0 0 0 3 +male 0.67 0.35 1 0 0 2 0 1 not limited 1 0 0 0 3 +male 0.67 0.45 0 0 1 0 0 4 otherwise 0 0 0 0 0 +male 0.67 0.45 0 0 1 2 0 0 not limited 0 0 1 45 4 +male 0.67 0.45 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.67 0.45 1 0 0 1 0 0 not limited 0 0 0 0 2 +male 0.67 0.45 1 0 0 2 0 0 otherwise 0 0 0 0 1 +male 0.67 0.45 1 0 0 3 0 1 not limited 1 0 0 0 1 +male 0.67 0.55 0 0 0 1 0 0 not limited 1 0 1 45 5 +male 0.67 0.55 1 0 0 2 1 0 not limited 0 0 0 0 1 +male 0.67 0.65 0 0 0 0 0 0 not limited 0 1 0 0 0 +male 0.67 0.65 1 0 0 0 0 1 not limited 0 0 1 2 0 +male 0.67 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.67 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.67 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.67 0.75 0 0 1 2 14 11 limited 3 0 0 0 2 +male 0.67 0.75 0 0 1 3 0 0 not limited 1 5 0 0 2 +male 0.67 0.75 0 0 1 3 14 1 not limited 0 0 1 6 0 +male 0.67 0.75 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.67 0.75 1 0 0 1 0 0 not limited 0 0 0 0 3 +male 0.67 0.75 1 0 0 2 0 1 not limited 0 0 2 1 4 +male 0.67 0.9 0 0 1 1 14 1 not limited 0 0 0 0 0 +male 0.67 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.67 1.1 0 0 1 2 0 0 not limited 1 0 0 0 5 +male 0.67 1.1 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.67 1.1 1 0 0 2 0 0 not limited 0 0 0 0 2 +male 0.67 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 3 +male 0.67 1.3 1 0 0 5 0 1 not limited 0 0 0 0 4 +male 0.67 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +male 0.67 1.5 1 0 0 1 0 0 not limited 0 0 1 22 0 +male 0.67 1.5 1 0 0 3 4 3 not limited 0 1 0 0 5 +male 0.72 0.06 1 0 0 4 0 2 not limited 1 0 0 0 3 +male 0.72 0.15 0 0 0 2 0 3 limited 1 0 0 0 0 +male 0.72 0.15 0 0 1 0 0 3 otherwise 1 0 1 2 1 +male 0.72 0.15 0 0 1 0 0 1 otherwise 0 0 0 0 0 +male 0.72 0.15 0 0 1 1 0 2 not limited 1 0 0 0 1 +male 0.72 0.15 0 0 1 1 0 2 not limited 0 0 0 0 1 +male 0.72 0.15 0 0 1 2 0 1 limited 1 0 0 0 2 +male 0.72 0.15 0 0 1 3 0 1 not limited 1 0 0 0 1 +male 0.72 0.15 0 0 1 4 0 1 not limited 2 0 0 0 2 +male 0.72 0.15 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.72 0.25 0 0 0 3 0 5 not limited 0 0 1 11 2 +male 0.72 0.25 0 0 1 0 0 4 not limited 4 0 0 0 1 +male 0.72 0.25 0 0 1 0 0 1 otherwise 1 0 1 22 0 +male 0.72 0.25 0 0 1 0 0 2 not limited 1 0 0 0 0 +male 0.72 0.25 0 0 1 0 0 1 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 2 +male 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 0 0 1 not limited 0 0 0 0 1 +male 0.72 0.25 0 0 1 0 0 0 not limited 0 0 1 6 1 +male 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 1 +male 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 1 +male 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 1 0 0 not limited 1 0 1 3 0 +male 0.72 0.25 0 0 1 1 1 1 otherwise 1 0 0 0 1 +male 0.72 0.25 0 0 1 1 0 0 not limited 1 0 0 0 1 +male 0.72 0.25 0 0 1 1 0 0 otherwise 1 0 0 0 0 +male 0.72 0.25 0 0 1 1 0 0 otherwise 1 0 0 0 0 +male 0.72 0.25 0 0 1 1 0 2 not limited 0 0 0 0 2 +male 0.72 0.25 0 0 1 1 0 1 not limited 0 0 0 0 0 +male 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 3 +male 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 1 0 4 limited 0 7 0 0 5 +male 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 1 +male 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +male 0.72 0.25 0 0 1 1 0 4 not limited 0 0 0 0 0 +male 0.72 0.25 0 0 1 1 1 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 1 0 4 limited 0 0 1 11 2 +male 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 0 +male 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +male 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 0 +male 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 2 0 1 not limited 1 0 0 0 1 +male 0.72 0.25 0 0 1 2 0 0 not limited 1 0 0 0 3 +male 0.72 0.25 0 0 1 2 0 1 not limited 1 0 0 0 1 +male 0.72 0.25 0 0 1 2 0 5 limited 3 0 2 45 3 +male 0.72 0.25 0 0 1 2 0 0 not limited 1 1 1 11 1 +male 0.72 0.25 0 0 1 2 0 0 not limited 1 0 0 0 0 +male 0.72 0.25 0 0 1 2 0 5 not limited 2 11 1 45 2 +male 0.72 0.25 0 0 1 2 0 1 limited 1 0 0 0 5 +male 0.72 0.25 0 0 1 2 0 0 not limited 1 0 0 0 0 +male 0.72 0.25 0 0 1 2 0 0 not limited 0 0 0 0 1 +male 0.72 0.25 0 0 1 2 0 0 not limited 0 0 0 0 1 +male 0.72 0.25 0 0 1 2 0 5 otherwise 0 0 0 0 3 +male 0.72 0.25 0 0 1 2 0 1 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 2 0 0 limited 0 0 0 0 0 +male 0.72 0.25 0 0 1 2 0 1 otherwise 0 0 0 0 1 +male 0.72 0.25 0 0 1 2 0 1 not limited 0 0 2 3 1 +male 0.72 0.25 0 0 1 2 0 0 not limited 0 0 0 0 3 +male 0.72 0.25 0 0 1 2 0 0 limited 0 0 1 11 0 +male 0.72 0.25 0 0 1 2 0 0 limited 0 0 0 0 2 +male 0.72 0.25 0 0 1 2 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 3 0 0 not limited 1 0 0 0 2 +male 0.72 0.25 0 0 1 3 14 0 not limited 2 9 0 0 4 +male 0.72 0.25 0 0 1 3 0 0 not limited 1 0 0 0 1 +male 0.72 0.25 0 0 1 3 14 1 limited 1 0 0 0 2 +male 0.72 0.25 0 0 1 3 0 4 not limited 0 0 2 11 3 +male 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 2 +male 0.72 0.25 0 0 1 3 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 3 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 3 3 1 not limited 0 0 0 0 1 +male 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 1 +male 0.72 0.25 0 0 1 3 0 3 not limited 0 0 0 0 3 +male 0.72 0.25 0 0 1 3 0 3 otherwise 0 0 1 22 2 +male 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 0 +male 0.72 0.25 0 0 1 4 0 3 not limited 4 1 0 0 5 +male 0.72 0.25 0 0 1 4 14 7 not limited 1 0 0 0 4 +male 0.72 0.25 0 0 1 4 14 6 limited 1 0 1 22 2 +male 0.72 0.25 0 0 1 4 0 0 not limited 1 0 1 5 1 +male 0.72 0.25 0 0 1 4 0 1 not limited 2 0 0 0 2 +male 0.72 0.25 0 0 1 4 0 0 not limited 0 0 0 0 6 +male 0.72 0.25 0 0 1 4 0 2 not limited 0 0 0 0 6 +male 0.72 0.25 0 0 1 4 0 4 otherwise 0 0 0 0 0 +male 0.72 0.25 0 0 1 4 0 0 not limited 0 0 1 2 2 +male 0.72 0.25 0 0 1 5 0 0 not limited 1 0 0 0 2 +male 0.72 0.25 0 0 1 5 0 7 otherwise 0 0 0 0 3 +male 0.72 0.25 0 0 1 5 10 5 not limited 0 0 0 0 2 +male 0.72 0.25 0 0 1 5 0 0 not limited 0 0 1 3 2 +male 0.72 0.25 0 0 1 5 0 2 not limited 0 0 0 0 2 +male 0.72 0.25 0 0 1 5 0 1 not limited 0 0 0 0 1 +male 0.72 0.25 1 0 0 0 0 0 otherwise 2 0 0 0 2 +male 0.72 0.25 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.72 0.25 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.72 0.25 1 0 0 1 0 0 not limited 1 0 0 0 2 +male 0.72 0.25 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.72 0.25 1 0 0 1 14 1 otherwise 0 0 0 0 0 +male 0.72 0.25 1 0 0 2 14 4 limited 2 0 2 22 4 +male 0.72 0.25 1 0 0 2 14 6 limited 1 1 1 3 2 +male 0.72 0.25 1 0 0 2 0 2 not limited 0 0 0 0 3 +male 0.72 0.25 1 0 0 2 0 0 not limited 0 0 1 1 0 +male 0.72 0.25 1 0 0 2 0 1 not limited 0 0 0 0 0 +male 0.72 0.25 1 0 0 2 0 0 not limited 0 0 1 11 1 +male 0.72 0.25 1 0 0 3 13 6 not limited 7 0 1 11 8 +male 0.72 0.25 1 0 0 3 0 1 not limited 2 0 1 7 4 +male 0.72 0.25 1 0 0 4 0 3 not limited 0 8 3 22 4 +male 0.72 0.25 1 0 0 4 0 0 otherwise 0 0 0 0 0 +male 0.72 0.25 1 0 0 5 0 1 not limited 0 0 0 0 1 +male 0.72 0.35 0 0 0 2 0 0 not limited 0 1 0 0 0 +male 0.72 0.35 0 0 1 0 0 0 otherwise 1 0 0 0 0 +male 0.72 0.35 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.72 0.35 0 0 1 0 0 0 otherwise 0 0 1 22 0 +male 0.72 0.35 0 0 1 0 0 1 not limited 0 0 0 0 0 +male 0.72 0.35 0 0 1 1 0 0 limited 1 0 0 0 3 +male 0.72 0.35 0 0 1 1 0 0 otherwise 1 0 0 0 5 +male 0.72 0.35 0 0 1 1 0 0 not limited 0 0 0 0 1 +male 0.72 0.35 0 0 1 1 0 1 not limited 0 1 0 0 1 +male 0.72 0.35 0 0 1 1 2 0 not limited 0 0 0 0 2 +male 0.72 0.35 0 0 1 2 14 2 not limited 1 0 0 0 6 +male 0.72 0.35 0 0 1 2 0 0 not limited 0 0 0 0 1 +male 0.72 0.35 0 0 1 2 0 0 not limited 0 0 0 0 1 +male 0.72 0.35 0 0 1 2 0 0 not limited 0 2 0 0 2 +male 0.72 0.35 0 0 1 2 0 1 not limited 0 1 0 0 0 +male 0.72 0.35 0 0 1 3 0 1 not limited 0 0 0 0 2 +male 0.72 0.35 0 0 1 4 0 5 limited 1 1 0 0 8 +male 0.72 0.35 0 0 1 5 0 1 not limited 1 0 0 0 6 +male 0.72 0.35 0 0 1 5 0 5 not limited 2 0 0 0 7 +male 0.72 0.35 0 0 1 5 0 2 not limited 0 0 0 0 1 +male 0.72 0.35 1 0 0 0 0 0 otherwise 1 0 0 0 2 +male 0.72 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 1 +male 0.72 0.35 1 0 0 1 14 1 otherwise 5 0 1 5 0 +male 0.72 0.35 1 0 0 1 0 0 not limited 1 0 1 5 1 +male 0.72 0.35 1 0 0 1 0 0 otherwise 0 0 0 0 0 +male 0.72 0.35 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.72 0.35 1 0 0 1 0 0 not limited 0 0 0 0 2 +male 0.72 0.35 1 0 0 2 5 3 otherwise 3 0 0 0 2 +male 0.72 0.35 1 0 0 2 0 5 not limited 0 1 1 22 4 +male 0.72 0.35 1 0 0 2 0 0 not limited 0 0 0 0 0 +male 0.72 0.35 1 0 0 3 0 4 not limited 1 0 0 0 4 +male 0.72 0.35 1 0 0 3 14 6 limited 1 0 0 0 6 +male 0.72 0.45 0 0 0 1 6 0 not limited 1 0 0 0 3 +male 0.72 0.45 0 0 0 2 0 0 limited 1 1 0 0 4 +male 0.72 0.45 0 0 0 3 0 0 not limited 0 0 2 11 2 +male 0.72 0.45 0 0 1 0 0 1 limited 0 0 0 0 3 +male 0.72 0.45 0 0 1 1 0 4 otherwise 1 0 1 5 2 +male 0.72 0.45 0 0 1 1 0 0 not limited 1 0 2 1 2 +male 0.72 0.45 0 0 1 1 0 1 otherwise 0 0 0 0 0 +male 0.72 0.45 0 0 1 3 0 0 not limited 1 0 0 0 4 +male 0.72 0.45 0 0 1 3 0 0 not limited 0 0 0 0 3 +male 0.72 0.45 1 0 0 1 0 0 not limited 1 0 0 0 5 +male 0.72 0.45 1 0 0 1 0 1 not limited 0 0 0 0 2 +male 0.72 0.45 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.72 0.45 1 0 0 2 0 0 not limited 1 0 1 11 2 +male 0.72 0.45 1 0 0 2 0 0 not limited 1 0 0 0 1 +male 0.72 0.45 1 0 0 2 0 0 not limited 0 1 0 0 0 +male 0.72 0.45 1 0 0 3 0 4 not limited 0 0 0 0 1 +male 0.72 0.45 1 0 0 3 8 1 not limited 0 1 0 0 6 +male 0.72 0.45 1 0 0 3 0 0 not limited 0 0 0 0 2 +male 0.72 0.45 1 0 0 5 0 1 not limited 1 0 0 0 0 +male 0.72 0.55 0 0 0 1 0 1 not limited 0 0 0 0 1 +male 0.72 0.55 0 0 0 2 2 0 otherwise 1 1 1 2 2 +male 0.72 0.55 0 0 0 5 14 3 limited 3 1 0 0 7 +male 0.72 0.55 0 0 1 0 0 0 otherwise 0 0 0 0 0 +male 0.72 0.55 0 0 1 1 0 1 not limited 0 0 0 0 0 +male 0.72 0.55 0 0 1 5 14 3 not limited 1 0 0 0 5 +male 0.72 0.55 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.72 0.55 1 0 0 3 0 0 not limited 1 0 0 0 1 +male 0.72 0.65 0 0 0 1 0 1 not limited 1 0 0 0 1 +male 0.72 0.65 0 0 0 1 0 0 not limited 0 0 0 0 2 +male 0.72 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 3 +male 0.72 0.75 0 0 1 5 0 2 limited 1 0 0 0 1 +male 0.72 0.75 0 0 1 5 0 1 limited 0 0 0 0 4 +male 0.72 0.75 0 0 1 5 0 5 otherwise 0 0 0 0 0 +male 0.72 0.75 1 0 0 1 0 0 otherwise 1 0 0 0 0 +male 0.72 0.75 1 0 0 2 0 2 not limited 0 0 0 0 1 +male 0.72 0.9 0 0 1 1 0 0 not limited 0 0 0 0 2 +male 0.72 0.9 1 0 0 0 0 1 not limited 0 0 0 0 1 +male 0.72 0.9 1 0 0 1 0 0 not limited 0 0 0 0 1 +male 0.72 0.9 1 0 0 2 0 0 not limited 0 0 0 0 3 +male 0.72 0.9 1 0 0 4 0 1 not limited 2 0 2 4 4 +male 0.72 1.1 0 0 0 2 0 1 not limited 0 0 1 6 0 +male 0.72 1.1 0 0 1 0 0 0 not limited 0 1 0 0 5 +male 0.72 1.1 1 0 0 0 0 0 not limited 0 0 0 0 1 +male 0.72 1.1 1 0 0 1 0 0 not limited 0 0 1 1 1 +male 0.72 1.1 1 0 0 2 14 0 not limited 0 1 0 0 3 +male 0.72 1.1 1 0 0 3 0 0 not limited 0 0 0 0 1 +male 0.72 1.1 1 0 0 5 0 0 not limited 3 0 0 0 4 +male 0.72 1.3 0 0 1 1 0 0 not limited 1 0 0 0 6 +male 0.72 1.5 1 0 0 0 0 0 not limited 0 0 0 0 0 +male 0.72 1.5 1 0 0 0 0 3 otherwise 0 0 0 0 0 +male 0.72 1.5 1 0 0 1 14 4 not limited 1 1 0 0 1 +male 0.72 1.5 1 0 0 1 0 0 not limited 0 0 0 0 0 +male 0.72 1.5 1 0 0 4 14 2 not limited 0 0 0 0 2 +male 0.72 1.5 1 0 0 5 3 2 not limited 0 0 0 0 1 +female 0.19 0 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0 0 0 0 0 0 0 not limited 0 2 0 0 0 +female 0.19 0 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0 0 0 0 2 0 0 otherwise 0 1 0 0 0 +female 0.19 0 0 0 0 3 0 0 otherwise 0 0 0 0 2 +female 0.19 0 0 1 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0 0 1 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0 0 1 0 3 0 3 otherwise 0 0 0 0 1 +female 0.19 0 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.19 0 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.19 0 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.19 0 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.19 0 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.19 0.01 0 0 0 0 0 0 limited 0 0 0 0 0 +female 0.19 0.01 0 0 0 1 0 5 not limited 0 0 0 0 1 +female 0.19 0.01 0 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.19 0.01 0 0 0 4 0 0 not limited 1 0 0 0 0 +female 0.19 0.01 0 1 0 0 0 0 limited 0 0 1 3 2 +female 0.19 0.06 0 0 0 1 0 6 otherwise 0 0 0 0 0 +female 0.19 0.06 0 0 0 1 0 3 otherwise 0 0 0 0 0 +female 0.19 0.06 0 0 0 2 0 2 otherwise 0 0 0 0 0 +female 0.19 0.06 0 0 0 3 0 0 otherwise 0 0 0 0 1 +female 0.19 0.06 0 0 0 4 0 5 not limited 0 0 0 0 1 +female 0.19 0.06 0 1 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.06 0 1 0 1 0 0 otherwise 1 0 0 0 3 +female 0.19 0.06 0 1 0 1 0 2 limited 0 0 0 0 1 +female 0.19 0.06 1 0 0 1 0 0 otherwise 0 0 1 1 1 +female 0.19 0.06 1 0 0 1 1 0 otherwise 0 0 0 0 1 +female 0.19 0.06 1 0 0 3 3 1 otherwise 0 0 0 0 3 +female 0.19 0.06 1 0 0 3 0 3 not limited 0 0 1 2 2 +female 0.19 0.15 0 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.19 0.15 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.15 0 0 0 1 4 2 otherwise 3 0 0 0 1 +female 0.19 0.15 0 0 0 1 3 0 not limited 4 0 0 0 1 +female 0.19 0.15 0 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.19 0.15 0 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.19 0.15 0 0 0 2 0 0 not limited 0 0 1 4 1 +female 0.19 0.15 0 0 0 2 8 4 not limited 0 0 0 0 1 +female 0.19 0.15 0 0 0 3 0 6 otherwise 1 0 0 0 1 +female 0.19 0.15 0 0 0 3 1 0 not limited 4 0 0 0 0 +female 0.19 0.15 0 0 0 3 0 0 otherwise 1 0 0 0 1 +female 0.19 0.15 0 0 0 3 0 1 limited 0 0 0 0 0 +female 0.19 0.15 0 0 0 4 0 3 otherwise 0 0 0 0 0 +female 0.19 0.15 0 0 0 5 0 3 not limited 0 0 3 11 1 +female 0.19 0.15 0 1 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.15 0 1 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.15 0 1 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.15 0 1 0 1 2 6 not limited 1 0 0 0 2 +female 0.19 0.15 0 1 0 1 0 2 otherwise 0 0 0 0 1 +female 0.19 0.15 0 1 0 1 3 2 otherwise 0 0 0 0 1 +female 0.19 0.15 0 1 0 2 0 0 not limited 2 0 1 1 1 +female 0.19 0.15 0 1 0 2 0 1 not limited 1 0 1 2 2 +female 0.19 0.15 0 1 0 2 1 9 not limited 0 0 2 1 1 +female 0.19 0.15 0 1 0 3 0 1 not limited 0 0 1 1 0 +female 0.19 0.15 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.15 1 0 0 0 0 0 otherwise 0 0 1 1 0 +female 0.19 0.15 1 0 0 0 0 0 otherwise 0 0 0 0 2 +female 0.19 0.15 1 0 0 1 0 6 otherwise 0 0 0 0 0 +female 0.19 0.15 1 0 0 1 0 2 otherwise 0 0 0 0 0 +female 0.19 0.15 1 0 0 2 0 4 otherwise 0 0 0 0 1 +female 0.19 0.15 1 0 0 2 1 0 not limited 0 0 0 0 0 +female 0.19 0.15 1 0 0 2 0 10 otherwise 0 0 0 0 2 +female 0.19 0.15 1 0 0 3 0 4 not limited 0 0 0 0 0 +female 0.19 0.15 1 0 0 3 0 0 otherwise 0 0 0 0 2 +female 0.19 0.25 0 0 0 0 0 1 otherwise 0 0 0 0 1 +female 0.19 0.25 0 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.19 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.25 0 0 0 1 0 1 otherwise 0 0 0 0 1 +female 0.19 0.25 0 0 0 1 0 2 not limited 0 0 0 0 0 +female 0.19 0.25 0 0 0 1 0 3 otherwise 0 0 0 0 0 +female 0.19 0.25 0 0 0 2 7 0 limited 8 0 1 3 1 +female 0.19 0.25 0 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.19 0.25 0 0 0 3 0 12 not limited 0 2 1 11 1 +female 0.19 0.25 0 0 0 3 0 1 not limited 0 0 0 0 3 +female 0.19 0.25 0 0 0 3 0 5 otherwise 0 0 0 0 2 +female 0.19 0.25 0 0 0 4 0 1 otherwise 1 0 0 0 0 +female 0.19 0.25 0 0 1 1 0 9 otherwise 1 0 0 0 1 +female 0.19 0.25 0 0 1 2 14 11 limited 1 0 1 11 5 +female 0.19 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 1 +female 0.19 0.25 0 1 0 1 0 1 not limited 1 0 0 0 1 +female 0.19 0.25 0 1 0 1 0 0 not limited 0 0 0 0 5 +female 0.19 0.25 0 1 0 1 0 6 not limited 0 0 0 0 0 +female 0.19 0.25 0 1 0 2 0 0 otherwise 0 0 0 0 0 +female 0.19 0.25 0 1 0 2 0 0 otherwise 0 0 1 11 0 +female 0.19 0.25 0 1 0 2 0 9 otherwise 0 0 0 0 1 +female 0.19 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.25 1 0 0 0 0 0 limited 0 0 0 0 0 +female 0.19 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.19 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.25 1 0 0 0 0 2 otherwise 0 2 0 0 0 +female 0.19 0.25 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.19 0.25 1 0 0 1 0 2 not limited 0 0 0 0 1 +female 0.19 0.25 1 0 0 3 1 1 not limited 0 0 0 0 1 +female 0.19 0.25 1 0 0 4 14 9 not limited 0 8 0 0 0 +female 0.19 0.25 1 0 0 4 2 9 limited 0 0 1 6 1 +female 0.19 0.25 1 0 0 5 4 6 not limited 0 0 1 2 3 +female 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.35 0 0 0 1 0 2 not limited 1 1 0 0 0 +female 0.19 0.35 0 0 0 1 0 0 otherwise 1 0 0 0 0 +female 0.19 0.35 0 0 0 1 0 2 not limited 0 0 1 1 1 +female 0.19 0.35 0 0 0 1 0 6 otherwise 0 0 0 0 0 +female 0.19 0.35 0 0 0 1 1 1 not limited 0 0 0 0 1 +female 0.19 0.35 0 0 0 1 0 1 otherwise 0 0 1 3 2 +female 0.19 0.35 0 0 0 1 0 3 otherwise 0 0 0 0 0 +female 0.19 0.35 0 0 0 1 0 2 otherwise 0 0 0 0 0 +female 0.19 0.35 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.35 0 0 0 2 0 0 otherwise 0 0 0 0 2 +female 0.19 0.35 0 0 0 2 4 4 otherwise 0 0 0 0 1 +female 0.19 0.35 0 0 0 2 0 1 otherwise 0 0 0 0 1 +female 0.19 0.35 0 0 0 3 2 1 otherwise 0 0 2 1 0 +female 0.19 0.35 0 0 0 3 0 0 limited 0 0 1 45 1 +female 0.19 0.35 0 0 0 3 0 5 not limited 0 0 0 0 1 +female 0.19 0.35 0 0 0 5 1 9 not limited 1 0 0 0 1 +female 0.19 0.35 0 0 0 5 14 3 otherwise 1 0 1 2 2 +female 0.19 0.35 0 1 0 1 0 0 otherwise 0 0 0 0 1 +female 0.19 0.35 0 1 0 1 0 1 not limited 0 0 0 0 1 +female 0.19 0.35 0 1 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.35 0 1 0 2 1 0 otherwise 1 0 0 0 1 +female 0.19 0.35 0 1 0 2 0 7 not limited 0 0 0 0 0 +female 0.19 0.35 0 1 0 4 0 5 limited 0 0 1 4 2 +female 0.19 0.35 1 0 0 0 0 6 not limited 1 0 0 0 1 +female 0.19 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.19 0.35 1 0 0 1 0 0 otherwise 1 0 0 0 0 +female 0.19 0.35 1 0 0 1 0 1 otherwise 1 0 0 0 2 +female 0.19 0.35 1 0 0 1 0 0 not limited 1 0 0 0 1 +female 0.19 0.35 1 0 0 1 0 1 otherwise 0 0 0 0 1 +female 0.19 0.35 1 0 0 2 0 2 otherwise 1 0 0 0 1 +female 0.19 0.35 1 0 0 2 0 2 otherwise 0 0 0 0 0 +female 0.19 0.35 1 0 0 2 0 0 otherwise 0 0 0 0 0 +female 0.19 0.35 1 0 0 2 0 6 otherwise 0 0 0 0 1 +female 0.19 0.35 1 0 0 2 0 0 otherwise 0 0 0 0 1 +female 0.19 0.35 1 0 0 3 0 0 not limited 1 0 0 0 2 +female 0.19 0.35 1 0 0 3 0 0 not limited 1 0 0 0 1 +female 0.19 0.35 1 0 0 5 0 2 not limited 0 1 0 0 1 +female 0.19 0.35 1 0 0 5 0 3 not limited 0 0 0 0 1 +female 0.19 0.45 0 0 0 0 0 0 otherwise 1 0 0 0 2 +female 0.19 0.45 0 0 0 0 0 0 otherwise 1 0 0 0 0 +female 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 0 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 0 0 0 0 0 1 otherwise 0 0 0 0 1 +female 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 1 1 0 +female 0.19 0.45 0 0 0 0 0 0 not limited 0 0 1 1 0 +female 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 0 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.19 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 0 0 0 1 1 0 not limited 1 0 0 0 1 +female 0.19 0.45 0 0 0 1 0 1 limited 1 0 0 0 5 +female 0.19 0.45 0 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 1 5 0 +female 0.19 0.45 0 0 0 1 0 4 otherwise 0 0 0 0 0 +female 0.19 0.45 0 0 0 1 0 2 otherwise 0 0 0 0 1 +female 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 1 2 0 +female 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 2 1 1 +female 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.19 0.45 0 0 0 1 0 2 otherwise 0 0 0 0 0 +female 0.19 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.19 0.45 0 0 0 1 1 0 otherwise 0 0 0 0 1 +female 0.19 0.45 0 0 0 2 1 1 otherwise 1 0 1 2 1 +female 0.19 0.45 0 0 0 2 0 0 not limited 1 0 1 4 1 +female 0.19 0.45 0 0 0 2 1 2 not limited 0 0 0 0 1 +female 0.19 0.45 0 0 0 2 1 0 otherwise 0 0 1 1 0 +female 0.19 0.45 0 0 0 3 3 4 otherwise 2 0 0 0 2 +female 0.19 0.45 0 0 0 3 0 5 otherwise 0 0 0 0 1 +female 0.19 0.45 0 0 0 3 0 0 not limited 0 0 0 0 7 +female 0.19 0.45 0 0 0 3 0 5 not limited 0 0 0 0 1 +female 0.19 0.45 0 0 0 3 0 2 otherwise 0 0 0 0 1 +female 0.19 0.45 0 0 0 3 0 0 not limited 0 0 0 0 0 +female 0.19 0.45 0 0 0 3 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 0 0 0 4 0 3 limited 0 1 0 0 2 +female 0.19 0.45 0 0 0 4 0 3 not limited 0 0 0 0 1 +female 0.19 0.45 0 0 0 5 2 5 limited 2 0 0 0 3 +female 0.19 0.45 0 1 0 0 0 2 otherwise 0 0 0 0 1 +female 0.19 0.45 0 1 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 0 1 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 0 1 0 3 0 4 otherwise 0 0 0 0 0 +female 0.19 0.45 1 0 0 0 0 0 otherwise 1 0 0 0 1 +female 0.19 0.45 1 0 0 0 0 1 otherwise 1 0 0 0 1 +female 0.19 0.45 1 0 0 0 0 3 not limited 0 0 0 0 0 +female 0.19 0.45 1 0 0 0 0 0 otherwise 0 0 1 2 0 +female 0.19 0.45 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.19 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 1 0 0 0 0 2 otherwise 0 0 0 0 0 +female 0.19 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 1 0 0 1 2 1 otherwise 1 0 0 0 2 +female 0.19 0.45 1 0 0 1 0 0 otherwise 2 0 0 0 1 +female 0.19 0.45 1 0 0 1 3 0 otherwise 1 0 0 0 0 +female 0.19 0.45 1 0 0 1 0 2 otherwise 1 0 0 0 0 +female 0.19 0.45 1 0 0 1 0 0 limited 0 0 0 0 0 +female 0.19 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.45 1 0 0 1 0 3 limited 0 1 0 0 0 +female 0.19 0.45 1 0 0 1 0 2 not limited 0 0 0 0 1 +female 0.19 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.19 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.19 0.45 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.19 0.45 1 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.19 0.45 1 0 0 2 2 0 not limited 2 0 0 0 3 +female 0.19 0.45 1 0 0 2 14 6 limited 4 0 0 0 2 +female 0.19 0.45 1 0 0 2 0 0 otherwise 1 0 0 0 1 +female 0.19 0.45 1 0 0 2 1 0 not limited 0 0 0 0 2 +female 0.19 0.45 1 0 0 2 0 0 otherwise 0 0 0 0 3 +female 0.19 0.45 1 0 0 3 0 0 otherwise 1 0 0 0 2 +female 0.19 0.45 1 0 0 3 0 0 not limited 0 0 0 0 0 +female 0.19 0.45 1 0 0 3 1 5 otherwise 0 0 0 0 1 +female 0.19 0.45 1 0 0 3 0 2 not limited 0 0 0 0 0 +female 0.19 0.45 1 0 0 3 0 4 not limited 0 0 0 0 1 +female 0.19 0.45 1 0 0 4 0 0 not limited 1 0 1 6 2 +female 0.19 0.45 1 0 0 4 0 3 otherwise 0 0 4 1 0 +female 0.19 0.45 1 0 0 4 0 6 otherwise 0 0 0 0 0 +female 0.19 0.45 1 0 0 5 0 4 not limited 0 0 0 0 1 +female 0.19 0.45 1 0 0 5 0 3 not limited 0 0 0 0 3 +female 0.19 0.55 0 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 0 0 0 otherwise 0 1 0 0 1 +female 0.19 0.55 0 0 0 0 0 6 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 1 6 0 otherwise 5 0 1 2 2 +female 0.19 0.55 0 0 0 1 0 0 otherwise 0 2 1 1 1 +female 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 1 11 1 +female 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.19 0.55 0 0 0 1 0 5 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 2 5 6 otherwise 1 0 0 0 1 +female 0.19 0.55 0 0 0 2 0 0 limited 1 0 0 0 2 +female 0.19 0.55 0 0 0 2 0 4 limited 0 0 0 0 1 +female 0.19 0.55 0 0 0 2 0 0 otherwise 0 0 1 6 1 +female 0.19 0.55 0 0 0 2 0 2 otherwise 0 0 0 0 1 +female 0.19 0.55 0 0 0 2 0 3 limited 0 0 0 0 1 +female 0.19 0.55 0 0 0 2 0 1 not limited 0 0 0 0 0 +female 0.19 0.55 0 0 0 2 0 1 otherwise 0 4 1 4 1 +female 0.19 0.55 0 0 0 3 0 3 not limited 0 0 0 0 1 +female 0.19 0.55 0 0 0 4 0 2 otherwise 1 0 0 0 0 +female 0.19 0.55 0 0 0 4 0 1 otherwise 1 1 0 0 1 +female 0.19 0.55 0 0 0 4 0 2 otherwise 0 0 0 0 0 +female 0.19 0.55 0 0 0 4 4 7 otherwise 0 0 0 0 1 +female 0.19 0.55 0 0 0 5 2 6 not limited 0 0 0 0 0 +female 0.19 0.55 0 0 1 2 3 0 limited 1 0 0 0 5 +female 0.19 0.55 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.19 0.55 1 0 0 0 0 2 otherwise 0 0 1 1 0 +female 0.19 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 1 0 0 0 0 1 otherwise 0 0 0 0 1 +female 0.19 0.55 1 0 0 1 4 1 otherwise 1 0 0 0 1 +female 0.19 0.55 1 0 0 1 0 1 otherwise 1 0 0 0 0 +female 0.19 0.55 1 0 0 1 0 0 otherwise 1 0 0 0 0 +female 0.19 0.55 1 0 0 1 1 1 otherwise 0 0 0 0 0 +female 0.19 0.55 1 0 0 1 0 3 not limited 0 0 0 0 3 +female 0.19 0.55 1 0 0 1 2 0 otherwise 0 0 3 3 3 +female 0.19 0.55 1 0 0 1 0 0 limited 0 0 1 3 1 +female 0.19 0.55 1 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.19 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.19 0.55 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.19 0.55 1 0 0 1 0 4 otherwise 0 0 0 0 1 +female 0.19 0.55 1 0 0 1 0 4 not limited 0 0 0 0 0 +female 0.19 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.19 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 1 0 0 2 0 5 otherwise 2 0 2 2 1 +female 0.19 0.55 1 0 0 2 2 0 otherwise 1 0 1 2 2 +female 0.19 0.55 1 0 0 2 0 3 otherwise 0 0 0 0 0 +female 0.19 0.55 1 0 0 2 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 1 0 0 2 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 1 0 0 3 1 2 not limited 1 0 1 1 2 +female 0.19 0.55 1 0 0 3 0 2 otherwise 1 0 0 0 2 +female 0.19 0.55 1 0 0 3 0 2 otherwise 1 0 0 0 2 +female 0.19 0.55 1 0 0 3 0 5 otherwise 0 0 1 3 0 +female 0.19 0.55 1 0 0 3 0 0 otherwise 0 0 0 0 0 +female 0.19 0.55 1 0 0 4 1 0 not limited 0 0 1 2 4 +female 0.19 0.65 0 0 0 0 0 0 otherwise 1 0 0 0 0 +female 0.19 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.19 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.19 0.65 0 0 0 1 0 1 otherwise 0 0 0 0 1 +female 0.19 0.65 0 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.19 0.65 0 0 0 1 0 1 otherwise 0 0 1 3 0 +female 0.19 0.65 0 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.19 0.65 0 0 0 2 1 0 otherwise 1 0 0 0 2 +female 0.19 0.65 0 0 0 2 1 0 not limited 0 1 0 0 1 +female 0.19 0.65 0 0 0 2 0 1 otherwise 0 0 0 0 2 +female 0.19 0.65 0 0 0 2 0 6 not limited 0 0 1 1 1 +female 0.19 0.65 0 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.19 0.65 0 0 0 3 0 0 limited 1 0 0 0 1 +female 0.19 0.65 0 0 0 3 0 0 otherwise 0 0 0 0 4 +female 0.19 0.65 0 0 0 5 0 1 otherwise 0 0 1 2 1 +female 0.19 0.65 0 1 0 0 0 0 otherwise 0 0 0 0 1 +female 0.19 0.65 1 0 0 0 0 0 otherwise 1 0 0 0 0 +female 0.19 0.65 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.19 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.65 1 0 0 1 1 1 otherwise 1 0 0 0 0 +female 0.19 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.19 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.65 1 0 0 2 0 5 otherwise 1 0 0 0 1 +female 0.19 0.65 1 0 0 2 0 0 not limited 1 0 0 0 0 +female 0.19 0.65 1 0 0 2 3 2 otherwise 1 0 0 0 2 +female 0.19 0.65 1 0 0 2 0 2 otherwise 0 0 0 0 1 +female 0.19 0.65 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.19 0.65 1 0 0 2 0 0 otherwise 0 0 0 0 0 +female 0.19 0.75 0 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.19 0.75 0 0 0 0 0 1 otherwise 0 0 0 0 1 +female 0.19 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.75 0 0 0 1 0 2 otherwise 0 0 0 0 2 +female 0.19 0.75 0 0 0 2 0 6 otherwise 0 0 0 0 1 +female 0.19 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 2 +female 0.19 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.19 0.75 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.19 0.75 1 0 0 3 0 3 otherwise 0 0 1 4 1 +female 0.19 0.9 0 0 0 1 0 4 not limited 0 0 0 0 0 +female 0.19 0.9 0 0 0 1 0 2 not limited 0 0 0 0 3 +female 0.19 0.9 0 0 0 1 1 0 not limited 0 0 0 0 0 +female 0.19 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 0.9 1 0 0 1 0 1 otherwise 0 0 0 0 1 +female 0.19 0.9 1 0 0 2 0 3 otherwise 0 0 0 0 1 +female 0.19 1.1 0 0 0 0 0 5 otherwise 0 0 0 0 0 +female 0.19 1.1 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.19 1.1 1 0 0 2 0 1 otherwise 1 0 0 0 2 +female 0.22 0 0 0 0 2 0 0 not limited 0 0 0 0 2 +female 0.22 0 0 0 1 1 0 4 limited 0 7 0 0 3 +female 0.22 0 0 1 0 1 0 0 not limited 0 0 0 0 2 +female 0.22 0 0 1 0 2 2 6 not limited 1 0 1 1 4 +female 0.22 0 0 1 0 2 0 4 otherwise 0 0 0 0 1 +female 0.22 0 0 1 0 3 3 9 limited 4 0 0 0 4 +female 0.22 0 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.22 0 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.22 0 1 0 0 1 14 0 not limited 0 0 0 0 1 +female 0.22 0 1 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.22 0 1 0 0 2 0 7 otherwise 0 0 0 0 1 +female 0.22 0.01 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.01 0 0 0 1 0 7 limited 0 0 1 11 0 +female 0.22 0.01 0 0 0 1 0 0 not limited 0 0 1 3 3 +female 0.22 0.01 0 1 0 0 0 2 limited 0 0 0 0 0 +female 0.22 0.01 1 0 0 3 0 12 otherwise 0 0 0 0 1 +female 0.22 0.06 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.06 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.06 1 0 0 1 0 3 otherwise 0 0 0 0 0 +female 0.22 0.06 1 0 0 1 0 0 not limited 0 0 0 0 3 +female 0.22 0.06 1 0 0 1 0 2 otherwise 0 0 0 0 1 +female 0.22 0.06 1 0 0 3 0 7 limited 2 0 0 0 4 +female 0.22 0.06 1 0 0 4 5 9 otherwise 0 0 0 0 0 +female 0.22 0.15 0 0 0 0 0 0 otherwise 1 0 0 0 2 +female 0.22 0.15 0 0 0 0 0 0 otherwise 1 0 0 0 1 +female 0.22 0.15 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.22 0.15 0 0 0 1 0 5 not limited 0 0 0 0 3 +female 0.22 0.15 0 0 0 2 1 2 not limited 0 0 0 0 1 +female 0.22 0.15 0 0 1 1 14 0 not limited 1 0 0 0 1 +female 0.22 0.15 0 0 1 1 1 0 otherwise 0 0 0 0 1 +female 0.22 0.15 0 1 0 0 0 4 otherwise 0 0 0 0 0 +female 0.22 0.15 0 1 0 1 0 2 otherwise 0 0 0 0 1 +female 0.22 0.15 0 1 0 2 0 0 otherwise 0 0 0 0 2 +female 0.22 0.15 0 1 0 2 0 0 otherwise 0 0 0 0 0 +female 0.22 0.15 0 1 0 3 0 0 limited 1 0 1 2 1 +female 0.22 0.15 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.22 0.15 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.15 1 0 0 0 0 0 otherwise 0 0 0 0 2 +female 0.22 0.15 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.22 0.15 1 0 0 1 0 0 otherwise 1 0 0 0 0 +female 0.22 0.15 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.22 0.15 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.22 0.15 1 0 0 1 0 3 otherwise 0 0 0 0 1 +female 0.22 0.15 1 0 0 1 2 1 otherwise 0 1 0 0 0 +female 0.22 0.15 1 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.22 0.15 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.22 0.15 1 0 0 2 0 1 otherwise 0 0 1 1 1 +female 0.22 0.15 1 0 0 3 4 1 limited 1 0 0 0 1 +female 0.22 0.15 1 0 0 5 0 1 otherwise 1 4 0 0 3 +female 0.22 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.25 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.25 0 0 0 0 0 6 otherwise 0 0 0 0 0 +female 0.22 0.25 0 0 0 1 0 0 otherwise 1 0 1 4 2 +female 0.22 0.25 0 0 0 1 0 1 otherwise 1 1 0 0 2 +female 0.22 0.25 0 0 0 1 0 1 otherwise 0 0 1 5 1 +female 0.22 0.25 0 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.22 0.25 0 0 0 1 0 2 not limited 0 0 0 0 1 +female 0.22 0.25 0 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.22 0.25 0 0 0 2 6 0 otherwise 2 0 0 0 1 +female 0.22 0.25 0 0 0 2 10 1 otherwise 2 0 0 0 0 +female 0.22 0.25 0 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.22 0.25 0 0 0 3 1 0 not limited 0 0 0 0 3 +female 0.22 0.25 0 0 0 3 0 1 not limited 0 0 0 0 0 +female 0.22 0.25 0 0 0 3 0 0 limited 0 0 0 0 0 +female 0.22 0.25 0 0 0 5 0 1 not limited 0 0 1 2 1 +female 0.22 0.25 0 0 1 0 0 5 otherwise 0 0 0 0 0 +female 0.22 0.25 0 0 1 1 0 0 limited 1 2 2 7 0 +female 0.22 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.25 0 1 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.25 0 1 0 1 0 2 otherwise 0 0 0 0 2 +female 0.22 0.25 0 1 0 2 0 0 not limited 1 0 1 5 4 +female 0.22 0.25 0 1 0 2 1 1 otherwise 0 0 0 0 1 +female 0.22 0.25 0 1 0 2 0 11 not limited 0 0 0 0 0 +female 0.22 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.25 1 0 0 1 0 10 not limited 1 0 1 3 3 +female 0.22 0.25 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.22 0.25 1 0 0 1 0 2 not limited 0 0 0 0 1 +female 0.22 0.25 1 0 0 2 0 1 otherwise 0 0 0 0 0 +female 0.22 0.25 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.22 0.25 1 0 0 3 7 2 not limited 0 0 1 3 6 +female 0.22 0.25 1 0 0 3 0 4 not limited 0 0 0 0 2 +female 0.22 0.25 1 0 0 4 0 1 otherwise 1 0 0 0 3 +female 0.22 0.25 1 0 0 4 0 5 not limited 0 0 1 1 0 +female 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.35 0 0 0 0 0 0 not limited 0 0 0 0 3 +female 0.22 0.35 0 0 0 0 0 1 otherwise 0 0 0 0 1 +female 0.22 0.35 0 0 0 0 0 2 otherwise 0 0 0 0 0 +female 0.22 0.35 0 0 0 0 0 1 not limited 0 0 0 0 1 +female 0.22 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.35 0 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.22 0.35 0 0 0 1 0 0 not limited 0 0 1 1 3 +female 0.22 0.35 0 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.22 0.35 0 0 0 1 0 5 otherwise 0 0 0 0 1 +female 0.22 0.35 0 0 0 1 2 2 otherwise 0 0 0 0 0 +female 0.22 0.35 0 0 0 1 2 0 otherwise 0 0 0 0 0 +female 0.22 0.35 0 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.22 0.35 0 0 0 2 0 0 otherwise 1 0 0 0 1 +female 0.22 0.35 0 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.22 0.35 0 0 0 2 1 1 otherwise 0 0 0 0 0 +female 0.22 0.35 0 0 0 2 1 0 not limited 0 0 0 0 1 +female 0.22 0.35 0 0 0 3 7 3 otherwise 1 0 0 0 1 +female 0.22 0.35 0 0 0 4 0 0 otherwise 1 0 0 0 1 +female 0.22 0.35 0 0 1 2 0 5 otherwise 1 0 0 0 3 +female 0.22 0.35 0 1 0 0 0 2 otherwise 0 0 1 1 0 +female 0.22 0.35 0 1 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.35 0 1 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.35 0 1 0 2 0 4 limited 0 0 0 0 3 +female 0.22 0.35 0 1 0 3 0 1 not limited 0 0 0 0 1 +female 0.22 0.35 0 1 0 3 5 0 otherwise 0 0 0 0 1 +female 0.22 0.35 1 0 0 0 0 2 otherwise 1 0 0 0 0 +female 0.22 0.35 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.22 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.35 1 0 0 1 0 1 not limited 0 0 0 0 0 +female 0.22 0.35 1 0 0 2 0 3 otherwise 0 0 0 0 1 +female 0.22 0.45 0 0 0 0 0 0 otherwise 0 0 1 2 0 +female 0.22 0.45 0 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.22 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.45 0 0 0 0 0 3 otherwise 0 0 0 0 1 +female 0.22 0.45 0 0 0 0 0 4 otherwise 0 0 0 0 0 +female 0.22 0.45 0 0 0 1 0 5 not limited 2 0 0 0 2 +female 0.22 0.45 0 0 0 1 0 0 not limited 0 0 1 3 0 +female 0.22 0.45 0 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.22 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.22 0.45 0 0 0 2 0 0 not limited 1 0 0 0 3 +female 0.22 0.45 0 0 0 2 1 2 limited 1 0 0 0 4 +female 0.22 0.45 0 0 0 2 0 1 not limited 0 0 1 2 2 +female 0.22 0.45 0 0 0 2 0 0 limited 0 0 0 0 0 +female 0.22 0.45 0 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.22 0.45 0 0 0 4 4 5 limited 1 0 0 0 1 +female 0.22 0.45 0 0 0 4 0 11 not limited 0 0 0 0 1 +female 0.22 0.45 0 1 0 3 5 10 not limited 5 0 1 4 1 +female 0.22 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 2 +female 0.22 0.45 1 0 0 1 0 4 not limited 0 0 1 1 0 +female 0.22 0.45 1 0 0 1 0 2 not limited 0 0 0 0 0 +female 0.22 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.45 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.22 0.45 1 0 0 2 0 0 limited 2 0 1 3 1 +female 0.22 0.45 1 0 0 2 0 0 otherwise 0 0 0 0 1 +female 0.22 0.45 1 0 0 2 1 3 not limited 0 0 0 0 1 +female 0.22 0.45 1 0 0 2 1 0 otherwise 0 0 0 0 1 +female 0.22 0.45 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.22 0.45 1 0 0 2 3 0 otherwise 0 0 0 0 2 +female 0.22 0.45 1 0 0 3 1 1 not limited 2 0 0 0 0 +female 0.22 0.45 1 0 0 3 0 3 otherwise 0 0 0 0 1 +female 0.22 0.45 1 0 0 3 0 2 otherwise 0 0 0 0 2 +female 0.22 0.45 1 0 0 4 0 0 not limited 0 0 0 0 3 +female 0.22 0.45 1 0 0 4 1 4 not limited 0 0 0 0 3 +female 0.22 0.55 0 0 0 0 0 0 otherwise 1 0 0 0 0 +female 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.55 0 0 0 1 0 0 otherwise 1 0 0 0 1 +female 0.22 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.22 0.55 0 0 0 1 0 1 otherwise 0 1 0 0 2 +female 0.22 0.55 0 0 0 1 0 0 not limited 0 0 0 0 3 +female 0.22 0.55 0 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.22 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.55 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.55 0 0 0 2 0 6 otherwise 1 0 0 0 0 +female 0.22 0.55 0 0 0 2 0 0 not limited 1 0 0 0 1 +female 0.22 0.55 0 0 0 2 0 0 otherwise 1 0 0 0 0 +female 0.22 0.55 0 0 0 2 7 0 otherwise 3 2 0 0 0 +female 0.22 0.55 0 0 0 2 1 0 not limited 0 0 0 0 2 +female 0.22 0.55 0 0 0 2 0 3 not limited 0 0 0 0 1 +female 0.22 0.55 0 0 0 2 0 2 not limited 0 0 0 0 1 +female 0.22 0.55 0 0 0 2 0 0 otherwise 0 0 0 0 2 +female 0.22 0.55 0 0 0 2 1 3 not limited 0 0 0 0 2 +female 0.22 0.55 0 0 0 3 0 1 not limited 0 0 0 0 1 +female 0.22 0.55 0 0 0 4 0 4 not limited 0 0 0 0 1 +female 0.22 0.55 0 0 0 4 0 1 not limited 0 0 1 2 0 +female 0.22 0.55 0 0 0 5 0 8 not limited 0 0 0 0 2 +female 0.22 0.55 0 0 1 0 0 0 otherwise 0 0 1 7 1 +female 0.22 0.55 0 0 1 5 2 3 limited 2 0 0 0 6 +female 0.22 0.55 0 1 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.55 0 1 0 1 1 0 not limited 0 0 0 0 0 +female 0.22 0.55 0 1 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.55 0 1 0 3 14 1 not limited 0 2 1 7 0 +female 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 3 +female 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.55 1 0 0 0 0 3 otherwise 0 0 0 0 1 +female 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 1 1 1 +female 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 2 +female 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 1 5 0 +female 0.22 0.55 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.22 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.55 1 0 0 1 0 1 not limited 1 0 0 0 1 +female 0.22 0.55 1 0 0 1 0 0 otherwise 1 0 0 0 2 +female 0.22 0.55 1 0 0 1 0 0 otherwise 2 0 0 0 2 +female 0.22 0.55 1 0 0 1 7 0 otherwise 1 0 0 0 0 +female 0.22 0.55 1 0 0 1 0 6 otherwise 0 0 0 0 0 +female 0.22 0.55 1 0 0 1 0 0 not limited 0 0 0 0 3 +female 0.22 0.55 1 0 0 1 0 5 not limited 0 0 1 6 1 +female 0.22 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.55 1 0 0 1 0 1 otherwise 0 1 0 0 2 +female 0.22 0.55 1 0 0 1 2 2 otherwise 0 2 0 0 4 +female 0.22 0.55 1 0 0 1 0 0 limited 0 0 1 1 2 +female 0.22 0.55 1 0 0 1 0 2 not limited 0 0 0 0 3 +female 0.22 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.22 0.55 1 0 0 2 0 0 not limited 0 0 0 0 2 +female 0.22 0.55 1 0 0 2 14 6 limited 0 0 2 2 1 +female 0.22 0.55 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.22 0.55 1 0 0 2 0 0 otherwise 0 0 0 0 0 +female 0.22 0.55 1 0 0 3 10 2 limited 2 0 1 4 2 +female 0.22 0.55 1 0 0 3 0 6 otherwise 0 0 0 0 0 +female 0.22 0.55 1 0 0 3 0 1 not limited 0 0 0 0 2 +female 0.22 0.55 1 0 0 3 1 5 limited 0 0 0 0 3 +female 0.22 0.55 1 0 0 3 0 4 limited 0 0 0 0 0 +female 0.22 0.55 1 0 0 3 0 0 not limited 0 1 0 0 1 +female 0.22 0.55 1 0 0 4 3 1 not limited 1 0 1 7 1 +female 0.22 0.65 0 0 0 0 0 0 not limited 1 0 0 0 2 +female 0.22 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 0 0 0 0 0 1 otherwise 0 0 0 0 3 +female 0.22 0.65 0 0 0 0 0 5 otherwise 0 0 0 0 1 +female 0.22 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.65 0 0 0 1 2 1 otherwise 0 0 0 0 2 +female 0.22 0.65 0 0 0 1 1 2 otherwise 0 0 0 0 1 +female 0.22 0.65 0 0 0 1 0 6 not limited 0 0 0 0 2 +female 0.22 0.65 0 0 0 1 0 2 otherwise 0 0 0 0 1 +female 0.22 0.65 0 0 0 1 1 1 not limited 0 1 0 0 2 +female 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 0 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.22 0.65 0 0 0 1 0 1 not limited 0 0 0 0 2 +female 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.22 0.65 0 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.22 0.65 0 0 0 1 0 0 otherwise 0 0 1 2 1 +female 0.22 0.65 0 0 0 2 0 0 otherwise 0 0 0 0 2 +female 0.22 0.65 0 0 0 2 0 2 otherwise 0 0 0 0 0 +female 0.22 0.65 0 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.22 0.65 0 0 0 3 0 0 not limited 0 0 0 0 0 +female 0.22 0.65 0 0 0 3 2 1 otherwise 0 0 0 0 0 +female 0.22 0.65 0 0 0 3 0 2 otherwise 0 0 0 0 1 +female 0.22 0.65 0 0 0 3 1 0 not limited 0 0 0 0 2 +female 0.22 0.65 0 0 0 3 0 1 not limited 0 0 0 0 2 +female 0.22 0.65 0 0 0 4 0 1 not limited 1 0 1 2 2 +female 0.22 0.65 0 0 0 4 7 7 otherwise 1 7 0 0 2 +female 0.22 0.65 0 0 0 4 1 10 limited 0 2 0 0 1 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 0 0 4 otherwise 0 0 0 0 2 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 2 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 1 2 0 +female 0.22 0.65 1 0 0 0 0 0 not limited 0 0 1 80 2 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 3 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 0 0 3 otherwise 0 0 0 0 1 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 3 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.65 1 0 0 0 0 2 otherwise 0 0 0 0 2 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 1 0 2 otherwise 2 0 0 0 3 +female 0.22 0.65 1 0 0 1 0 5 otherwise 1 0 0 0 2 +female 0.22 0.65 1 0 0 1 3 0 not limited 1 0 0 0 3 +female 0.22 0.65 1 0 0 1 0 1 otherwise 1 0 1 4 1 +female 0.22 0.65 1 0 0 1 0 2 otherwise 1 0 0 0 2 +female 0.22 0.65 1 0 0 1 1 0 otherwise 1 0 0 0 1 +female 0.22 0.65 1 0 0 1 0 8 limited 0 0 0 0 2 +female 0.22 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.22 0.65 1 0 0 1 2 0 not limited 0 0 0 0 0 +female 0.22 0.65 1 0 0 1 0 0 not limited 0 0 1 5 2 +female 0.22 0.65 1 0 0 1 0 1 not limited 0 0 0 0 0 +female 0.22 0.65 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.22 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.22 0.65 1 0 0 1 0 1 otherwise 0 0 0 0 2 +female 0.22 0.65 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.22 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 1 0 1 otherwise 0 0 0 0 1 +female 0.22 0.65 1 0 0 1 1 0 not limited 0 0 0 0 6 +female 0.22 0.65 1 0 0 1 0 0 not limited 0 0 1 4 1 +female 0.22 0.65 1 0 0 1 0 2 otherwise 0 0 0 0 2 +female 0.22 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 1 5 0 otherwise 0 0 0 0 2 +female 0.22 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 2 4 3 otherwise 1 0 0 0 3 +female 0.22 0.65 1 0 0 2 7 0 otherwise 1 0 0 0 2 +female 0.22 0.65 1 0 0 2 2 0 otherwise 1 0 0 0 0 +female 0.22 0.65 1 0 0 2 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 2 0 2 otherwise 0 0 0 0 2 +female 0.22 0.65 1 0 0 2 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 2 0 0 otherwise 0 0 0 0 0 +female 0.22 0.65 1 0 0 2 3 3 limited 0 4 0 0 4 +female 0.22 0.65 1 0 0 2 0 0 not limited 0 0 0 0 3 +female 0.22 0.65 1 0 0 2 0 1 otherwise 0 0 0 0 2 +female 0.22 0.65 1 0 0 2 0 1 otherwise 0 1 0 0 1 +female 0.22 0.65 1 0 0 2 0 2 not limited 0 0 1 4 1 +female 0.22 0.65 1 0 0 3 0 7 limited 1 1 0 0 1 +female 0.22 0.65 1 0 0 3 2 0 limited 2 0 0 0 2 +female 0.22 0.65 1 0 0 3 2 1 limited 0 0 0 0 1 +female 0.22 0.65 1 0 0 3 0 0 otherwise 0 0 0 0 2 +female 0.22 0.65 1 0 0 3 0 3 not limited 0 0 1 1 1 +female 0.22 0.65 1 0 0 3 0 1 limited 0 0 0 0 2 +female 0.22 0.65 1 0 0 3 0 0 not limited 0 0 0 0 1 +female 0.22 0.65 1 0 0 3 0 1 otherwise 0 0 0 0 2 +female 0.22 0.65 1 0 0 4 0 6 not limited 0 0 0 0 3 +female 0.22 0.65 1 0 0 4 0 7 otherwise 0 0 0 0 1 +female 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.75 0 0 0 0 0 2 not limited 0 0 0 0 0 +female 0.22 0.75 0 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 1 1 0 +female 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.75 0 0 0 1 0 0 otherwise 1 0 0 0 1 +female 0.22 0.75 0 0 0 1 0 0 otherwise 1 0 0 0 1 +female 0.22 0.75 0 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.22 0.75 0 0 0 1 1 2 not limited 0 0 1 11 1 +female 0.22 0.75 0 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 3 +female 0.22 0.75 0 0 0 1 14 8 not limited 0 0 0 0 8 +female 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.22 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.75 0 0 0 2 0 0 not limited 1 1 1 1 2 +female 0.22 0.75 0 0 0 2 14 0 otherwise 0 3 0 0 2 +female 0.22 0.75 0 0 0 2 0 3 otherwise 0 0 0 0 1 +female 0.22 0.75 0 0 0 3 1 0 not limited 1 0 0 0 1 +female 0.22 0.75 0 0 0 3 14 2 not limited 2 0 0 0 2 +female 0.22 0.75 0 0 0 3 0 2 not limited 0 7 0 0 1 +female 0.22 0.75 0 0 0 3 0 0 limited 0 1 0 0 0 +female 0.22 0.75 0 0 0 3 1 0 not limited 0 0 0 0 0 +female 0.22 0.75 0 0 0 4 0 0 not limited 0 0 0 0 3 +female 0.22 0.75 0 0 0 5 0 3 otherwise 0 0 0 0 3 +female 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 1 5 1 +female 0.22 0.75 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.75 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.22 0.75 1 0 0 0 0 0 not limited 0 0 1 11 0 +female 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.75 1 0 0 0 0 5 otherwise 0 0 0 0 1 +female 0.22 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.75 1 0 0 1 0 1 not limited 1 1 0 0 1 +female 0.22 0.75 1 0 0 1 0 0 otherwise 1 0 0 0 0 +female 0.22 0.75 1 0 0 1 0 4 otherwise 2 0 0 0 0 +female 0.22 0.75 1 0 0 1 0 4 limited 0 0 0 0 1 +female 0.22 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.22 0.75 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.22 0.75 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.22 0.75 1 0 0 1 1 4 limited 0 0 0 0 0 +female 0.22 0.75 1 0 0 1 0 1 not limited 0 0 0 0 0 +female 0.22 0.75 1 0 0 1 1 0 otherwise 0 0 0 0 1 +female 0.22 0.75 1 0 0 1 0 1 not limited 0 0 0 0 0 +female 0.22 0.75 1 0 0 1 2 0 not limited 0 0 0 0 1 +female 0.22 0.75 1 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.22 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.22 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.22 0.75 1 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.22 0.75 1 0 0 2 0 3 otherwise 1 0 0 0 3 +female 0.22 0.75 1 0 0 2 0 2 not limited 2 0 0 0 1 +female 0.22 0.75 1 0 0 2 14 2 not limited 2 0 0 0 6 +female 0.22 0.75 1 0 0 2 3 0 not limited 1 0 1 11 4 +female 0.22 0.75 1 0 0 2 0 3 otherwise 0 0 0 0 1 +female 0.22 0.75 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.22 0.75 1 0 0 3 0 0 not limited 0 0 0 0 1 +female 0.22 0.75 1 0 0 3 0 0 not limited 0 0 0 0 1 +female 0.22 0.75 1 0 0 3 0 2 otherwise 0 0 0 0 0 +female 0.22 0.75 1 0 0 4 0 3 otherwise 0 0 0 0 4 +female 0.22 0.75 1 0 0 4 0 3 not limited 0 0 0 0 1 +female 0.22 0.75 1 0 0 4 0 0 otherwise 0 0 0 0 2 +female 0.22 0.75 1 0 0 5 0 5 not limited 0 0 0 0 4 +female 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.9 0 0 0 0 0 5 otherwise 0 0 0 0 1 +female 0.22 0.9 0 0 0 0 0 1 not limited 0 0 0 0 0 +female 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.9 0 0 0 1 4 0 otherwise 1 0 0 0 1 +female 0.22 0.9 0 0 0 1 14 0 otherwise 1 1 1 11 0 +female 0.22 0.9 0 0 0 1 6 0 otherwise 1 0 0 0 1 +female 0.22 0.9 0 0 0 1 0 1 otherwise 0 0 0 0 1 +female 0.22 0.9 0 0 0 1 0 2 otherwise 0 0 0 0 2 +female 0.22 0.9 0 0 0 1 0 0 not limited 0 0 2 22 0 +female 0.22 0.9 0 0 0 2 0 0 not limited 1 0 0 0 0 +female 0.22 0.9 0 0 0 2 0 0 otherwise 1 0 0 0 2 +female 0.22 0.9 0 0 0 2 0 6 otherwise 0 0 1 5 2 +female 0.22 0.9 0 0 0 2 0 6 otherwise 0 0 1 3 0 +female 0.22 0.9 0 0 0 2 2 0 otherwise 0 0 0 0 1 +female 0.22 0.9 0 0 0 2 0 0 otherwise 0 0 0 0 2 +female 0.22 0.9 0 0 0 3 0 2 otherwise 0 4 0 0 0 +female 0.22 0.9 0 0 0 3 0 3 limited 0 0 1 3 2 +female 0.22 0.9 0 0 0 3 0 0 otherwise 0 1 0 0 0 +female 0.22 0.9 0 0 0 4 0 2 not limited 0 0 0 0 1 +female 0.22 0.9 0 0 0 4 1 12 not limited 0 0 0 0 1 +female 0.22 0.9 1 0 0 0 0 0 otherwise 1 0 0 0 0 +female 0.22 0.9 1 0 0 0 0 0 otherwise 1 0 0 0 0 +female 0.22 0.9 1 0 0 0 0 0 otherwise 1 0 1 7 2 +female 0.22 0.9 1 0 0 0 0 2 otherwise 1 0 0 0 0 +female 0.22 0.9 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.22 0.9 1 0 0 0 0 0 limited 0 1 0 0 0 +female 0.22 0.9 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.9 1 0 0 0 0 0 limited 0 1 0 0 2 +female 0.22 0.9 1 0 0 0 0 2 otherwise 0 0 0 0 1 +female 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 2 +female 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 1 4 1 +female 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 0.9 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.22 0.9 1 0 0 1 0 1 not limited 1 0 0 0 0 +female 0.22 0.9 1 0 0 1 2 0 not limited 1 1 0 0 1 +female 0.22 0.9 1 0 0 1 0 0 not limited 0 0 0 0 3 +female 0.22 0.9 1 0 0 1 0 0 otherwise 0 0 1 3 0 +female 0.22 0.9 1 0 0 1 0 4 otherwise 0 0 1 2 0 +female 0.22 0.9 1 0 0 1 0 2 not limited 0 0 0 0 0 +female 0.22 0.9 1 0 0 1 0 5 otherwise 0 0 0 0 0 +female 0.22 0.9 1 0 0 1 1 0 not limited 0 0 0 0 2 +female 0.22 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.9 1 0 0 1 0 4 not limited 0 0 0 0 1 +female 0.22 0.9 1 0 0 1 0 2 otherwise 0 0 0 0 0 +female 0.22 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 0.9 1 0 0 2 0 0 not limited 1 0 0 0 2 +female 0.22 0.9 1 0 0 2 0 6 not limited 1 0 1 2 2 +female 0.22 0.9 1 0 0 2 0 3 limited 0 0 0 0 2 +female 0.22 0.9 1 0 0 2 0 0 otherwise 0 0 0 0 1 +female 0.22 0.9 1 0 0 2 0 3 not limited 0 2 1 5 2 +female 0.22 0.9 1 0 0 2 0 2 otherwise 0 0 1 1 2 +female 0.22 0.9 1 0 0 2 0 1 otherwise 0 0 0 0 1 +female 0.22 0.9 1 0 0 2 0 0 limited 0 0 1 5 3 +female 0.22 0.9 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.22 0.9 1 0 0 2 1 2 otherwise 0 0 0 0 2 +female 0.22 0.9 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.22 0.9 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.22 0.9 1 0 0 2 0 0 limited 0 0 1 1 0 +female 0.22 0.9 1 0 0 2 0 1 not limited 0 0 0 0 1 +female 0.22 0.9 1 0 0 3 0 0 otherwise 0 0 0 0 0 +female 0.22 0.9 1 0 0 3 1 2 otherwise 0 0 0 0 2 +female 0.22 0.9 1 0 0 4 1 0 not limited 1 0 0 0 2 +female 0.22 0.9 1 0 0 4 3 2 limited 0 1 0 0 4 +female 0.22 1.1 0 0 0 0 0 0 otherwise 1 0 0 0 0 +female 0.22 1.1 0 0 0 0 0 3 otherwise 0 0 0 0 2 +female 0.22 1.1 0 0 0 0 0 0 not limited 0 0 0 0 4 +female 0.22 1.1 0 0 0 1 5 2 not limited 0 0 0 0 1 +female 0.22 1.1 0 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.22 1.1 0 0 0 1 14 1 otherwise 0 9 0 0 0 +female 0.22 1.1 0 0 0 1 14 0 not limited 0 0 0 0 1 +female 0.22 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.22 1.1 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.22 1.1 1 0 0 0 0 0 limited 0 0 1 6 1 +female 0.22 1.1 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.22 1.1 1 0 0 0 0 0 not limited 0 1 0 0 0 +female 0.22 1.1 1 0 0 1 0 0 not limited 1 0 0 0 4 +female 0.22 1.1 1 0 0 1 0 1 otherwise 1 0 0 0 0 +female 0.22 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.22 1.1 1 0 0 1 0 0 limited 0 0 0 0 2 +female 0.22 1.1 1 0 0 1 0 2 not limited 0 0 0 0 1 +female 0.22 1.1 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.22 1.1 1 0 0 1 0 3 not limited 0 0 0 0 0 +female 0.22 1.1 1 0 0 2 0 0 otherwise 0 0 0 0 1 +female 0.22 1.1 1 0 0 2 0 6 not limited 0 0 0 0 0 +female 0.22 1.1 1 0 0 2 0 3 otherwise 0 0 0 0 1 +female 0.22 1.1 1 0 0 2 0 3 limited 0 0 0 0 3 +female 0.22 1.1 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.22 1.1 1 0 0 2 0 0 otherwise 0 0 0 0 0 +female 0.22 1.1 1 0 0 3 0 4 otherwise 0 0 0 0 2 +female 0.22 1.1 1 0 0 5 0 1 not limited 1 0 0 0 0 +female 0.22 1.3 0 0 0 2 0 2 not limited 0 0 0 0 1 +female 0.27 0 0 0 1 1 0 5 otherwise 3 0 1 1 1 +female 0.27 0 1 0 0 2 0 5 otherwise 2 0 4 7 4 +female 0.27 0.01 0 0 0 1 0 0 otherwise 0 0 0 0 3 +female 0.27 0.01 0 1 0 5 1 2 limited 0 0 0 0 1 +female 0.27 0.01 1 0 0 1 0 0 not limited 0 0 2 22 1 +female 0.27 0.06 0 0 0 1 0 1 limited 0 1 0 0 1 +female 0.27 0.06 0 0 1 0 0 0 otherwise 0 0 0 0 2 +female 0.27 0.06 0 1 0 5 3 12 not limited 1 0 0 0 3 +female 0.27 0.15 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.27 0.15 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.27 0.15 0 0 0 1 0 2 otherwise 0 0 0 0 1 +female 0.27 0.15 0 0 0 3 3 6 otherwise 1 0 1 4 0 +female 0.27 0.15 0 0 1 1 1 3 otherwise 2 1 0 0 1 +female 0.27 0.15 0 1 0 0 0 0 otherwise 0 0 0 0 1 +female 0.27 0.15 1 0 0 3 1 1 not limited 0 0 0 0 0 +female 0.27 0.25 0 0 0 2 14 1 not limited 0 7 0 0 1 +female 0.27 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +female 0.27 0.25 0 0 1 2 0 0 limited 1 0 0 0 1 +female 0.27 0.25 0 0 1 2 0 1 not limited 0 0 0 0 0 +female 0.27 0.25 0 1 0 0 0 3 otherwise 0 0 0 0 0 +female 0.27 0.25 1 0 0 0 0 0 limited 0 0 0 0 0 +female 0.27 0.25 1 0 0 1 4 0 limited 1 0 0 0 2 +female 0.27 0.25 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.27 0.25 1 0 0 2 7 6 limited 0 0 2 5 2 +female 0.27 0.35 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.27 0.35 0 0 1 1 0 4 otherwise 1 0 0 0 0 +female 0.27 0.35 0 1 0 2 0 0 not limited 0 0 1 11 1 +female 0.27 0.35 1 0 0 1 14 1 not limited 5 1 1 3 2 +female 0.27 0.35 1 0 0 1 0 0 otherwise 0 1 0 0 1 +female 0.27 0.35 1 0 0 3 0 0 not limited 0 0 0 0 0 +female 0.27 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.27 0.45 0 0 0 1 0 0 otherwise 0 0 1 1 1 +female 0.27 0.45 0 0 0 2 0 2 limited 1 1 0 0 1 +female 0.27 0.45 0 0 0 2 0 2 otherwise 0 0 0 0 1 +female 0.27 0.45 0 1 0 0 0 0 limited 0 0 1 11 2 +female 0.27 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 0.45 1 0 0 2 0 1 not limited 0 0 0 0 0 +female 0.27 0.55 0 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.27 0.55 0 0 0 1 0 3 otherwise 1 0 0 0 2 +female 0.27 0.55 0 0 0 1 2 0 otherwise 0 0 0 0 1 +female 0.27 0.55 0 0 0 2 8 10 not limited 2 0 0 0 2 +female 0.27 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.27 0.55 1 0 0 0 0 2 otherwise 0 0 0 0 1 +female 0.27 0.55 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.27 0.55 1 0 0 3 3 1 not limited 1 6 0 0 2 +female 0.27 0.55 1 0 0 3 0 0 not limited 0 1 0 0 6 +female 0.27 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 0.65 0 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.27 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.27 0.65 0 0 0 2 5 1 not limited 1 0 0 0 2 +female 0.27 0.65 0 0 0 3 14 10 not limited 1 0 0 0 2 +female 0.27 0.65 0 0 0 4 0 2 otherwise 1 0 0 0 1 +female 0.27 0.65 0 1 0 0 0 1 otherwise 0 0 0 0 0 +female 0.27 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 2 +female 0.27 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 2 +female 0.27 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 0.65 1 0 0 1 4 1 not limited 1 0 0 0 1 +female 0.27 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.27 0.65 1 0 0 1 1 0 not limited 0 0 0 0 0 +female 0.27 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.27 0.65 1 0 0 2 3 0 otherwise 1 0 0 0 2 +female 0.27 0.75 0 0 0 0 0 0 otherwise 1 0 0 0 1 +female 0.27 0.75 0 0 0 1 1 0 otherwise 0 0 0 0 0 +female 0.27 0.75 0 0 0 2 8 0 otherwise 7 1 1 11 0 +female 0.27 0.75 0 0 0 2 0 0 not limited 0 0 0 0 4 +female 0.27 0.75 0 0 0 3 0 0 not limited 0 0 0 0 2 +female 0.27 0.75 0 0 0 4 0 0 not limited 0 0 0 0 4 +female 0.27 0.75 1 0 0 0 0 2 otherwise 1 0 0 0 0 +female 0.27 0.75 1 0 0 0 0 0 not limited 0 0 0 0 5 +female 0.27 0.75 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.27 0.75 1 0 0 0 0 0 otherwise 0 0 1 11 0 +female 0.27 0.75 1 0 0 0 0 0 not limited 0 0 0 0 4 +female 0.27 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 2 +female 0.27 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 0.75 1 0 0 0 0 1 otherwise 0 0 1 6 0 +female 0.27 0.75 1 0 0 1 1 0 otherwise 2 0 0 0 0 +female 0.27 0.75 1 0 0 1 14 0 not limited 1 0 0 0 0 +female 0.27 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.27 0.75 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.27 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.27 0.75 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.27 0.75 1 0 0 1 0 1 not limited 0 0 0 0 1 +female 0.27 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.27 0.75 1 0 0 1 0 2 not limited 0 0 0 0 0 +female 0.27 0.75 1 0 0 1 0 2 otherwise 0 1 0 0 0 +female 0.27 0.75 1 0 0 2 2 2 limited 2 0 0 0 6 +female 0.27 0.75 1 0 0 2 3 1 not limited 1 0 0 0 1 +female 0.27 0.75 1 0 0 2 0 0 otherwise 0 0 0 0 1 +female 0.27 0.75 1 0 0 2 0 2 otherwise 0 0 0 0 1 +female 0.27 0.9 0 0 0 0 0 1 not limited 0 0 0 0 3 +female 0.27 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 0.9 0 0 0 1 0 5 not limited 0 0 0 0 1 +female 0.27 0.9 0 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.27 0.9 0 0 0 1 0 6 not limited 0 0 0 0 2 +female 0.27 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.27 0.9 0 0 0 1 0 0 otherwise 0 0 1 11 0 +female 0.27 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.27 0.9 0 0 0 1 1 0 otherwise 0 0 0 0 1 +female 0.27 0.9 0 0 0 2 0 8 limited 0 0 0 0 4 +female 0.27 0.9 0 0 0 2 0 1 otherwise 0 0 0 0 1 +female 0.27 0.9 0 0 0 3 0 4 not limited 1 0 0 0 2 +female 0.27 0.9 0 0 0 3 14 4 limited 2 6 4 3 0 +female 0.27 0.9 0 0 0 5 14 8 otherwise 0 0 0 0 3 +female 0.27 0.9 1 0 0 0 0 0 otherwise 1 0 0 0 1 +female 0.27 0.9 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 2 +female 0.27 0.9 1 0 0 0 0 0 not limited 0 0 0 0 4 +female 0.27 0.9 1 0 0 0 0 1 not limited 0 0 0 0 1 +female 0.27 0.9 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 0.9 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 1 6 1 +female 0.27 0.9 1 0 0 0 0 1 otherwise 0 0 1 11 1 +female 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.27 0.9 1 0 0 1 0 3 otherwise 2 0 0 0 2 +female 0.27 0.9 1 0 0 1 0 4 limited 2 0 0 0 2 +female 0.27 0.9 1 0 0 1 0 0 not limited 1 0 1 2 0 +female 0.27 0.9 1 0 0 1 3 0 otherwise 7 0 0 0 3 +female 0.27 0.9 1 0 0 1 0 1 not limited 0 0 0 0 2 +female 0.27 0.9 1 0 0 1 7 0 otherwise 0 0 0 0 4 +female 0.27 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.27 0.9 1 0 0 1 0 11 not limited 0 0 0 0 2 +female 0.27 0.9 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.27 0.9 1 0 0 1 0 5 otherwise 0 0 0 0 0 +female 0.27 0.9 1 0 0 2 0 2 otherwise 1 0 0 0 2 +female 0.27 0.9 1 0 0 2 0 1 otherwise 0 0 0 0 2 +female 0.27 0.9 1 0 0 2 6 0 not limited 0 1 0 0 5 +female 0.27 0.9 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.27 0.9 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.27 0.9 1 0 0 3 0 5 not limited 0 0 0 0 7 +female 0.27 0.9 1 0 0 3 0 0 otherwise 0 0 0 0 0 +female 0.27 0.9 1 0 0 3 0 4 not limited 0 0 0 0 1 +female 0.27 0.9 1 0 0 3 0 0 otherwise 0 0 0 0 0 +female 0.27 0.9 1 0 0 4 0 0 not limited 2 0 0 0 0 +female 0.27 0.9 1 0 0 5 1 5 not limited 1 1 0 0 1 +female 0.27 0.9 1 0 0 5 1 11 not limited 2 0 0 0 3 +female 0.27 0.9 1 0 0 5 0 1 not limited 0 0 0 0 4 +female 0.27 1.1 0 0 0 0 0 1 not limited 0 0 0 0 0 +female 0.27 1.1 0 0 0 0 0 3 otherwise 0 0 0 0 1 +female 0.27 1.1 0 0 0 0 0 2 otherwise 0 0 0 0 1 +female 0.27 1.1 0 0 0 1 0 5 not limited 0 0 0 0 1 +female 0.27 1.1 0 0 0 1 0 6 otherwise 0 0 0 0 1 +female 0.27 1.1 0 0 0 2 0 1 otherwise 1 6 0 0 0 +female 0.27 1.1 0 0 0 3 3 0 otherwise 1 0 0 0 1 +female 0.27 1.1 0 1 0 0 0 1 otherwise 0 0 0 0 1 +female 0.27 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 1.1 1 0 0 1 0 0 otherwise 1 0 0 0 1 +female 0.27 1.1 1 0 0 1 2 2 not limited 1 0 0 0 4 +female 0.27 1.1 1 0 0 1 0 0 otherwise 2 0 0 0 1 +female 0.27 1.1 1 0 0 1 0 2 otherwise 0 0 0 0 1 +female 0.27 1.1 1 0 0 1 0 4 limited 0 0 0 0 3 +female 0.27 1.1 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.27 1.1 1 0 0 1 0 0 not limited 0 0 1 3 0 +female 0.27 1.1 1 0 0 1 0 0 not limited 0 0 0 0 4 +female 0.27 1.1 1 0 0 1 2 1 not limited 0 0 1 2 3 +female 0.27 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.27 1.1 1 0 0 2 3 8 not limited 1 0 0 0 3 +female 0.27 1.1 1 0 0 2 0 2 not limited 0 0 0 0 1 +female 0.27 1.1 1 0 0 2 1 1 not limited 0 2 0 0 3 +female 0.27 1.1 1 0 0 2 1 0 not limited 0 2 0 0 2 +female 0.27 1.1 1 0 0 3 0 4 otherwise 0 0 0 0 0 +female 0.27 1.3 0 0 0 0 0 0 otherwise 0 1 0 0 1 +female 0.27 1.3 0 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.27 1.3 0 0 0 2 5 0 not limited 1 0 0 0 2 +female 0.27 1.3 0 0 0 3 0 6 not limited 0 0 0 0 6 +female 0.27 1.3 1 0 0 0 0 3 not limited 0 0 0 0 2 +female 0.27 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.27 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.27 1.3 1 0 0 1 7 4 not limited 2 0 0 0 0 +female 0.27 1.3 1 0 0 1 7 2 otherwise 2 0 1 2 1 +female 0.27 1.3 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.27 1.3 1 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.27 1.3 1 0 0 2 1 0 limited 1 2 0 0 3 +female 0.27 1.3 1 0 0 2 0 0 otherwise 0 0 0 0 0 +female 0.27 1.3 1 0 0 2 0 0 otherwise 0 0 0 0 1 +female 0.27 1.5 1 0 0 0 0 0 otherwise 1 0 0 0 0 +female 0.27 1.5 1 0 0 1 0 6 otherwise 1 0 0 0 2 +female 0.27 1.5 1 0 0 2 0 11 otherwise 0 0 0 0 0 +female 0.27 1.5 1 0 0 5 0 2 limited 0 0 0 0 1 +female 0.32 0 0 1 0 3 0 8 not limited 0 0 0 0 4 +female 0.32 0.06 1 0 0 1 0 6 not limited 0 0 0 0 0 +female 0.32 0.15 0 0 0 4 0 6 otherwise 1 0 0 0 3 +female 0.32 0.15 1 0 0 0 0 1 otherwise 2 0 0 0 1 +female 0.32 0.15 1 0 0 4 14 0 limited 7 6 5 22 8 +female 0.32 0.25 0 0 1 2 0 0 limited 1 0 0 0 6 +female 0.32 0.25 0 1 0 4 0 8 not limited 0 0 1 4 1 +female 0.32 0.25 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.32 0.25 1 0 0 1 0 0 otherwise 0 0 2 11 2 +female 0.32 0.25 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.32 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.32 0.35 0 0 0 1 0 8 otherwise 0 0 0 0 2 +female 0.32 0.35 1 0 0 5 0 0 limited 0 0 0 0 2 +female 0.32 0.45 1 0 0 1 5 7 limited 1 7 3 11 4 +female 0.32 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.32 0.55 0 0 0 0 0 2 limited 0 0 0 0 1 +female 0.32 0.55 0 0 0 0 0 2 otherwise 0 0 0 0 0 +female 0.32 0.55 0 0 0 0 0 0 limited 0 0 0 0 0 +female 0.32 0.55 0 0 0 1 0 0 not limited 0 1 0 0 1 +female 0.32 0.55 0 0 0 4 14 1 otherwise 0 0 0 0 0 +female 0.32 0.55 0 0 1 1 14 8 limited 4 0 1 22 3 +female 0.32 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.32 0.55 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.32 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.32 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.32 0.65 0 0 0 1 8 0 otherwise 1 0 0 0 3 +female 0.32 0.65 0 0 0 1 0 1 otherwise 0 0 1 3 1 +female 0.32 0.65 0 0 0 3 0 1 limited 0 0 1 2 1 +female 0.32 0.65 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.32 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.32 0.65 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.32 0.65 1 0 0 2 0 0 otherwise 0 0 1 1 0 +female 0.32 0.65 1 0 0 3 0 0 not limited 0 0 0 0 0 +female 0.32 0.75 0 0 0 0 0 0 otherwise 0 0 1 4 0 +female 0.32 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.32 0.75 0 0 0 2 0 2 otherwise 0 0 0 0 1 +female 0.32 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.32 0.75 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.32 0.75 1 0 0 1 0 0 limited 1 0 0 0 0 +female 0.32 0.75 1 0 0 1 0 1 otherwise 1 0 0 0 2 +female 0.32 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.32 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.32 0.75 1 0 0 2 0 0 not limited 0 0 0 0 2 +female 0.32 0.75 1 0 0 3 0 2 not limited 0 0 1 3 2 +female 0.32 0.75 1 0 0 5 0 5 not limited 0 4 0 0 4 +female 0.32 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.32 0.9 1 0 0 0 0 0 otherwise 1 0 0 0 2 +female 0.32 0.9 1 0 0 0 0 3 not limited 0 0 0 0 3 +female 0.32 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.32 0.9 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.32 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.32 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.32 0.9 1 0 0 1 0 0 otherwise 1 0 0 0 0 +female 0.32 0.9 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.32 0.9 1 0 0 1 0 0 otherwise 0 0 1 11 1 +female 0.32 0.9 1 0 0 1 0 7 otherwise 0 0 0 0 0 +female 0.32 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.32 0.9 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.32 0.9 1 0 0 1 0 4 otherwise 0 0 0 0 0 +female 0.32 0.9 1 0 0 2 0 0 otherwise 0 2 0 0 0 +female 0.32 0.9 1 0 0 2 0 0 otherwise 0 0 0 0 1 +female 0.32 0.9 1 0 0 3 0 3 not limited 3 0 0 0 1 +female 0.32 0.9 1 0 0 4 5 1 not limited 2 0 0 0 2 +female 0.32 0.9 1 0 0 4 0 3 not limited 0 0 0 0 0 +female 0.32 1.1 1 0 0 0 0 1 otherwise 0 0 0 0 1 +female 0.32 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.32 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.32 1.1 1 0 0 0 0 2 otherwise 0 0 0 0 0 +female 0.32 1.1 1 0 0 1 0 0 limited 0 0 0 0 1 +female 0.32 1.1 1 0 0 2 2 0 not limited 1 0 0 0 2 +female 0.32 1.1 1 0 0 2 0 0 not limited 0 0 0 0 2 +female 0.32 1.1 1 0 0 2 0 1 not limited 0 0 0 0 3 +female 0.32 1.1 1 0 0 2 0 1 otherwise 0 0 0 0 2 +female 0.32 1.1 1 0 0 2 0 2 otherwise 0 0 1 1 1 +female 0.32 1.1 1 0 0 3 0 2 not limited 0 0 0 0 0 +female 0.32 1.1 1 0 0 3 0 3 not limited 0 0 0 0 0 +female 0.32 1.1 1 0 0 3 0 2 not limited 0 0 0 0 3 +female 0.32 1.1 1 0 0 4 2 6 not limited 1 0 0 0 4 +female 0.32 1.1 1 0 0 5 1 4 not limited 2 0 0 0 4 +female 0.32 1.1 1 0 0 5 0 0 not limited 0 0 0 0 3 +female 0.32 1.3 0 0 0 0 0 2 otherwise 0 0 0 0 0 +female 0.32 1.3 0 0 0 0 0 1 otherwise 0 0 1 1 1 +female 0.32 1.3 0 0 0 2 0 0 otherwise 0 0 0 0 0 +female 0.32 1.3 0 0 0 3 6 1 not limited 0 0 0 0 1 +female 0.32 1.3 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.32 1.3 1 0 0 1 0 0 otherwise 1 0 0 0 6 +female 0.32 1.3 1 0 0 1 6 4 limited 4 0 0 0 1 +female 0.32 1.3 1 0 0 1 2 2 otherwise 0 0 0 0 1 +female 0.32 1.3 1 0 0 2 0 0 limited 1 0 0 0 2 +female 0.32 1.5 0 0 0 0 0 3 otherwise 0 0 0 0 0 +female 0.32 1.5 0 0 0 4 14 4 not limited 0 0 0 0 2 +female 0.32 1.5 1 0 0 0 0 0 limited 0 0 0 0 0 +female 0.32 1.5 1 0 0 1 5 2 not limited 1 0 0 0 2 +female 0.32 1.5 1 0 0 1 0 0 otherwise 0 1 0 0 3 +female 0.32 1.5 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.32 1.5 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.32 1.5 1 0 0 1 0 2 otherwise 0 0 0 0 0 +female 0.32 1.5 1 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.32 1.5 1 0 0 1 1 0 not limited 0 0 0 0 2 +female 0.32 1.5 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.32 1.5 1 0 0 2 0 0 not limited 0 0 0 0 2 +female 0.32 1.5 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.32 1.5 1 0 0 2 0 0 otherwise 0 0 0 0 0 +female 0.32 1.5 1 0 0 3 0 0 not limited 0 0 0 0 1 +female 0.37 0.06 0 1 0 2 0 0 otherwise 1 0 0 0 0 +female 0.37 0.15 1 0 0 2 0 1 not limited 0 2 0 0 1 +female 0.37 0.25 0 0 0 3 0 0 not limited 1 0 0 0 3 +female 0.37 0.25 0 0 1 1 0 0 limited 0 0 0 0 2 +female 0.37 0.25 0 0 1 1 14 4 limited 0 0 0 0 0 +female 0.37 0.25 0 0 1 1 0 5 otherwise 0 0 0 0 1 +female 0.37 0.25 0 0 1 1 0 1 otherwise 0 0 0 0 0 +female 0.37 0.25 0 0 1 2 14 10 limited 0 0 2 7 0 +female 0.37 0.25 0 0 1 4 8 9 limited 0 0 0 0 1 +female 0.37 0.25 1 0 0 3 1 1 limited 1 0 0 0 4 +female 0.37 0.35 1 0 0 1 14 7 limited 3 1 0 0 1 +female 0.37 0.35 1 0 0 2 0 2 limited 0 0 0 0 2 +female 0.37 0.45 0 0 0 1 7 2 not limited 3 0 0 0 1 +female 0.37 0.45 1 0 0 2 14 4 otherwise 1 1 0 0 4 +female 0.37 0.55 0 0 0 0 0 0 otherwise 0 0 1 2 1 +female 0.37 0.55 0 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.37 0.55 0 0 0 1 0 2 otherwise 0 0 0 0 1 +female 0.37 0.55 1 0 0 0 0 0 limited 0 0 1 5 0 +female 0.37 0.55 1 0 0 1 3 0 otherwise 1 0 0 0 2 +female 0.37 0.65 0 0 0 0 0 1 otherwise 0 0 0 0 1 +female 0.37 0.65 1 0 0 0 0 0 otherwise 0 0 1 2 1 +female 0.37 0.65 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.37 0.65 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.37 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.37 0.65 1 0 0 2 1 5 not limited 2 0 0 0 4 +female 0.37 0.65 1 0 0 4 0 0 otherwise 0 0 0 0 4 +female 0.37 0.75 0 0 0 1 7 2 not limited 0 0 0 0 4 +female 0.37 0.75 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.37 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.37 0.75 1 0 0 2 0 5 not limited 0 9 0 0 7 +female 0.37 0.75 1 0 0 2 1 0 limited 0 4 1 3 2 +female 0.37 0.9 0 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.37 0.9 0 0 0 1 0 0 not limited 0 0 0 0 3 +female 0.37 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.37 0.9 0 0 0 1 0 3 not limited 0 0 0 0 0 +female 0.37 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.37 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.37 0.9 1 0 0 1 1 0 not limited 1 0 0 0 3 +female 0.37 0.9 1 0 0 1 0 0 not limited 1 0 0 0 1 +female 0.37 0.9 1 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.37 0.9 1 0 0 1 0 2 otherwise 0 0 0 0 1 +female 0.37 0.9 1 0 0 1 0 0 limited 0 1 0 0 0 +female 0.37 0.9 1 0 0 2 0 0 not limited 0 0 0 0 4 +female 0.37 0.9 1 0 0 2 0 1 otherwise 0 0 0 0 5 +female 0.37 0.9 1 0 0 3 3 0 limited 2 0 5 11 4 +female 0.37 0.9 1 0 0 5 0 5 otherwise 0 0 0 0 0 +female 0.37 1.1 1 0 0 1 0 0 otherwise 1 0 0 0 1 +female 0.37 1.1 1 0 0 1 0 2 otherwise 0 0 0 0 1 +female 0.37 1.1 1 0 0 1 0 0 limited 0 0 0 0 0 +female 0.37 1.1 1 0 0 2 0 7 otherwise 1 0 0 0 2 +female 0.37 1.1 1 0 0 2 0 6 otherwise 0 0 0 0 0 +female 0.37 1.3 1 0 0 2 2 0 limited 0 0 1 1 4 +female 0.37 1.3 1 0 0 2 0 1 not limited 0 0 1 2 5 +female 0.37 1.3 1 0 0 2 2 1 not limited 0 0 0 0 0 +female 0.37 1.5 1 0 0 1 0 0 not limited 1 0 0 0 0 +female 0.37 1.5 1 0 0 1 0 0 limited 2 0 0 0 3 +female 0.37 1.5 1 0 0 1 0 2 otherwise 0 0 0 0 0 +female 0.37 1.5 1 0 0 1 1 0 limited 0 7 0 0 8 +female 0.37 1.5 1 0 0 1 3 0 otherwise 0 0 0 0 0 +female 0.37 1.5 1 0 0 2 14 7 limited 1 0 3 1 2 +female 0.37 1.5 1 0 0 3 14 0 otherwise 0 0 1 5 2 +female 0.42 0.01 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.42 0.06 0 1 0 0 1 1 otherwise 0 0 0 0 1 +female 0.42 0.06 1 0 0 2 7 1 otherwise 2 0 0 0 2 +female 0.42 0.15 0 0 1 1 4 0 otherwise 0 0 0 0 4 +female 0.42 0.15 0 0 1 4 0 0 not limited 0 0 0 0 4 +female 0.42 0.15 1 0 0 3 7 1 limited 1 0 1 45 7 +female 0.42 0.25 0 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.42 0.25 0 0 1 1 0 2 not limited 0 2 0 0 2 +female 0.42 0.25 0 0 1 2 2 4 limited 0 0 0 0 0 +female 0.42 0.25 0 0 1 3 0 8 not limited 0 0 0 0 5 +female 0.42 0.25 0 0 1 3 0 0 limited 0 0 0 0 0 +female 0.42 0.25 0 1 0 1 0 0 otherwise 0 0 0 0 1 +female 0.42 0.25 1 0 0 1 0 0 otherwise 1 0 0 0 0 +female 0.42 0.35 0 0 1 1 0 4 limited 0 0 1 1 0 +female 0.42 0.45 1 0 0 0 0 0 limited 0 0 0 0 3 +female 0.42 0.45 1 0 0 1 0 7 not limited 0 0 0 0 3 +female 0.42 0.55 0 0 0 1 0 0 not limited 0 0 0 0 4 +female 0.42 0.55 1 0 0 2 0 1 otherwise 0 0 0 0 1 +female 0.42 0.65 0 0 0 1 0 7 otherwise 0 0 0 0 0 +female 0.42 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 3 +female 0.42 0.65 1 0 0 0 0 0 not limited 0 0 2 22 2 +female 0.42 0.65 1 0 0 1 14 6 limited 5 4 2 11 4 +female 0.42 0.65 1 0 0 1 0 1 not limited 0 0 0 0 1 +female 0.42 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.42 0.75 0 0 0 1 0 0 otherwise 1 0 0 0 2 +female 0.42 0.75 1 0 0 0 0 0 otherwise 0 0 1 3 0 +female 0.42 0.75 1 0 0 1 10 1 otherwise 0 1 0 0 1 +female 0.42 0.75 1 0 0 1 0 1 not limited 0 0 0 0 1 +female 0.42 0.75 1 0 0 2 0 3 otherwise 0 0 0 0 1 +female 0.42 0.9 0 0 0 0 0 1 not limited 0 0 0 0 1 +female 0.42 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.42 0.9 0 0 0 1 0 0 not limited 3 0 0 0 0 +female 0.42 0.9 0 0 0 1 0 2 not limited 0 0 0 0 0 +female 0.42 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.42 0.9 1 0 0 1 0 0 limited 0 0 0 0 0 +female 0.42 0.9 1 0 0 3 0 0 not limited 0 0 0 0 1 +female 0.42 0.9 1 0 0 5 0 0 not limited 0 0 0 0 2 +female 0.42 1.1 1 0 0 1 4 1 not limited 0 0 0 0 3 +female 0.42 1.3 0 0 0 0 0 1 not limited 0 0 0 0 0 +female 0.42 1.3 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.42 1.3 1 0 0 1 0 0 not limited 0 0 0 0 3 +female 0.42 1.3 1 0 0 3 1 3 limited 1 3 0 0 2 +female 0.42 1.5 0 0 0 1 2 0 limited 0 0 0 0 1 +female 0.42 1.5 1 0 0 0 0 0 not limited 1 0 0 0 0 +female 0.42 1.5 1 0 0 3 0 0 not limited 0 0 0 0 2 +female 0.47 0 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.47 0 1 0 0 1 0 0 not limited 0 0 0 0 3 +female 0.47 0.01 0 0 0 1 0 0 not limited 3 0 0 0 1 +female 0.47 0.06 1 0 0 0 0 7 otherwise 0 0 0 0 0 +female 0.47 0.06 1 0 0 0 0 1 not limited 0 0 0 0 0 +female 0.47 0.06 1 0 0 1 1 3 not limited 0 0 0 0 0 +female 0.47 0.15 0 0 1 0 0 0 limited 0 0 0 0 0 +female 0.47 0.15 1 0 0 5 0 11 limited 2 0 0 0 3 +female 0.47 0.25 0 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.47 0.25 0 0 0 2 0 0 otherwise 1 0 0 0 3 +female 0.47 0.25 0 0 1 1 0 0 limited 0 7 1 4 2 +female 0.47 0.25 0 0 1 1 0 1 limited 0 0 0 0 1 +female 0.47 0.25 0 0 1 1 0 0 not limited 0 0 0 0 0 +female 0.47 0.25 0 0 1 2 0 2 limited 1 0 1 1 1 +female 0.47 0.25 0 0 1 2 0 1 limited 0 0 0 0 6 +female 0.47 0.25 0 0 1 3 0 0 limited 0 0 0 0 4 +female 0.47 0.25 0 0 1 3 0 3 otherwise 0 0 0 0 1 +female 0.47 0.25 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.47 0.25 1 0 0 1 0 4 not limited 0 0 2 6 4 +female 0.47 0.25 1 0 0 2 0 0 not limited 2 0 0 0 1 +female 0.47 0.35 0 0 1 5 14 0 limited 0 2 1 11 5 +female 0.47 0.35 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.47 0.35 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.47 0.35 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.47 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.47 0.45 0 0 0 1 0 2 not limited 0 0 0 0 0 +female 0.47 0.45 0 0 0 2 0 0 not limited 0 0 0 0 3 +female 0.47 0.45 0 0 1 2 14 4 not limited 6 4 0 0 3 +female 0.47 0.45 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.47 0.45 1 0 0 2 0 8 otherwise 0 0 0 0 1 +female 0.47 0.45 1 0 0 2 0 0 otherwise 0 0 1 2 1 +female 0.47 0.55 0 0 0 3 14 9 not limited 0 0 0 0 3 +female 0.47 0.55 0 0 1 5 0 4 limited 0 1 1 4 3 +female 0.47 0.55 0 0 1 5 0 2 not limited 0 0 1 7 4 +female 0.47 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.47 0.55 1 0 0 0 0 0 not limited 0 2 0 0 0 +female 0.47 0.55 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.47 0.55 1 0 0 1 0 0 not limited 0 0 1 3 1 +female 0.47 0.55 1 0 0 2 0 3 limited 1 0 0 0 4 +female 0.47 0.55 1 0 0 2 0 1 not limited 0 0 0 0 1 +female 0.47 0.55 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.47 0.55 1 0 0 4 0 0 not limited 0 0 0 0 3 +female 0.47 0.55 1 0 0 4 0 2 not limited 0 0 1 4 3 +female 0.47 0.65 0 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.47 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.47 0.65 0 0 0 2 0 0 limited 0 0 0 0 2 +female 0.47 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 2 +female 0.47 0.65 1 0 0 1 3 1 not limited 1 0 1 11 1 +female 0.47 0.65 1 0 0 1 0 1 not limited 0 0 0 0 2 +female 0.47 0.65 1 0 0 1 5 2 limited 0 0 0 0 0 +female 0.47 0.65 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.47 0.65 1 0 0 2 2 1 not limited 1 2 0 0 5 +female 0.47 0.65 1 0 0 2 0 4 not limited 0 0 0 0 2 +female 0.47 0.65 1 0 0 3 0 0 not limited 0 0 0 0 1 +female 0.47 0.65 1 0 0 3 0 2 not limited 0 0 0 0 1 +female 0.47 0.65 1 0 0 3 0 2 not limited 0 0 0 0 1 +female 0.47 0.65 1 0 0 4 0 0 not limited 0 0 0 0 3 +female 0.47 0.65 1 0 0 4 1 1 limited 0 0 0 0 3 +female 0.47 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 2 +female 0.47 0.75 0 0 0 1 0 0 not limited 0 1 0 0 2 +female 0.47 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.47 0.75 0 0 0 5 3 2 otherwise 7 0 1 2 3 +female 0.47 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.47 0.75 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.47 0.75 1 0 0 3 0 0 not limited 0 0 0 0 2 +female 0.47 0.75 1 0 0 5 0 2 limited 2 0 2 1 3 +female 0.47 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.47 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.47 0.9 1 0 0 0 0 0 not limited 0 0 1 1 1 +female 0.47 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.47 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.47 0.9 1 0 0 1 0 1 not limited 1 0 0 0 3 +female 0.47 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 3 +female 0.47 0.9 1 0 0 1 0 1 otherwise 0 0 0 0 0 +female 0.47 0.9 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.47 0.9 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.47 0.9 1 0 0 2 0 6 not limited 1 0 0 0 1 +female 0.47 0.9 1 0 0 2 0 11 otherwise 1 0 0 0 6 +female 0.47 0.9 1 0 0 2 0 0 otherwise 0 0 0 0 1 +female 0.47 0.9 1 0 0 4 0 1 otherwise 0 0 0 0 2 +female 0.47 0.9 1 0 0 5 3 0 not limited 0 1 2 7 2 +female 0.47 1.1 1 0 0 0 0 0 not limited 0 0 0 0 2 +female 0.47 1.1 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.47 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.47 1.1 1 0 0 1 0 3 limited 0 0 0 0 2 +female 0.47 1.3 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.47 1.5 0 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.47 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.47 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.47 1.5 1 0 0 1 0 0 not limited 1 0 0 0 1 +female 0.47 1.5 1 0 0 1 0 4 not limited 0 1 0 0 1 +female 0.52 0 0 0 0 3 0 2 limited 0 0 0 0 4 +female 0.52 0 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.52 0 1 0 0 2 0 0 not limited 1 0 0 0 4 +female 0.52 0.06 1 0 0 1 0 1 not limited 0 0 1 5 0 +female 0.52 0.06 1 0 0 1 1 4 not limited 0 0 1 22 3 +female 0.52 0.06 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.52 0.15 0 0 1 2 0 0 limited 0 0 0 0 3 +female 0.52 0.15 1 0 0 1 0 1 limited 0 0 0 0 1 +female 0.52 0.15 1 0 0 1 0 4 not limited 0 0 1 7 0 +female 0.52 0.25 0 0 1 0 0 0 not limited 0 0 0 0 1 +female 0.52 0.25 0 0 1 0 0 0 not limited 0 0 0 0 1 +female 0.52 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 1 +female 0.52 0.25 0 0 1 1 0 0 limited 1 0 3 7 2 +female 0.52 0.25 0 0 1 1 0 0 otherwise 2 0 0 0 2 +female 0.52 0.25 0 0 1 1 0 1 not limited 1 0 1 11 0 +female 0.52 0.25 0 0 1 1 0 0 not limited 1 2 0 0 2 +female 0.52 0.25 0 0 1 1 14 5 otherwise 0 0 0 0 2 +female 0.52 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 1 +female 0.52 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.52 0.25 0 0 1 1 8 7 limited 0 0 5 6 5 +female 0.52 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.52 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.52 0.25 0 0 1 2 0 6 not limited 1 0 0 0 3 +female 0.52 0.25 0 0 1 2 0 0 not limited 1 0 0 0 1 +female 0.52 0.25 0 0 1 2 0 1 not limited 0 0 0 0 0 +female 0.52 0.25 0 0 1 2 0 0 not limited 0 0 0 0 4 +female 0.52 0.25 0 0 1 2 7 1 limited 0 0 1 11 4 +female 0.52 0.25 0 0 1 2 0 6 limited 0 0 1 2 1 +female 0.52 0.25 0 0 1 2 0 0 not limited 0 1 0 0 0 +female 0.52 0.25 0 0 1 2 0 0 not limited 0 0 0 0 1 +female 0.52 0.25 0 0 1 3 3 2 limited 3 0 1 2 0 +female 0.52 0.25 0 0 1 3 0 2 not limited 1 0 0 0 4 +female 0.52 0.25 0 0 1 4 14 4 limited 6 0 3 7 8 +female 0.52 0.25 0 0 1 4 3 2 not limited 2 0 1 22 1 +female 0.52 0.25 0 0 1 4 14 4 not limited 2 9 0 0 2 +female 0.52 0.25 0 0 1 4 0 0 limited 0 0 0 0 1 +female 0.52 0.25 0 0 1 5 0 0 not limited 1 0 0 0 6 +female 0.52 0.25 0 0 1 5 14 1 not limited 1 0 0 0 3 +female 0.52 0.25 0 0 1 5 0 7 limited 1 0 0 0 6 +female 0.52 0.25 0 0 1 5 0 2 not limited 0 0 0 0 3 +female 0.52 0.25 0 0 1 5 0 7 limited 0 0 0 0 3 +female 0.52 0.25 0 1 0 4 0 2 not limited 0 0 0 0 2 +female 0.52 0.25 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.52 0.25 1 0 0 0 0 0 not limited 0 0 0 0 2 +female 0.52 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.52 0.25 1 0 0 2 0 0 not limited 0 0 0 0 2 +female 0.52 0.25 1 0 0 2 14 4 not limited 0 0 0 0 1 +female 0.52 0.25 1 0 0 3 0 0 not limited 0 0 0 0 2 +female 0.52 0.25 1 0 0 3 0 2 limited 0 0 2 11 6 +female 0.52 0.25 1 0 0 5 0 1 not limited 0 0 0 0 2 +female 0.52 0.35 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.52 0.35 0 0 1 1 14 10 limited 2 0 1 22 0 +female 0.52 0.35 0 0 1 1 3 1 limited 0 0 0 0 1 +female 0.52 0.35 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.52 0.35 0 0 1 2 0 1 not limited 0 0 0 0 3 +female 0.52 0.35 0 0 1 3 0 12 limited 1 0 0 0 1 +female 0.52 0.35 0 0 1 3 0 1 not limited 0 0 0 0 1 +female 0.52 0.35 0 0 1 3 0 6 not limited 0 0 0 0 0 +female 0.52 0.35 1 0 0 0 0 0 not limited 0 1 1 11 1 +female 0.52 0.35 1 0 0 0 0 2 otherwise 0 0 0 0 0 +female 0.52 0.35 1 0 0 0 0 0 not limited 0 0 0 0 2 +female 0.52 0.35 1 0 0 1 0 2 otherwise 0 0 0 0 0 +female 0.52 0.35 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.52 0.35 1 0 0 3 0 0 not limited 1 0 0 0 2 +female 0.52 0.45 0 0 0 0 0 2 not limited 0 0 0 0 0 +female 0.52 0.45 0 0 0 1 0 1 not limited 1 0 0 0 2 +female 0.52 0.45 0 0 0 5 0 0 not limited 1 0 0 0 2 +female 0.52 0.45 0 0 1 1 14 8 limited 1 0 1 11 4 +female 0.52 0.45 0 0 1 4 0 1 limited 2 0 0 0 6 +female 0.52 0.45 0 0 1 4 0 1 not limited 0 0 0 0 1 +female 0.52 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.52 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.52 0.45 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.52 0.45 1 0 0 2 0 1 not limited 0 1 0 0 0 +female 0.52 0.45 1 0 0 3 0 2 not limited 1 0 1 11 4 +female 0.52 0.45 1 0 0 4 3 0 limited 1 0 0 0 2 +female 0.52 0.55 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.52 0.55 0 0 0 3 0 0 not limited 0 0 0 0 1 +female 0.52 0.55 0 0 1 2 14 1 limited 2 0 5 4 5 +female 0.52 0.55 1 0 0 0 0 0 otherwise 0 0 1 1 2 +female 0.52 0.55 1 0 0 3 0 0 not limited 0 0 1 4 3 +female 0.52 0.55 1 0 0 4 0 4 not limited 0 4 0 0 2 +female 0.52 0.55 1 0 0 5 0 0 not limited 0 0 0 0 3 +female 0.52 0.65 0 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.52 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.52 0.65 0 0 0 1 14 1 limited 1 0 1 11 2 +female 0.52 0.65 0 0 0 4 0 3 not limited 0 0 0 0 3 +female 0.52 0.65 0 0 1 1 0 0 not limited 1 2 0 0 3 +female 0.52 0.65 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.52 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.52 0.65 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.52 0.65 1 0 0 2 0 3 not limited 1 0 0 0 2 +female 0.52 0.65 1 0 0 3 0 5 otherwise 0 0 0 0 3 +female 0.52 0.75 0 0 0 2 0 0 not limited 0 0 0 0 2 +female 0.52 0.75 0 0 1 1 0 1 not limited 1 0 0 0 1 +female 0.52 0.75 0 0 1 1 0 0 not limited 0 7 0 0 2 +female 0.52 0.75 1 0 0 0 0 0 not limited 1 1 0 0 0 +female 0.52 0.75 1 0 0 1 0 0 not limited 1 0 0 0 5 +female 0.52 0.75 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.52 0.75 1 0 0 1 0 3 not limited 0 0 2 2 1 +female 0.52 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.52 0.75 1 0 0 2 2 1 otherwise 2 0 0 0 0 +female 0.52 0.75 1 0 0 2 0 2 limited 0 0 0 0 2 +female 0.52 0.75 1 0 0 3 3 0 otherwise 1 0 0 0 1 +female 0.52 0.75 1 0 0 5 0 1 not limited 0 1 0 0 1 +female 0.52 0.9 0 0 0 0 0 2 not limited 0 1 0 0 0 +female 0.52 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.52 0.9 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.52 0.9 0 0 1 2 7 3 not limited 0 7 0 0 1 +female 0.52 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.52 0.9 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.52 0.9 1 0 0 2 14 3 not limited 2 0 0 0 5 +female 0.52 0.9 1 0 0 2 0 0 limited 0 3 0 0 1 +female 0.52 0.9 1 0 0 3 0 5 otherwise 0 0 0 0 2 +female 0.52 1.1 0 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.52 1.1 0 0 1 2 0 1 not limited 0 0 1 2 3 +female 0.52 1.1 1 0 0 0 0 0 limited 0 0 0 0 1 +female 0.52 1.1 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.52 1.1 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.52 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.52 1.1 1 0 0 4 0 0 not limited 0 0 0 0 3 +female 0.52 1.3 1 0 0 1 0 0 otherwise 1 0 0 0 1 +female 0.52 1.3 1 0 0 2 3 0 not limited 5 0 0 0 2 +female 0.52 1.3 1 0 0 2 0 0 not limited 1 0 0 0 3 +female 0.52 1.3 1 0 0 2 0 7 not limited 0 0 0 0 2 +female 0.52 1.3 1 0 0 3 0 9 limited 0 0 0 0 1 +female 0.52 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.52 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.52 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.52 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 3 +female 0.52 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.52 1.5 1 0 0 2 0 1 not limited 0 2 0 0 6 +female 0.52 1.5 1 0 0 3 0 0 otherwise 0 0 0 0 1 +female 0.57 0 0 0 1 2 0 1 not limited 0 0 0 0 4 +female 0.57 0 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.57 0 1 0 0 1 0 1 not limited 2 0 0 0 0 +female 0.57 0 1 0 0 1 0 2 otherwise 0 0 0 0 2 +female 0.57 0 1 0 0 2 0 4 otherwise 0 0 0 0 0 +female 0.57 0 1 0 0 5 2 10 not limited 0 0 0 0 7 +female 0.57 0.01 0 1 0 4 0 1 otherwise 0 0 0 0 1 +female 0.57 0.01 1 0 0 1 0 1 not limited 1 1 1 5 2 +female 0.57 0.06 0 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.57 0.06 1 0 0 2 0 4 not limited 1 0 0 0 4 +female 0.57 0.06 1 0 0 2 0 1 not limited 0 0 0 0 2 +female 0.57 0.15 0 0 1 0 0 0 otherwise 0 0 0 0 1 +female 0.57 0.15 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.57 0.15 0 0 1 2 0 4 otherwise 0 0 0 0 1 +female 0.57 0.15 0 0 1 2 0 0 not limited 0 0 0 0 2 +female 0.57 0.15 0 0 1 4 3 0 not limited 1 0 0 0 5 +female 0.57 0.15 0 0 1 5 0 0 not limited 0 0 0 0 2 +female 0.57 0.15 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.57 0.15 1 0 0 3 7 9 not limited 3 2 1 7 6 +female 0.57 0.15 1 0 0 3 0 3 not limited 0 0 0 0 4 +female 0.57 0.15 1 0 0 3 0 3 limited 0 0 0 0 2 +female 0.57 0.15 1 0 0 5 1 2 limited 1 0 1 11 3 +female 0.57 0.15 1 0 0 5 0 0 not limited 0 0 1 3 6 +female 0.57 0.25 0 0 1 0 0 0 otherwise 1 0 0 0 2 +female 0.57 0.25 0 0 1 0 0 1 otherwise 2 0 0 0 0 +female 0.57 0.25 0 0 1 0 0 0 not limited 0 2 0 0 0 +female 0.57 0.25 0 0 1 0 0 6 not limited 0 0 0 0 0 +female 0.57 0.25 0 0 1 0 0 0 not limited 0 0 1 2 1 +female 0.57 0.25 0 0 1 0 0 0 otherwise 0 1 0 0 0 +female 0.57 0.25 0 0 1 0 0 0 not limited 0 0 0 0 3 +female 0.57 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.57 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 1 +female 0.57 0.25 0 0 1 0 0 0 limited 0 0 0 0 1 +female 0.57 0.25 0 0 1 0 0 0 not limited 0 0 0 0 1 +female 0.57 0.25 0 0 1 0 0 1 not limited 0 0 0 0 0 +female 0.57 0.25 0 0 1 1 0 1 not limited 0 0 0 0 2 +female 0.57 0.25 0 0 1 1 0 3 not limited 0 0 0 0 0 +female 0.57 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +female 0.57 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 1 +female 0.57 0.25 0 0 1 1 0 1 otherwise 0 0 0 0 2 +female 0.57 0.25 0 0 1 2 0 4 not limited 1 0 0 0 1 +female 0.57 0.25 0 0 1 2 0 0 limited 1 0 1 2 3 +female 0.57 0.25 0 0 1 2 0 2 limited 1 0 0 0 3 +female 0.57 0.25 0 0 1 2 0 0 not limited 0 0 0 0 1 +female 0.57 0.25 0 0 1 2 0 1 not limited 0 0 0 0 0 +female 0.57 0.25 0 0 1 2 0 0 not limited 0 0 0 0 3 +female 0.57 0.25 0 0 1 2 0 0 not limited 0 0 0 0 2 +female 0.57 0.25 0 0 1 2 0 0 not limited 0 0 0 0 2 +female 0.57 0.25 0 0 1 2 1 0 otherwise 0 0 0 0 1 +female 0.57 0.25 0 0 1 3 0 0 limited 2 0 0 0 1 +female 0.57 0.25 0 0 1 3 0 0 not limited 0 0 0 0 1 +female 0.57 0.25 0 0 1 3 0 11 not limited 0 0 0 0 2 +female 0.57 0.25 0 0 1 3 0 1 limited 0 0 1 6 1 +female 0.57 0.25 0 0 1 3 0 0 limited 0 0 0 0 1 +female 0.57 0.25 0 0 1 3 0 2 not limited 0 0 0 0 1 +female 0.57 0.25 0 0 1 3 6 1 otherwise 0 0 0 0 0 +female 0.57 0.25 0 0 1 4 0 1 otherwise 1 0 0 0 5 +female 0.57 0.25 0 0 1 4 0 0 not limited 1 0 0 0 1 +female 0.57 0.25 0 0 1 4 0 3 limited 1 1 1 5 2 +female 0.57 0.25 0 0 1 4 14 7 limited 2 0 2 22 5 +female 0.57 0.25 0 0 1 4 0 1 not limited 0 0 0 0 1 +female 0.57 0.25 0 0 1 5 0 2 limited 1 0 1 22 1 +female 0.57 0.25 0 0 1 5 0 0 limited 1 0 0 0 3 +female 0.57 0.25 0 0 1 5 14 7 not limited 2 0 0 0 8 +female 0.57 0.25 0 0 1 5 0 4 otherwise 0 0 0 0 3 +female 0.57 0.25 0 0 1 5 0 0 not limited 0 2 0 0 5 +female 0.57 0.25 0 0 1 5 0 4 limited 0 0 0 0 3 +female 0.57 0.25 0 0 1 5 0 1 limited 0 0 0 0 3 +female 0.57 0.25 0 0 1 5 0 1 otherwise 0 0 0 0 0 +female 0.57 0.25 0 1 0 5 0 1 limited 0 0 0 0 7 +female 0.57 0.25 1 0 0 0 0 0 not limited 1 0 0 0 1 +female 0.57 0.25 1 0 0 0 0 0 otherwise 0 3 0 0 1 +female 0.57 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.57 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.57 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.57 0.25 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.57 0.25 1 0 0 1 8 0 not limited 1 0 0 0 0 +female 0.57 0.25 1 0 0 1 14 7 not limited 1 0 0 0 3 +female 0.57 0.25 1 0 0 2 0 0 not limited 0 1 0 0 2 +female 0.57 0.25 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.57 0.25 1 0 0 2 0 0 not limited 0 0 0 0 3 +female 0.57 0.25 1 0 0 2 0 2 not limited 0 2 0 0 4 +female 0.57 0.25 1 0 0 3 0 0 not limited 1 0 0 0 2 +female 0.57 0.25 1 0 0 3 7 3 limited 0 0 1 22 3 +female 0.57 0.25 1 0 0 3 4 0 limited 0 1 2 4 8 +female 0.57 0.25 1 0 0 5 0 6 limited 1 0 0 0 3 +female 0.57 0.35 0 0 0 2 2 2 not limited 4 0 0 0 0 +female 0.57 0.35 0 0 1 0 0 0 not limited 1 7 1 11 2 +female 0.57 0.35 0 0 1 0 0 1 otherwise 0 0 0 0 1 +female 0.57 0.35 0 0 1 1 0 0 otherwise 1 0 1 4 1 +female 0.57 0.35 0 0 1 1 0 0 not limited 0 0 0 0 0 +female 0.57 0.35 0 0 1 1 0 1 not limited 0 0 0 0 0 +female 0.57 0.35 0 0 1 1 0 0 otherwise 0 0 0 0 0 +female 0.57 0.35 0 0 1 2 0 0 not limited 1 1 0 0 0 +female 0.57 0.35 0 0 1 2 0 3 limited 0 2 0 0 2 +female 0.57 0.35 0 0 1 2 6 4 limited 0 0 1 7 2 +female 0.57 0.35 0 0 1 2 0 1 not limited 0 0 0 0 2 +female 0.57 0.35 0 0 1 2 0 0 not limited 0 0 0 0 2 +female 0.57 0.35 0 0 1 3 0 0 not limited 1 0 0 0 0 +female 0.57 0.35 0 0 1 3 4 5 limited 3 0 1 2 2 +female 0.57 0.35 0 0 1 3 0 8 not limited 0 0 0 0 3 +female 0.57 0.35 0 0 1 3 14 11 limited 0 1 1 22 6 +female 0.57 0.35 0 0 1 4 0 11 not limited 1 0 0 0 4 +female 0.57 0.35 0 0 1 4 9 1 not limited 0 0 1 5 5 +female 0.57 0.35 0 0 1 5 14 2 limited 1 0 0 0 0 +female 0.57 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.57 0.35 1 0 0 1 10 2 not limited 6 0 1 6 4 +female 0.57 0.35 1 0 0 1 0 0 not limited 0 0 1 1 4 +female 0.57 0.35 1 0 0 2 0 0 otherwise 1 0 0 0 3 +female 0.57 0.35 1 0 0 2 14 6 not limited 4 8 0 0 2 +female 0.57 0.35 1 0 0 2 0 3 not limited 0 0 0 0 2 +female 0.57 0.35 1 0 0 4 0 3 not limited 0 0 0 0 0 +female 0.57 0.45 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.57 0.45 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.57 0.45 0 0 0 3 0 0 not limited 0 0 0 0 2 +female 0.57 0.45 0 0 1 0 0 0 limited 0 0 0 0 2 +female 0.57 0.45 0 0 1 1 0 6 limited 1 0 1 7 1 +female 0.57 0.45 0 0 1 2 0 0 limited 0 0 0 0 3 +female 0.57 0.45 0 0 1 3 1 0 limited 1 0 0 0 6 +female 0.57 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.57 0.45 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.57 0.45 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.57 0.45 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.57 0.45 1 0 0 1 0 7 otherwise 0 1 0 0 4 +female 0.57 0.45 1 0 0 2 0 0 not limited 0 0 0 0 3 +female 0.57 0.45 1 0 0 2 0 2 not limited 0 0 0 0 1 +female 0.57 0.45 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.57 0.45 1 0 0 3 0 3 not limited 0 0 0 0 1 +female 0.57 0.45 1 0 0 4 4 5 otherwise 2 0 0 0 5 +female 0.57 0.55 0 0 0 3 0 0 not limited 0 0 0 0 2 +female 0.57 0.55 0 0 0 4 2 0 not limited 1 0 0 0 6 +female 0.57 0.55 0 1 0 0 0 6 otherwise 0 0 0 0 1 +female 0.57 0.55 1 0 0 0 0 0 limited 1 0 0 0 0 +female 0.57 0.55 1 0 0 1 8 10 limited 1 0 0 0 2 +female 0.57 0.55 1 0 0 1 0 0 otherwise 1 1 0 0 1 +female 0.57 0.55 1 0 0 1 0 4 not limited 0 0 0 0 2 +female 0.57 0.55 1 0 0 1 0 0 otherwise 0 0 1 4 1 +female 0.57 0.55 1 0 0 1 0 0 not limited 0 0 0 0 3 +female 0.57 0.55 1 0 0 2 0 1 otherwise 2 0 0 0 0 +female 0.57 0.65 0 0 0 0 0 0 not limited 0 0 0 0 2 +female 0.57 0.65 0 0 0 0 0 0 not limited 0 0 0 0 2 +female 0.57 0.65 0 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.57 0.65 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.57 0.65 0 0 0 2 0 6 not limited 0 0 1 7 1 +female 0.57 0.65 0 0 0 5 0 6 not limited 0 0 0 0 0 +female 0.57 0.65 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.57 0.65 1 0 0 0 0 0 otherwise 1 0 0 0 0 +female 0.57 0.65 1 0 0 1 0 2 not limited 0 0 1 3 3 +female 0.57 0.65 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.57 0.65 1 0 0 2 0 7 otherwise 2 0 1 5 2 +female 0.57 0.65 1 0 0 2 0 1 not limited 0 0 0 0 1 +female 0.57 0.65 1 0 0 3 14 1 not limited 1 0 0 0 8 +female 0.57 0.75 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.57 0.75 1 0 0 0 0 0 not limited 0 0 0 0 3 +female 0.57 0.75 1 0 0 1 2 1 not limited 0 0 1 4 3 +female 0.57 0.75 1 0 0 1 0 0 limited 0 0 0 0 3 +female 0.57 0.75 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.57 0.75 1 0 0 1 0 1 not limited 0 0 0 0 0 +female 0.57 0.75 1 0 0 2 0 0 limited 0 0 1 7 3 +female 0.57 0.75 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.57 0.75 1 0 0 2 0 1 not limited 0 1 0 0 3 +female 0.57 0.75 1 0 0 3 0 0 not limited 1 0 0 0 5 +female 0.57 0.9 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.57 0.9 1 0 0 0 0 1 not limited 0 0 0 0 0 +female 0.57 0.9 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.57 0.9 1 0 0 0 0 4 otherwise 0 0 0 0 1 +female 0.57 0.9 1 0 0 1 4 0 not limited 1 1 0 0 2 +female 0.57 0.9 1 0 0 1 1 3 not limited 0 0 1 2 0 +female 0.57 0.9 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.57 0.9 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.57 0.9 1 0 0 2 0 4 not limited 1 1 0 0 1 +female 0.57 0.9 1 0 0 2 0 3 not limited 0 1 0 0 0 +female 0.57 0.9 1 0 0 3 0 0 not limited 0 0 0 0 2 +female 0.57 0.9 1 0 0 4 0 0 limited 0 0 0 0 0 +female 0.57 1.1 0 0 1 0 0 0 not limited 0 0 0 0 3 +female 0.57 1.1 0 0 1 2 0 0 not limited 0 0 0 0 3 +female 0.57 1.1 1 0 0 0 0 0 not limited 0 0 0 0 2 +female 0.57 1.1 1 0 0 0 0 0 limited 0 0 0 0 1 +female 0.57 1.1 1 0 0 1 5 1 otherwise 2 0 0 0 3 +female 0.57 1.1 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.57 1.1 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.57 1.3 0 0 1 1 0 0 otherwise 0 0 0 0 3 +female 0.57 1.3 1 0 0 0 0 12 not limited 0 0 1 45 1 +female 0.57 1.3 1 0 0 1 0 2 not limited 0 0 0 0 2 +female 0.57 1.3 1 0 0 2 9 1 not limited 1 0 0 0 3 +female 0.57 1.3 1 0 0 3 0 5 limited 0 0 1 11 2 +female 0.57 1.3 1 0 0 3 0 0 not limited 0 0 0 0 0 +female 0.57 1.5 1 0 0 2 0 1 not limited 0 0 0 0 1 +female 0.57 1.5 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.62 0 0 0 0 1 14 2 limited 0 1 0 0 1 +female 0.62 0 0 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.62 0 0 0 0 3 0 6 not limited 1 0 0 0 0 +female 0.62 0 0 0 1 0 14 2 not limited 2 7 0 0 0 +female 0.62 0 0 0 1 1 0 4 otherwise 1 0 0 0 2 +female 0.62 0 1 0 0 0 0 0 not limited 1 0 0 0 2 +female 0.62 0 1 0 0 0 0 5 not limited 0 0 0 0 2 +female 0.62 0 1 0 0 1 0 1 not limited 0 0 0 0 1 +female 0.62 0 1 0 0 2 0 0 otherwise 0 0 0 0 1 +female 0.62 0.01 0 0 0 3 0 0 limited 0 0 0 0 0 +female 0.62 0.01 0 0 1 1 2 0 not limited 4 0 1 2 1 +female 0.62 0.06 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.62 0.15 0 0 1 1 0 4 otherwise 1 0 0 0 1 +female 0.62 0.15 0 0 1 1 0 0 not limited 0 0 0 0 4 +female 0.62 0.15 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.62 0.15 0 0 1 2 0 0 not limited 0 0 0 0 1 +female 0.62 0.15 0 0 1 3 0 1 limited 0 0 0 0 1 +female 0.62 0.15 0 0 1 3 0 2 limited 0 0 0 0 0 +female 0.62 0.15 0 0 1 5 0 1 not limited 0 0 0 0 6 +female 0.62 0.15 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.15 1 0 0 3 0 2 not limited 2 0 0 0 8 +female 0.62 0.15 1 0 0 5 3 5 limited 1 0 0 0 6 +female 0.62 0.25 0 0 0 0 0 4 otherwise 1 0 0 0 1 +female 0.62 0.25 0 0 0 1 0 0 not limited 0 0 1 7 0 +female 0.62 0.25 0 0 0 3 5 1 not limited 1 0 0 0 3 +female 0.62 0.25 0 0 1 0 0 0 not limited 1 0 0 0 2 +female 0.62 0.25 0 0 1 0 0 0 not limited 0 0 0 0 2 +female 0.62 0.25 0 0 1 0 0 0 not limited 0 0 0 0 0 +female 0.62 0.25 0 0 1 0 0 0 not limited 0 0 0 0 3 +female 0.62 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 0 0 1 0 0 0 not limited 0 1 0 0 2 +female 0.62 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 1 +female 0.62 0.25 0 0 1 0 0 1 not limited 0 0 0 0 1 +female 0.62 0.25 0 0 1 0 0 0 not limited 0 0 0 0 2 +female 0.62 0.25 0 0 1 0 0 0 not limited 0 0 0 0 1 +female 0.62 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 0 0 1 0 0 0 not limited 0 0 0 0 1 +female 0.62 0.25 0 0 1 0 0 0 limited 0 0 0 0 3 +female 0.62 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 0 0 1 1 0 10 otherwise 1 0 1 22 2 +female 0.62 0.25 0 0 1 1 0 0 not limited 1 0 0 0 4 +female 0.62 0.25 0 0 1 1 0 0 not limited 2 0 0 0 0 +female 0.62 0.25 0 0 1 1 14 12 limited 2 0 0 0 7 +female 0.62 0.25 0 0 1 1 0 7 limited 1 0 0 0 1 +female 0.62 0.25 0 0 1 1 14 2 not limited 1 0 0 0 3 +female 0.62 0.25 0 0 1 1 14 5 not limited 1 7 0 0 2 +female 0.62 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.62 0.25 0 0 1 1 0 0 limited 0 0 0 0 2 +female 0.62 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.62 0.25 0 0 1 1 0 0 not limited 0 0 0 0 4 +female 0.62 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.62 0.25 0 0 1 1 0 5 not limited 0 0 1 2 2 +female 0.62 0.25 0 0 1 1 0 2 not limited 0 0 0 0 1 +female 0.62 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 0 0 1 1 0 0 limited 0 0 0 0 3 +female 0.62 0.25 0 0 1 1 0 0 limited 0 0 0 0 1 +female 0.62 0.25 0 0 1 1 0 0 not limited 0 0 1 11 3 +female 0.62 0.25 0 0 1 1 0 1 not limited 0 0 0 0 2 +female 0.62 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.62 0.25 0 0 1 1 0 2 not limited 0 0 0 0 0 +female 0.62 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 0 0 1 1 0 0 not limited 0 1 0 0 0 +female 0.62 0.25 0 0 1 1 0 1 not limited 0 0 0 0 0 +female 0.62 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 2 +female 0.62 0.25 0 0 1 2 0 0 not limited 1 0 0 0 2 +female 0.62 0.25 0 0 1 2 0 0 not limited 1 0 0 0 4 +female 0.62 0.25 0 0 1 2 0 1 not limited 1 0 0 0 1 +female 0.62 0.25 0 0 1 2 0 1 not limited 0 0 0 0 2 +female 0.62 0.25 0 0 1 2 0 2 not limited 0 0 0 0 3 +female 0.62 0.25 0 0 1 2 0 0 not limited 0 1 0 0 1 +female 0.62 0.25 0 0 1 2 0 0 not limited 0 1 0 0 7 +female 0.62 0.25 0 0 1 2 0 3 limited 0 0 0 0 5 +female 0.62 0.25 0 0 1 2 0 0 not limited 0 0 0 0 1 +female 0.62 0.25 0 0 1 2 0 1 limited 0 0 0 0 0 +female 0.62 0.25 0 0 1 2 0 0 not limited 0 0 0 0 1 +female 0.62 0.25 0 0 1 2 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 0 0 1 2 0 0 not limited 0 0 0 0 0 +female 0.62 0.25 0 0 1 2 0 0 not limited 0 0 0 0 0 +female 0.62 0.25 0 0 1 2 0 0 not limited 0 0 0 0 2 +female 0.62 0.25 0 0 1 3 0 8 limited 1 0 0 0 4 +female 0.62 0.25 0 0 1 3 0 0 not limited 1 0 0 0 0 +female 0.62 0.25 0 0 1 3 0 0 not limited 1 0 2 5 3 +female 0.62 0.25 0 0 1 3 0 3 not limited 0 0 0 0 0 +female 0.62 0.25 0 0 1 3 0 1 not limited 0 0 0 0 2 +female 0.62 0.25 0 0 1 3 0 5 not limited 0 0 0 0 4 +female 0.62 0.25 0 0 1 3 0 0 not limited 0 0 0 0 2 +female 0.62 0.25 0 0 1 4 0 1 not limited 2 0 0 0 6 +female 0.62 0.25 0 0 1 4 0 2 not limited 0 0 1 7 6 +female 0.62 0.25 0 0 1 5 0 7 not limited 1 0 1 5 4 +female 0.62 0.25 0 0 1 5 3 1 limited 1 0 0 0 7 +female 0.62 0.25 0 0 1 5 0 7 limited 1 0 0 0 5 +female 0.62 0.25 0 0 1 5 6 4 limited 1 0 1 22 5 +female 0.62 0.25 0 0 1 5 14 5 limited 1 4 1 11 5 +female 0.62 0.25 0 0 1 5 0 1 limited 0 0 0 0 3 +female 0.62 0.25 0 0 1 5 0 0 not limited 0 1 0 0 6 +female 0.62 0.25 0 0 1 5 0 3 not limited 0 0 0 0 1 +female 0.62 0.25 0 0 1 5 14 6 limited 0 0 0 0 3 +female 0.62 0.25 0 1 0 0 0 0 not limited 0 1 0 0 0 +female 0.62 0.25 1 0 0 0 0 0 not limited 1 0 0 0 0 +female 0.62 0.25 1 0 0 0 0 0 not limited 0 0 0 0 3 +female 0.62 0.25 1 0 0 0 0 0 limited 0 1 0 0 4 +female 0.62 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 1 0 0 0 0 0 not limited 0 0 0 0 2 +female 0.62 0.25 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.62 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 1 0 0 1 0 0 not limited 2 0 0 0 4 +female 0.62 0.25 1 0 0 1 0 3 not limited 1 0 0 0 0 +female 0.62 0.25 1 0 0 1 0 0 not limited 1 0 0 0 3 +female 0.62 0.25 1 0 0 1 0 0 otherwise 1 0 2 22 1 +female 0.62 0.25 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.62 0.25 1 0 0 1 14 8 not limited 0 0 3 2 3 +female 0.62 0.25 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.62 0.25 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.62 0.25 1 0 0 1 0 0 not limited 0 1 0 0 1 +female 0.62 0.25 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.62 0.25 1 0 0 2 0 1 otherwise 0 0 0 0 1 +female 0.62 0.25 1 0 0 2 0 0 not limited 0 2 0 0 3 +female 0.62 0.25 1 0 0 2 0 0 otherwise 0 0 0 0 1 +female 0.62 0.25 1 0 0 3 0 0 limited 1 2 0 0 3 +female 0.62 0.25 1 0 0 3 0 9 limited 1 0 0 0 6 +female 0.62 0.25 1 0 0 3 0 0 not limited 0 0 0 0 3 +female 0.62 0.25 1 0 0 3 0 3 not limited 0 0 3 6 3 +female 0.62 0.25 1 0 0 3 0 0 not limited 0 0 0 0 3 +female 0.62 0.25 1 0 0 3 0 7 not limited 0 0 0 0 0 +female 0.62 0.25 1 0 0 4 0 2 limited 1 0 0 0 1 +female 0.62 0.25 1 0 0 5 2 2 not limited 1 0 0 0 4 +female 0.62 0.25 1 0 0 5 0 3 not limited 0 0 0 0 4 +female 0.62 0.35 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.62 0.35 0 0 0 2 0 0 limited 0 0 0 0 4 +female 0.62 0.35 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.35 0 0 1 1 0 0 limited 0 2 1 22 1 +female 0.62 0.35 0 0 1 1 0 0 otherwise 0 0 2 5 1 +female 0.62 0.35 0 0 1 1 0 3 limited 0 7 0 0 1 +female 0.62 0.35 0 0 1 1 0 0 not limited 0 0 0 0 0 +female 0.62 0.35 0 0 1 2 0 8 limited 2 1 0 0 6 +female 0.62 0.35 0 0 1 2 0 0 not limited 0 0 1 1 3 +female 0.62 0.35 0 0 1 2 14 9 not limited 0 7 2 45 4 +female 0.62 0.35 0 0 1 2 0 1 not limited 0 0 1 4 1 +female 0.62 0.35 0 0 1 4 0 2 not limited 1 0 0 0 7 +female 0.62 0.35 0 0 1 5 0 1 not limited 0 1 1 5 5 +female 0.62 0.35 1 0 0 0 0 0 limited 0 0 0 0 2 +female 0.62 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.62 0.35 1 0 0 0 0 0 not limited 0 0 1 3 0 +female 0.62 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.62 0.35 1 0 0 1 0 0 not limited 1 0 0 0 1 +female 0.62 0.35 1 0 0 1 1 1 not limited 0 0 0 0 0 +female 0.62 0.35 1 0 0 1 0 4 not limited 0 4 0 0 2 +female 0.62 0.35 1 0 0 1 0 1 not limited 0 0 0 0 3 +female 0.62 0.35 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.62 0.35 1 0 0 1 0 2 otherwise 0 0 0 0 0 +female 0.62 0.35 1 0 0 2 0 0 not limited 1 0 0 0 0 +female 0.62 0.35 1 0 0 2 5 0 limited 1 0 0 0 1 +female 0.62 0.35 1 0 0 2 0 0 not limited 0 0 0 0 4 +female 0.62 0.35 1 0 0 2 0 1 not limited 0 0 0 0 1 +female 0.62 0.35 1 0 0 3 0 0 not limited 0 0 1 6 3 +female 0.62 0.45 0 0 0 1 0 2 not limited 0 0 0 0 0 +female 0.62 0.45 0 0 1 2 0 0 not limited 3 6 1 5 2 +female 0.62 0.45 0 0 1 2 2 3 not limited 0 0 0 0 2 +female 0.62 0.45 0 0 1 5 0 0 limited 1 0 0 0 8 +female 0.62 0.45 1 0 0 1 0 1 not limited 1 0 0 0 4 +female 0.62 0.45 1 0 0 1 0 2 not limited 0 1 0 0 4 +female 0.62 0.45 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.62 0.45 1 0 0 2 0 0 not limited 1 0 0 0 1 +female 0.62 0.45 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.62 0.45 1 0 0 2 0 3 otherwise 0 1 0 0 0 +female 0.62 0.55 0 0 1 0 0 0 not limited 1 0 0 0 1 +female 0.62 0.55 1 0 0 2 0 0 not limited 0 0 0 0 2 +female 0.62 0.55 1 0 0 2 0 2 not limited 0 0 0 0 1 +female 0.62 0.55 1 0 0 2 0 0 limited 0 0 0 0 2 +female 0.62 0.55 1 0 0 3 0 6 not limited 0 1 0 0 0 +female 0.62 0.55 1 0 0 3 0 0 not limited 0 0 0 0 3 +female 0.62 0.65 0 0 1 0 0 0 not limited 0 0 0 0 0 +female 0.62 0.65 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.62 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.62 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.65 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.62 0.65 1 0 0 2 0 0 not limited 0 1 0 0 0 +female 0.62 0.65 1 0 0 4 0 5 not limited 0 0 0 0 2 +female 0.62 0.75 0 0 0 0 0 1 not limited 0 0 0 0 0 +female 0.62 0.75 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.62 0.75 0 0 0 2 0 0 not limited 0 0 0 0 3 +female 0.62 0.75 1 0 0 0 0 0 limited 0 0 0 0 3 +female 0.62 0.75 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.62 0.75 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.62 0.75 1 0 0 3 0 0 not limited 1 2 0 0 3 +female 0.62 0.9 0 0 0 2 1 1 limited 0 0 0 0 0 +female 0.62 0.9 0 0 0 3 0 3 limited 0 0 0 0 2 +female 0.62 0.9 0 0 1 3 0 0 not limited 0 0 0 0 8 +female 0.62 0.9 1 0 0 2 0 0 not limited 1 0 0 0 5 +female 0.62 0.9 1 0 0 2 0 1 not limited 0 0 0 0 2 +female 0.62 0.9 1 0 0 3 0 0 not limited 1 1 0 0 3 +female 0.62 1.1 0 0 1 4 0 2 not limited 0 0 0 0 1 +female 0.62 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.62 1.1 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.62 1.1 1 0 0 1 4 0 otherwise 1 0 0 0 3 +female 0.62 1.1 1 0 0 1 0 0 limited 0 0 0 0 1 +female 0.62 1.1 1 0 0 2 0 0 not limited 0 0 0 0 3 +female 0.62 1.1 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.62 1.1 1 0 0 3 0 0 not limited 0 0 0 0 5 +female 0.62 1.3 1 0 0 1 4 1 otherwise 1 0 1 11 3 +female 0.62 1.3 1 0 0 1 0 0 not limited 0 1 0 0 2 +female 0.62 1.3 1 0 0 2 0 0 not limited 0 0 0 0 4 +female 0.62 1.5 1 0 0 0 0 0 not limited 0 0 0 0 3 +female 0.62 1.5 1 0 0 1 14 1 otherwise 8 0 1 7 3 +female 0.62 1.5 1 0 0 5 0 1 not limited 1 1 0 0 8 +female 0.67 0.06 1 0 0 0 0 3 not limited 0 0 0 0 0 +female 0.67 0.06 1 0 0 0 0 1 otherwise 0 0 0 0 1 +female 0.67 0.15 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.15 0 0 1 0 0 0 otherwise 0 0 0 0 1 +female 0.67 0.15 0 0 1 0 0 5 not limited 0 0 0 0 1 +female 0.67 0.15 0 0 1 0 0 5 otherwise 0 0 0 0 0 +female 0.67 0.15 0 0 1 2 0 4 limited 7 7 0 0 2 +female 0.67 0.15 0 0 1 2 0 1 not limited 1 0 0 0 2 +female 0.67 0.15 0 0 1 2 0 0 not limited 0 0 0 0 3 +female 0.67 0.15 0 0 1 4 0 2 limited 2 0 2 2 5 +female 0.67 0.15 1 0 0 0 0 0 limited 0 0 0 0 3 +female 0.67 0.15 1 0 0 1 0 0 not limited 2 0 2 3 2 +female 0.67 0.15 1 0 0 1 0 0 not limited 0 0 0 0 4 +female 0.67 0.15 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.67 0.15 1 0 0 1 0 0 not limited 0 0 0 0 3 +female 0.67 0.15 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.67 0.15 1 0 0 2 0 1 not limited 2 0 0 0 0 +female 0.67 0.15 1 0 0 2 0 4 not limited 0 0 0 0 4 +female 0.67 0.15 1 0 0 2 0 2 not limited 0 0 0 0 3 +female 0.67 0.15 1 0 0 3 0 0 not limited 0 0 0 0 1 +female 0.67 0.25 0 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 0 0 0 not limited 1 0 0 0 2 +female 0.67 0.25 0 0 1 0 0 0 not limited 1 0 0 0 1 +female 0.67 0.25 0 0 1 0 0 0 not limited 1 0 0 0 2 +female 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 2 +female 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 0 0 0 not limited 0 0 0 0 1 +female 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 3 +female 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 2 +female 0.67 0.25 0 0 1 0 0 0 not limited 0 1 1 4 0 +female 0.67 0.25 0 0 1 0 0 2 otherwise 0 0 0 0 1 +female 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 3 +female 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 0 0 2 limited 0 0 0 0 3 +female 0.67 0.25 0 0 1 0 0 0 not limited 0 0 0 0 1 +female 0.67 0.25 0 0 1 0 0 1 not limited 0 0 0 0 2 +female 0.67 0.25 0 0 1 0 0 0 not limited 0 0 0 0 0 +female 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 0 0 4 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 1 0 0 not limited 1 0 0 0 4 +female 0.67 0.25 0 0 1 1 0 4 otherwise 1 0 0 0 3 +female 0.67 0.25 0 0 1 1 0 0 limited 1 7 2 45 2 +female 0.67 0.25 0 0 1 1 0 0 not limited 1 0 1 11 2 +female 0.67 0.25 0 0 1 1 0 0 otherwise 0 0 1 1 0 +female 0.67 0.25 0 0 1 1 0 3 otherwise 0 0 0 0 5 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 0 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 4 +female 0.67 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 1 0 1 not limited 0 0 0 0 3 +female 0.67 0.25 0 0 1 1 0 1 not limited 0 0 0 0 0 +female 0.67 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 2 0 0 1 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.67 0.25 0 0 1 1 0 2 not limited 0 0 0 0 2 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.67 0.25 0 0 1 1 0 2 not limited 0 1 0 0 0 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 3 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 3 +female 0.67 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 1 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 0 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.67 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 1 +female 0.67 0.25 0 0 1 1 0 1 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 1 0 0 not limited 0 0 0 0 0 +female 0.67 0.25 0 0 1 1 0 0 otherwise 0 2 0 0 1 +female 0.67 0.25 0 0 1 2 0 0 not limited 1 0 0 0 2 +female 0.67 0.25 0 0 1 2 0 6 otherwise 2 0 0 0 2 +female 0.67 0.25 0 0 1 2 0 0 not limited 2 0 0 0 1 +female 0.67 0.25 0 0 1 2 0 1 not limited 1 0 0 0 4 +female 0.67 0.25 0 0 1 2 0 2 not limited 2 0 1 11 3 +female 0.67 0.25 0 0 1 2 0 1 limited 1 0 0 0 5 +female 0.67 0.25 0 0 1 2 0 0 not limited 1 0 0 0 3 +female 0.67 0.25 0 0 1 2 0 2 limited 1 0 2 7 3 +female 0.67 0.25 0 0 1 2 0 1 not limited 0 0 0 0 0 +female 0.67 0.25 0 0 1 2 0 0 not limited 0 0 2 11 4 +female 0.67 0.25 0 0 1 2 0 0 not limited 0 0 0 0 3 +female 0.67 0.25 0 0 1 2 0 1 otherwise 0 0 0 0 2 +female 0.67 0.25 0 0 1 2 0 2 not limited 0 0 0 0 2 +female 0.67 0.25 0 0 1 2 0 0 not limited 0 0 0 0 2 +female 0.67 0.25 0 0 1 2 0 1 otherwise 0 0 0 0 3 +female 0.67 0.25 0 0 1 2 0 0 not limited 0 0 0 0 7 +female 0.67 0.25 0 0 1 2 0 1 otherwise 0 0 0 0 1 +female 0.67 0.25 0 0 1 2 0 0 otherwise 0 0 0 0 1 +female 0.67 0.25 0 0 1 2 0 0 otherwise 0 0 0 0 1 +female 0.67 0.25 0 0 1 2 1 0 not limited 0 1 0 0 4 +female 0.67 0.25 0 0 1 2 0 0 not limited 0 0 0 0 1 +female 0.67 0.25 0 0 1 2 2 0 not limited 0 0 0 0 0 +female 0.67 0.25 0 0 1 2 0 0 not limited 0 0 0 0 0 +female 0.67 0.25 0 0 1 2 0 3 not limited 0 0 0 0 1 +female 0.67 0.25 0 0 1 2 0 0 otherwise 0 0 0 0 0 +female 0.67 0.25 0 0 1 3 0 4 not limited 1 0 0 0 2 +female 0.67 0.25 0 0 1 3 0 4 otherwise 1 0 0 0 1 +female 0.67 0.25 0 0 1 3 0 1 not limited 2 0 0 0 3 +female 0.67 0.25 0 0 1 3 0 9 not limited 2 0 0 0 2 +female 0.67 0.25 0 0 1 3 14 3 not limited 2 2 0 0 4 +female 0.67 0.25 0 0 1 3 0 1 limited 1 0 0 0 4 +female 0.67 0.25 0 0 1 3 0 2 not limited 0 0 0 0 4 +female 0.67 0.25 0 0 1 3 0 1 not limited 0 0 0 0 4 +female 0.67 0.25 0 0 1 3 2 0 not limited 0 4 1 45 5 +female 0.67 0.25 0 0 1 3 1 2 not limited 0 2 0 0 2 +female 0.67 0.25 0 0 1 3 0 0 not limited 0 0 0 0 4 +female 0.67 0.25 0 0 1 3 0 0 not limited 0 0 0 0 1 +female 0.67 0.25 0 0 1 3 0 0 not limited 0 0 0 0 0 +female 0.67 0.25 0 0 1 3 0 1 not limited 0 1 0 0 3 +female 0.67 0.25 0 0 1 3 0 3 not limited 0 0 0 0 0 +female 0.67 0.25 0 0 1 4 14 0 not limited 2 0 0 0 4 +female 0.67 0.25 0 0 1 4 0 11 not limited 1 0 0 0 8 +female 0.67 0.25 0 0 1 4 4 0 not limited 0 0 0 0 4 +female 0.67 0.25 0 0 1 4 0 0 not limited 0 0 0 0 2 +female 0.67 0.25 0 0 1 5 14 7 not limited 1 1 1 22 3 +female 0.67 0.25 0 0 1 5 0 10 not limited 0 0 2 11 6 +female 0.67 0.25 0 0 1 5 0 0 not limited 0 0 0 0 3 +female 0.67 0.25 0 0 1 5 0 1 not limited 0 0 0 0 1 +female 0.67 0.25 0 0 1 5 0 4 not limited 0 0 0 0 2 +female 0.67 0.25 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.67 0.25 1 0 0 0 0 1 otherwise 0 2 0 0 0 +female 0.67 0.25 1 0 0 0 0 0 not limited 0 1 1 11 0 +female 0.67 0.25 1 0 0 0 0 0 not limited 0 0 0 0 4 +female 0.67 0.25 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.67 0.25 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.67 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.67 0.25 1 0 0 1 0 1 otherwise 1 1 1 22 0 +female 0.67 0.25 1 0 0 1 0 0 otherwise 1 0 0 0 1 +female 0.67 0.25 1 0 0 1 4 1 otherwise 0 0 0 0 1 +female 0.67 0.25 1 0 0 1 0 1 not limited 0 1 1 1 4 +female 0.67 0.25 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.67 0.25 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.67 0.25 1 0 0 2 0 1 not limited 1 0 0 0 2 +female 0.67 0.25 1 0 0 2 0 2 not limited 2 0 1 2 4 +female 0.67 0.25 1 0 0 2 0 1 not limited 1 2 0 0 4 +female 0.67 0.25 1 0 0 2 0 0 not limited 0 0 0 0 4 +female 0.67 0.25 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.67 0.25 1 0 0 2 0 1 not limited 0 0 0 0 1 +female 0.67 0.25 1 0 0 2 0 2 otherwise 0 0 0 0 1 +female 0.67 0.25 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.67 0.25 1 0 0 2 0 0 not limited 0 0 0 0 2 +female 0.67 0.25 1 0 0 3 1 0 not limited 0 0 0 0 4 +female 0.67 0.25 1 0 0 3 0 0 not limited 0 0 0 0 5 +female 0.67 0.25 1 0 0 5 0 9 not limited 2 0 0 0 6 +female 0.67 0.25 1 0 0 5 7 2 limited 0 0 1 7 4 +female 0.67 0.35 0 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.67 0.35 0 0 0 0 0 0 not limited 0 0 0 0 2 +female 0.67 0.35 0 0 1 0 0 1 otherwise 1 0 0 0 0 +female 0.67 0.35 0 0 1 0 0 0 not limited 0 0 0 0 0 +female 0.67 0.35 0 0 1 0 0 0 not limited 0 1 0 0 2 +female 0.67 0.35 0 0 1 0 0 2 not limited 0 0 0 0 2 +female 0.67 0.35 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.35 0 0 1 0 0 0 not limited 0 0 0 0 0 +female 0.67 0.35 0 0 1 0 0 7 otherwise 0 0 0 0 0 +female 0.67 0.35 0 0 1 0 0 0 not limited 0 0 0 0 0 +female 0.67 0.35 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.35 0 0 1 1 14 12 limited 6 0 5 22 3 +female 0.67 0.35 0 0 1 1 6 0 not limited 1 0 0 0 2 +female 0.67 0.35 0 0 1 1 0 0 not limited 0 1 0 0 2 +female 0.67 0.35 0 0 1 1 0 4 otherwise 0 0 0 0 2 +female 0.67 0.35 0 0 1 2 0 1 not limited 1 0 0 0 2 +female 0.67 0.35 0 0 1 2 0 0 not limited 1 0 0 0 3 +female 0.67 0.35 0 0 1 3 0 1 not limited 0 0 0 0 3 +female 0.67 0.35 0 0 1 3 0 4 not limited 0 1 0 0 2 +female 0.67 0.35 0 0 1 3 0 1 not limited 0 0 0 0 3 +female 0.67 0.35 0 0 1 4 0 0 not limited 0 0 1 22 2 +female 0.67 0.35 0 0 1 4 0 0 not limited 0 0 0 0 1 +female 0.67 0.35 0 0 1 5 14 9 limited 2 7 1 11 5 +female 0.67 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.67 0.35 1 0 0 1 14 3 otherwise 7 7 1 22 2 +female 0.67 0.35 1 0 0 1 3 0 otherwise 0 0 0 0 1 +female 0.67 0.35 1 0 0 1 0 1 not limited 0 0 0 0 1 +female 0.67 0.35 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.67 0.35 1 0 0 1 0 0 limited 0 0 0 0 4 +female 0.67 0.35 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.67 0.35 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.67 0.35 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.67 0.35 1 0 0 2 0 4 not limited 1 0 0 0 0 +female 0.67 0.35 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.67 0.35 1 0 0 2 0 1 not limited 0 0 0 0 2 +female 0.67 0.35 1 0 0 3 14 2 not limited 1 0 0 0 2 +female 0.67 0.35 1 0 0 3 0 5 otherwise 0 1 0 0 1 +female 0.67 0.35 1 0 0 3 0 1 not limited 0 0 0 0 1 +female 0.67 0.35 1 0 0 3 0 0 not limited 0 0 0 0 8 +female 0.67 0.35 1 0 0 3 0 0 not limited 0 0 0 0 1 +female 0.67 0.35 1 0 0 3 0 1 not limited 0 0 0 0 2 +female 0.67 0.35 1 0 0 5 14 10 not limited 7 10 3 7 6 +female 0.67 0.45 0 0 0 0 0 0 otherwise 0 0 2 22 0 +female 0.67 0.45 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.45 0 0 1 1 1 0 not limited 1 0 0 0 2 +female 0.67 0.45 0 0 1 1 0 0 not limited 1 0 0 0 5 +female 0.67 0.45 0 0 1 1 0 0 otherwise 0 0 0 0 0 +female 0.67 0.45 0 0 1 1 2 1 otherwise 0 0 0 0 1 +female 0.67 0.45 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.67 0.45 0 0 1 2 0 0 not limited 0 0 0 0 2 +female 0.67 0.45 0 0 1 2 0 1 not limited 0 0 0 0 2 +female 0.67 0.45 0 0 1 3 0 3 not limited 1 0 0 0 4 +female 0.67 0.45 0 0 1 5 0 6 not limited 1 0 0 0 4 +female 0.67 0.45 0 0 1 5 0 0 not limited 1 2 0 0 4 +female 0.67 0.45 0 0 1 5 8 2 not limited 0 0 0 0 3 +female 0.67 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.67 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.67 0.55 0 0 0 1 0 0 otherwise 0 2 2 11 0 +female 0.67 0.55 1 0 0 0 0 0 not limited 0 0 0 0 4 +female 0.67 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.67 0.55 1 0 0 1 0 1 not limited 0 0 0 0 2 +female 0.67 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.67 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.67 0.55 1 0 0 1 1 0 otherwise 0 2 0 0 0 +female 0.67 0.55 1 0 0 5 3 2 not limited 1 0 2 11 8 +female 0.67 0.65 0 0 1 3 0 2 limited 0 0 1 11 3 +female 0.67 0.65 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.65 1 0 0 1 0 2 otherwise 0 0 0 0 0 +female 0.67 0.65 1 0 0 2 0 0 not limited 0 0 0 0 3 +female 0.67 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.67 0.75 1 0 0 4 0 0 limited 1 0 1 4 6 +female 0.67 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.67 0.9 1 0 0 1 0 3 otherwise 0 0 0 0 0 +female 0.67 1.5 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.67 1.5 1 0 0 2 0 0 otherwise 0 0 0 0 2 +female 0.72 0.06 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.72 0.06 0 0 1 1 0 0 otherwise 0 0 0 0 0 +female 0.72 0.06 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.72 0.15 0 0 1 0 0 0 not limited 2 0 2 11 6 +female 0.72 0.15 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.15 0 0 1 0 0 0 not limited 0 4 0 0 2 +female 0.72 0.15 0 0 1 0 0 0 not limited 0 0 0 0 0 +female 0.72 0.15 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.15 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.15 0 0 1 1 0 8 limited 1 2 1 22 3 +female 0.72 0.15 0 0 1 1 0 0 otherwise 0 0 1 11 2 +female 0.72 0.15 0 0 1 1 0 0 otherwise 0 0 0 0 2 +female 0.72 0.15 0 0 1 1 0 0 otherwise 0 1 0 0 0 +female 0.72 0.15 0 0 1 1 0 0 not limited 0 0 0 0 0 +female 0.72 0.15 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.72 0.15 0 0 1 2 0 0 not limited 0 0 0 0 0 +female 0.72 0.15 0 0 1 2 0 0 not limited 0 0 0 0 2 +female 0.72 0.15 0 0 1 2 0 1 not limited 0 0 0 0 0 +female 0.72 0.15 0 0 1 3 0 2 not limited 1 0 0 0 3 +female 0.72 0.15 0 0 1 3 0 0 limited 1 0 0 0 3 +female 0.72 0.15 0 0 1 4 0 3 not limited 1 0 1 80 5 +female 0.72 0.15 0 0 1 4 0 7 not limited 0 1 1 2 3 +female 0.72 0.15 0 0 1 4 0 0 limited 0 8 0 0 2 +female 0.72 0.15 1 0 0 0 0 0 otherwise 1 0 1 2 0 +female 0.72 0.15 1 0 0 0 0 1 otherwise 0 1 0 0 1 +female 0.72 0.15 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.15 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.72 0.15 1 0 0 2 0 0 not limited 0 0 0 0 2 +female 0.72 0.15 1 0 0 3 0 2 not limited 0 0 0 0 3 +female 0.72 0.25 0 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 0 1 0 0 not limited 1 0 1 11 5 +female 0.72 0.25 0 0 0 2 0 0 not limited 0 0 1 22 2 +female 0.72 0.25 0 0 0 5 0 7 not limited 0 1 0 0 2 +female 0.72 0.25 0 0 1 0 0 0 otherwise 1 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 not limited 1 0 1 2 0 +female 0.72 0.25 0 0 1 0 0 0 otherwise 1 0 0 0 1 +female 0.72 0.25 0 0 1 0 0 0 limited 2 0 0 0 1 +female 0.72 0.25 0 0 1 0 0 3 not limited 1 0 0 0 1 +female 0.72 0.25 0 0 1 0 0 0 otherwise 1 2 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 otherwise 1 0 0 0 2 +female 0.72 0.25 0 0 1 0 0 0 otherwise 2 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 limited 1 0 0 0 1 +female 0.72 0.25 0 0 1 0 0 2 otherwise 1 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 2 +female 0.72 0.25 0 0 1 0 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 4 limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 0 0 2 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 0 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 0 0 0 limited 0 7 1 11 2 +female 0.72 0.25 0 0 1 0 0 1 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 0 0 0 not limited 0 0 1 3 1 +female 0.72 0.25 0 0 1 0 0 1 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 0 0 1 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 1 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 2 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 1 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 1 0 0 1 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 1 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 1 14 3 limited 1 0 0 0 7 +female 0.72 0.25 0 0 1 1 0 0 otherwise 1 0 0 0 3 +female 0.72 0.25 0 0 1 1 0 0 otherwise 1 1 0 0 2 +female 0.72 0.25 0 0 1 1 14 2 limited 1 0 3 5 1 +female 0.72 0.25 0 0 1 1 0 2 not limited 1 1 0 0 3 +female 0.72 0.25 0 0 1 1 0 0 not limited 1 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 1 not limited 1 0 0 0 2 +female 0.72 0.25 0 0 1 1 4 0 not limited 1 0 0 0 4 +female 0.72 0.25 0 0 1 1 14 11 limited 1 1 1 11 4 +female 0.72 0.25 0 0 1 1 0 1 not limited 1 0 1 1 4 +female 0.72 0.25 0 0 1 1 3 2 not limited 1 0 0 0 4 +female 0.72 0.25 0 0 1 1 2 0 not limited 2 0 0 0 3 +female 0.72 0.25 0 0 1 1 0 0 otherwise 1 0 0 0 2 +female 0.72 0.25 0 0 1 1 0 2 otherwise 2 0 0 0 3 +female 0.72 0.25 0 0 1 1 0 0 not limited 2 1 0 0 2 +female 0.72 0.25 0 0 1 1 0 1 limited 1 0 0 0 2 +female 0.72 0.25 0 0 1 1 0 0 not limited 1 0 0 0 0 +female 0.72 0.25 0 0 1 1 14 0 limited 1 0 0 0 4 +female 0.72 0.25 0 0 1 1 14 1 limited 1 7 0 0 1 +female 0.72 0.25 0 0 1 1 0 1 limited 2 4 0 0 4 +female 0.72 0.25 0 0 1 1 5 2 not limited 6 0 1 6 0 +female 0.72 0.25 0 0 1 1 0 0 not limited 1 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 0 not limited 2 0 0 0 0 +female 0.72 0.25 0 0 1 1 0 1 not limited 1 4 2 70 4 +female 0.72 0.25 0 0 1 1 14 2 limited 1 8 2 5 2 +female 0.72 0.25 0 0 1 1 3 0 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 4 2 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 3 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 7 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 2 3 2 +female 0.72 0.25 0 0 1 1 0 1 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 4 0 0 2 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 1 0 1 not limited 0 0 0 0 6 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 2 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 1 not limited 0 0 1 22 1 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 1 1 not limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 1 0 1 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 1 0 0 otherwise 0 6 0 0 0 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 0 limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 1 14 0 limited 0 0 0 0 4 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 1 0 0 3 +female 0.72 0.25 0 0 1 1 0 0 otherwise 0 1 0 0 3 +female 0.72 0.25 0 0 1 1 14 7 limited 0 6 2 22 2 +female 0.72 0.25 0 0 1 1 0 1 not limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 1 0 2 otherwise 0 0 0 0 2 +female 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 2 +female 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 1 14 0 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 1 0 0 otherwise 0 1 0 0 0 +female 0.72 0.25 0 0 1 1 0 0 limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 1 0 0 limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 1 0 2 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 1 0 0 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 1 0 0 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 1 0 0 limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 2 10 1 not limited 1 0 1 22 0 +female 0.72 0.25 0 0 1 2 0 0 not limited 1 0 0 0 1 +female 0.72 0.25 0 0 1 2 0 11 limited 2 0 1 11 3 +female 0.72 0.25 0 0 1 2 0 5 not limited 1 0 0 0 3 +female 0.72 0.25 0 0 1 2 0 5 otherwise 1 0 0 0 1 +female 0.72 0.25 0 0 1 2 0 3 not limited 1 0 0 0 5 +female 0.72 0.25 0 0 1 2 0 3 not limited 1 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 0 not limited 1 0 0 0 4 +female 0.72 0.25 0 0 1 2 0 0 not limited 2 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 0 otherwise 1 1 0 0 4 +female 0.72 0.25 0 0 1 2 14 1 limited 7 0 1 11 5 +female 0.72 0.25 0 0 1 2 0 0 otherwise 1 0 0 0 8 +female 0.72 0.25 0 0 1 2 0 1 not limited 2 0 2 1 2 +female 0.72 0.25 0 0 1 2 0 1 not limited 1 0 2 11 4 +female 0.72 0.25 0 0 1 2 14 0 limited 2 1 2 45 1 +female 0.72 0.25 0 0 1 2 0 0 not limited 1 0 1 22 5 +female 0.72 0.25 0 0 1 2 0 1 not limited 1 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 0 not limited 1 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 4 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 8 not limited 0 1 0 0 3 +female 0.72 0.25 0 0 1 2 0 1 limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 1 otherwise 0 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 6 limited 0 4 1 11 3 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 2 not limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 2 0 1 not limited 0 0 0 0 5 +female 0.72 0.25 0 0 1 2 0 2 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 2 0 2 limited 0 1 0 0 3 +female 0.72 0.25 0 0 1 2 0 4 limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 2 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 2 1 1 not limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 2 8 0 limited 0 0 0 0 4 +female 0.72 0.25 0 0 1 2 0 0 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 2 0 2 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 2 not limited 0 1 0 0 8 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 7 0 0 3 +female 0.72 0.25 0 0 1 2 14 1 not limited 0 1 0 0 5 +female 0.72 0.25 0 0 1 2 0 1 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 1 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 2 14 5 limited 0 0 2 45 1 +female 0.72 0.25 0 0 1 2 0 2 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 2 2 5 not limited 0 9 0 0 4 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 1 1 7 3 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 1 0 0 4 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 1 0 0 2 +female 0.72 0.25 0 0 1 2 0 5 limited 0 7 1 1 1 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 2 0 4 not limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 2 0 1 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 2 0 3 otherwise 0 0 0 0 0 +female 0.72 0.25 0 0 1 2 0 0 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 2 0 0 limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 3 0 3 not limited 1 1 0 0 3 +female 0.72 0.25 0 0 1 3 0 3 not limited 1 0 0 0 1 +female 0.72 0.25 0 0 1 3 4 6 not limited 2 1 0 0 4 +female 0.72 0.25 0 0 1 3 3 1 not limited 1 0 0 0 3 +female 0.72 0.25 0 0 1 3 0 1 not limited 1 3 0 0 1 +female 0.72 0.25 0 0 1 3 0 0 not limited 1 0 0 0 4 +female 0.72 0.25 0 0 1 3 14 1 not limited 1 1 1 11 2 +female 0.72 0.25 0 0 1 3 0 0 not limited 1 0 0 0 1 +female 0.72 0.25 0 0 1 3 7 3 not limited 1 0 0 0 2 +female 0.72 0.25 0 0 1 3 14 2 not limited 6 0 2 11 7 +female 0.72 0.25 0 0 1 3 0 4 not limited 1 0 0 0 3 +female 0.72 0.25 0 0 1 3 0 1 not limited 1 0 1 7 2 +female 0.72 0.25 0 0 1 3 0 0 not limited 1 4 0 0 8 +female 0.72 0.25 0 0 1 3 0 0 not limited 4 0 0 0 2 +female 0.72 0.25 0 0 1 3 0 0 not limited 1 0 0 0 1 +female 0.72 0.25 0 0 1 3 0 1 otherwise 1 2 0 0 2 +female 0.72 0.25 0 0 1 3 0 0 limited 1 0 0 0 2 +female 0.72 0.25 0 0 1 3 0 3 not limited 2 0 1 5 2 +female 0.72 0.25 0 0 1 3 0 0 not limited 1 0 0 0 3 +female 0.72 0.25 0 0 1 3 0 2 not limited 1 0 0 0 8 +female 0.72 0.25 0 0 1 3 0 0 not limited 1 0 0 0 3 +female 0.72 0.25 0 0 1 3 0 0 not limited 1 0 0 0 1 +female 0.72 0.25 0 0 1 3 14 6 not limited 1 0 0 0 2 +female 0.72 0.25 0 0 1 3 0 1 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 3 0 2 not limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 3 0 1 otherwise 0 2 0 0 0 +female 0.72 0.25 0 0 1 3 0 1 not limited 0 1 0 0 4 +female 0.72 0.25 0 0 1 3 0 0 limited 0 0 1 11 5 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 3 0 4 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 3 0 3 limited 0 0 0 0 5 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 5 +female 0.72 0.25 0 0 1 3 0 1 not limited 0 0 1 70 1 +female 0.72 0.25 0 0 1 3 14 7 limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 3 0 2 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 3 0 0 limited 0 0 2 22 4 +female 0.72 0.25 0 0 1 3 0 0 otherwise 0 0 0 0 2 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 1 0 0 4 +female 0.72 0.25 0 0 1 3 0 0 otherwise 0 0 0 0 4 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 3 0 0 limited 0 0 0 0 7 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 3 0 0 limited 0 3 2 45 4 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 4 0 0 6 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 0 1 45 0 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 3 0 3 limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 3 0 0 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 4 7 3 not limited 1 8 0 0 1 +female 0.72 0.25 0 0 1 4 0 1 limited 1 0 1 6 8 +female 0.72 0.25 0 0 1 4 0 3 limited 1 0 1 11 4 +female 0.72 0.25 0 0 1 4 1 3 not limited 2 0 0 0 3 +female 0.72 0.25 0 0 1 4 0 2 not limited 1 0 0 0 1 +female 0.72 0.25 0 0 1 4 0 1 not limited 2 5 0 0 4 +female 0.72 0.25 0 0 1 4 5 0 not limited 4 0 0 0 4 +female 0.72 0.25 0 0 1 4 0 5 limited 1 0 0 0 3 +female 0.72 0.25 0 0 1 4 0 0 not limited 1 0 0 0 3 +female 0.72 0.25 0 0 1 4 10 0 not limited 2 0 0 0 4 +female 0.72 0.25 0 0 1 4 0 10 not limited 1 0 0 0 3 +female 0.72 0.25 0 0 1 4 0 2 limited 1 0 0 0 5 +female 0.72 0.25 0 0 1 4 0 0 not limited 1 0 0 0 4 +female 0.72 0.25 0 0 1 4 14 12 limited 1 1 3 22 5 +female 0.72 0.25 0 0 1 4 2 0 not limited 1 1 1 7 6 +female 0.72 0.25 0 0 1 4 14 9 limited 1 1 2 22 4 +female 0.72 0.25 0 0 1 4 0 0 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 4 0 5 not limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 4 0 0 not limited 0 0 0 0 4 +female 0.72 0.25 0 0 1 4 0 3 limited 0 0 0 0 8 +female 0.72 0.25 0 0 1 4 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 4 0 0 not limited 0 0 0 0 4 +female 0.72 0.25 0 0 1 4 0 2 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 4 0 3 limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 4 5 1 not limited 0 0 0 0 5 +female 0.72 0.25 0 0 1 4 0 0 limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 4 0 2 otherwise 0 0 0 0 1 +female 0.72 0.25 0 0 1 4 0 2 not limited 0 1 0 0 3 +female 0.72 0.25 0 0 1 4 0 1 not limited 0 0 1 1 2 +female 0.72 0.25 0 0 1 4 0 1 not limited 0 0 2 22 2 +female 0.72 0.25 0 0 1 4 0 2 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 4 3 5 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 4 0 0 not limited 0 1 0 0 3 +female 0.72 0.25 0 0 1 4 0 1 not limited 0 0 1 22 0 +female 0.72 0.25 0 0 1 4 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 0 0 1 5 14 7 not limited 6 0 1 2 3 +female 0.72 0.25 0 0 1 5 0 6 not limited 1 1 0 0 2 +female 0.72 0.25 0 0 1 5 0 1 limited 2 11 0 0 4 +female 0.72 0.25 0 0 1 5 0 2 limited 2 0 0 0 1 +female 0.72 0.25 0 0 1 5 0 2 not limited 2 2 2 11 5 +female 0.72 0.25 0 0 1 5 14 0 not limited 7 0 0 0 3 +female 0.72 0.25 0 0 1 5 14 0 not limited 2 0 1 22 7 +female 0.72 0.25 0 0 1 5 0 0 not limited 1 0 0 0 4 +female 0.72 0.25 0 0 1 5 0 0 limited 1 0 0 0 8 +female 0.72 0.25 0 0 1 5 0 1 not limited 1 0 0 0 5 +female 0.72 0.25 0 0 1 5 7 1 limited 1 0 1 22 4 +female 0.72 0.25 0 0 1 5 0 5 not limited 1 0 0 0 8 +female 0.72 0.25 0 0 1 5 0 8 not limited 1 0 1 11 7 +female 0.72 0.25 0 0 1 5 0 3 not limited 1 0 0 0 7 +female 0.72 0.25 0 0 1 5 0 2 not limited 0 4 0 0 3 +female 0.72 0.25 0 0 1 5 0 2 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 5 0 3 not limited 0 0 0 0 3 +female 0.72 0.25 0 0 1 5 3 2 not limited 0 1 0 0 7 +female 0.72 0.25 0 0 1 5 0 0 not limited 0 0 0 0 4 +female 0.72 0.25 0 0 1 5 0 0 not limited 0 0 0 0 0 +female 0.72 0.25 0 0 1 5 14 6 not limited 0 0 3 1 8 +female 0.72 0.25 0 0 1 5 1 5 not limited 0 0 1 2 8 +female 0.72 0.25 0 0 1 5 0 3 limited 0 0 0 0 5 +female 0.72 0.25 0 0 1 5 0 0 not limited 0 0 0 0 4 +female 0.72 0.25 0 0 1 5 1 0 limited 0 0 3 45 5 +female 0.72 0.25 0 0 1 5 0 1 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 5 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 5 2 7 limited 0 0 0 0 8 +female 0.72 0.25 0 0 1 5 0 6 not limited 0 0 0 0 2 +female 0.72 0.25 0 0 1 5 14 1 not limited 0 0 0 0 8 +female 0.72 0.25 0 0 1 5 0 6 limited 0 9 3 7 3 +female 0.72 0.25 0 0 1 5 0 1 not limited 0 0 0 0 5 +female 0.72 0.25 0 0 1 5 0 3 not limited 0 0 0 0 7 +female 0.72 0.25 0 0 1 5 14 9 not limited 0 0 1 80 3 +female 0.72 0.25 0 0 1 5 0 6 limited 0 7 0 0 4 +female 0.72 0.25 0 0 1 5 0 0 not limited 0 0 1 4 4 +female 0.72 0.25 0 0 1 5 0 3 not limited 0 0 0 0 1 +female 0.72 0.25 0 1 0 3 0 0 not limited 0 0 0 0 3 +female 0.72 0.25 1 0 0 0 0 0 not limited 1 0 0 0 2 +female 0.72 0.25 1 0 0 0 0 1 not limited 1 0 0 0 1 +female 0.72 0.25 1 0 0 0 0 0 not limited 1 0 1 2 2 +female 0.72 0.25 1 0 0 0 0 0 limited 1 1 0 0 4 +female 0.72 0.25 1 0 0 0 0 0 not limited 1 1 0 0 2 +female 0.72 0.25 1 0 0 0 0 0 otherwise 1 0 0 0 0 +female 0.72 0.25 1 0 0 0 0 0 not limited 0 0 0 0 3 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 1 0 0 0 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 1 0 0 0 0 3 otherwise 0 0 0 0 1 +female 0.72 0.25 1 0 0 0 0 0 not limited 0 0 2 22 4 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 4 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 1 0 0 1 +female 0.72 0.25 1 0 0 0 0 0 limited 0 1 0 0 0 +female 0.72 0.25 1 0 0 0 0 1 otherwise 0 0 0 0 1 +female 0.72 0.25 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 1 0 0 0 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 1 0 0 1 0 8 not limited 2 0 1 7 3 +female 0.72 0.25 1 0 0 1 0 0 not limited 1 0 0 0 2 +female 0.72 0.25 1 0 0 1 0 1 not limited 1 0 0 0 3 +female 0.72 0.25 1 0 0 1 1 0 not limited 1 0 0 0 0 +female 0.72 0.25 1 0 0 1 0 0 not limited 1 0 1 22 2 +female 0.72 0.25 1 0 0 1 14 2 not limited 1 0 0 0 2 +female 0.72 0.25 1 0 0 1 0 0 not limited 1 0 0 0 3 +female 0.72 0.25 1 0 0 1 0 0 not limited 1 0 0 0 2 +female 0.72 0.25 1 0 0 1 0 2 not limited 1 7 1 3 3 +female 0.72 0.25 1 0 0 1 0 2 not limited 1 1 1 2 2 +female 0.72 0.25 1 0 0 1 0 2 not limited 0 0 0 0 1 +female 0.72 0.25 1 0 0 1 0 0 not limited 0 2 0 0 3 +female 0.72 0.25 1 0 0 1 0 0 otherwise 0 1 0 0 0 +female 0.72 0.25 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 1 0 0 1 0 0 not limited 0 0 0 0 3 +female 0.72 0.25 1 0 0 1 0 1 not limited 0 1 0 0 3 +female 0.72 0.25 1 0 0 1 0 2 limited 0 5 0 0 4 +female 0.72 0.25 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 1 0 0 1 0 0 not limited 0 0 2 11 3 +female 0.72 0.25 1 0 0 1 0 0 not limited 0 0 1 22 3 +female 0.72 0.25 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.72 0.25 1 0 0 1 0 0 not limited 0 0 2 45 3 +female 0.72 0.25 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 1 0 0 2 0 0 otherwise 1 0 1 5 6 +female 0.72 0.25 1 0 0 2 12 6 not limited 4 2 2 45 4 +female 0.72 0.25 1 0 0 2 0 2 not limited 1 0 0 0 6 +female 0.72 0.25 1 0 0 2 0 0 not limited 1 0 0 0 2 +female 0.72 0.25 1 0 0 2 4 0 limited 2 1 0 0 2 +female 0.72 0.25 1 0 0 2 0 0 not limited 1 0 0 0 5 +female 0.72 0.25 1 0 0 2 0 3 not limited 0 0 0 0 2 +female 0.72 0.25 1 0 0 2 0 0 not limited 0 0 0 0 4 +female 0.72 0.25 1 0 0 2 0 0 not limited 0 1 1 4 1 +female 0.72 0.25 1 0 0 2 0 1 otherwise 0 0 0 0 5 +female 0.72 0.25 1 0 0 2 0 1 not limited 0 0 0 0 2 +female 0.72 0.25 1 0 0 2 0 0 not limited 0 0 0 0 3 +female 0.72 0.25 1 0 0 2 0 4 limited 0 0 1 1 2 +female 0.72 0.25 1 0 0 2 0 0 not limited 0 0 0 0 3 +female 0.72 0.25 1 0 0 2 0 0 not limited 0 0 0 0 4 +female 0.72 0.25 1 0 0 2 0 1 limited 0 0 0 0 2 +female 0.72 0.25 1 0 0 2 0 2 not limited 0 0 0 0 1 +female 0.72 0.25 1 0 0 2 0 1 limited 0 0 1 22 4 +female 0.72 0.25 1 0 0 2 0 0 limited 0 7 1 6 1 +female 0.72 0.25 1 0 0 3 0 3 not limited 1 0 0 0 2 +female 0.72 0.25 1 0 0 3 0 0 otherwise 1 0 0 0 1 +female 0.72 0.25 1 0 0 3 0 0 not limited 2 0 1 80 4 +female 0.72 0.25 1 0 0 3 0 2 not limited 1 0 0 0 3 +female 0.72 0.25 1 0 0 3 0 1 limited 2 0 0 0 2 +female 0.72 0.25 1 0 0 3 0 0 not limited 1 1 0 0 3 +female 0.72 0.25 1 0 0 3 2 1 not limited 1 1 1 7 4 +female 0.72 0.25 1 0 0 3 2 0 not limited 1 2 0 0 5 +female 0.72 0.25 1 0 0 3 0 5 not limited 1 0 3 6 3 +female 0.72 0.25 1 0 0 3 0 2 not limited 0 0 0 0 1 +female 0.72 0.25 1 0 0 3 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 1 0 0 3 0 2 limited 0 0 0 0 5 +female 0.72 0.25 1 0 0 3 0 6 not limited 0 5 0 0 6 +female 0.72 0.25 1 0 0 3 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 1 0 0 3 0 0 limited 0 0 0 0 1 +female 0.72 0.25 1 0 0 4 0 3 otherwise 1 0 0 0 3 +female 0.72 0.25 1 0 0 4 3 0 not limited 1 1 0 0 1 +female 0.72 0.25 1 0 0 4 0 1 not limited 1 2 1 11 5 +female 0.72 0.25 1 0 0 4 0 2 not limited 2 3 3 11 6 +female 0.72 0.25 1 0 0 4 0 11 limited 0 0 0 0 5 +female 0.72 0.25 1 0 0 4 0 0 not limited 0 1 1 22 8 +female 0.72 0.25 1 0 0 4 0 2 not limited 0 0 0 0 0 +female 0.72 0.25 1 0 0 4 0 1 not limited 0 0 0 0 2 +female 0.72 0.25 1 0 0 4 0 3 limited 0 1 1 11 3 +female 0.72 0.25 1 0 0 4 14 0 limited 0 0 0 0 3 +female 0.72 0.25 1 0 0 4 0 0 not limited 0 0 0 0 1 +female 0.72 0.25 1 0 0 5 13 3 limited 2 0 0 0 5 +female 0.72 0.25 1 0 0 5 14 5 not limited 7 0 1 7 8 +female 0.72 0.25 1 0 0 5 14 3 limited 6 0 2 22 5 +female 0.72 0.25 1 0 0 5 0 0 not limited 2 1 0 0 2 +female 0.72 0.25 1 0 0 5 0 0 not limited 0 0 0 0 7 +female 0.72 0.25 1 0 0 5 14 9 limited 0 0 0 0 4 +female 0.72 0.25 1 0 0 5 0 0 not limited 0 0 0 0 2 +female 0.72 0.25 1 0 0 5 12 5 limited 0 2 5 11 7 +female 0.72 0.25 1 0 0 5 0 0 not limited 0 0 0 0 4 +female 0.72 0.25 1 0 0 5 1 0 limited 0 0 0 0 8 +female 0.72 0.25 1 0 0 5 0 2 not limited 0 1 0 0 5 +female 0.72 0.25 1 0 0 5 14 2 limited 0 0 0 0 5 +female 0.72 0.25 1 0 0 5 0 5 not limited 0 0 2 11 7 +female 0.72 0.25 1 0 0 5 4 3 not limited 0 0 0 0 3 +female 0.72 0.35 0 0 0 0 0 0 otherwise 0 1 0 0 1 +female 0.72 0.35 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.35 0 0 1 0 0 1 otherwise 2 0 0 0 2 +female 0.72 0.35 0 0 1 0 0 0 not limited 1 0 0 0 1 +female 0.72 0.35 0 0 1 0 0 5 not limited 1 0 0 0 2 +female 0.72 0.35 0 0 1 0 0 0 otherwise 0 0 0 0 1 +female 0.72 0.35 0 0 1 0 0 2 not limited 0 0 0 0 0 +female 0.72 0.35 0 0 1 0 0 0 otherwise 0 0 1 5 4 +female 0.72 0.35 0 0 1 0 0 0 otherwise 0 0 1 45 1 +female 0.72 0.35 0 0 1 0 0 0 limited 0 0 0 0 2 +female 0.72 0.35 0 0 1 0 0 0 otherwise 0 0 0 0 2 +female 0.72 0.35 0 0 1 0 0 0 not limited 0 0 0 0 1 +female 0.72 0.35 0 0 1 0 0 0 not limited 0 0 1 11 3 +female 0.72 0.35 0 0 1 0 0 0 otherwise 0 0 1 2 0 +female 0.72 0.35 0 0 1 0 0 1 otherwise 0 0 0 0 0 +female 0.72 0.35 0 0 1 0 0 0 not limited 0 0 0 0 0 +female 0.72 0.35 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.35 0 0 1 0 0 4 otherwise 0 0 0 0 0 +female 0.72 0.35 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.35 0 0 1 1 0 0 limited 0 0 0 0 4 +female 0.72 0.35 0 0 1 1 0 0 not limited 0 0 0 0 5 +female 0.72 0.35 0 0 1 1 0 0 not limited 0 0 0 0 2 +female 0.72 0.35 0 0 1 1 0 0 not limited 0 0 1 5 4 +female 0.72 0.35 0 0 1 1 0 0 not limited 0 0 1 3 2 +female 0.72 0.35 0 0 1 1 0 1 not limited 0 0 0 0 2 +female 0.72 0.35 0 0 1 1 14 0 limited 0 1 0 0 2 +female 0.72 0.35 0 0 1 1 0 0 not limited 0 1 0 0 2 +female 0.72 0.35 0 0 1 2 0 1 otherwise 1 0 0 0 2 +female 0.72 0.35 0 0 1 2 0 0 not limited 1 0 1 11 3 +female 0.72 0.35 0 0 1 2 0 2 otherwise 1 0 0 0 0 +female 0.72 0.35 0 0 1 2 0 2 limited 0 7 0 0 3 +female 0.72 0.35 0 0 1 2 0 1 limited 0 0 0 0 2 +female 0.72 0.35 0 0 1 2 0 0 otherwise 0 0 0 0 2 +female 0.72 0.35 0 0 1 2 0 5 not limited 0 0 0 0 6 +female 0.72 0.35 0 0 1 2 0 0 not limited 0 0 0 0 0 +female 0.72 0.35 0 0 1 2 0 2 not limited 0 0 0 0 2 +female 0.72 0.35 0 0 1 3 0 9 limited 1 0 0 0 1 +female 0.72 0.35 0 0 1 3 0 1 not limited 1 1 0 0 4 +female 0.72 0.35 0 0 1 3 0 4 not limited 1 0 0 0 1 +female 0.72 0.35 0 0 1 3 0 0 not limited 0 0 0 0 2 +female 0.72 0.35 0 0 1 3 4 2 not limited 0 0 0 0 7 +female 0.72 0.35 0 0 1 3 0 0 not limited 0 0 0 0 0 +female 0.72 0.35 0 0 1 3 8 2 limited 0 0 0 0 1 +female 0.72 0.35 0 0 1 3 0 1 not limited 0 0 0 0 0 +female 0.72 0.35 0 0 1 4 0 1 not limited 1 1 0 0 3 +female 0.72 0.35 0 0 1 4 0 2 not limited 0 0 0 0 5 +female 0.72 0.35 0 0 1 4 0 0 not limited 0 2 2 45 4 +female 0.72 0.35 0 0 1 5 0 4 not limited 1 0 0 0 3 +female 0.72 0.35 0 0 1 5 0 0 not limited 1 1 0 0 5 +female 0.72 0.35 0 0 1 5 0 2 not limited 2 1 0 0 4 +female 0.72 0.35 1 0 0 0 0 0 not limited 1 0 0 0 1 +female 0.72 0.35 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.72 0.35 1 0 0 0 0 0 not limited 0 1 0 0 3 +female 0.72 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.72 0.35 1 0 0 0 0 0 not limited 0 0 0 0 6 +female 0.72 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.72 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.72 0.35 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.72 0.35 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.72 0.35 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.35 1 0 0 1 14 4 not limited 0 1 0 0 4 +female 0.72 0.35 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.72 0.35 1 0 0 1 0 0 not limited 0 1 0 0 1 +female 0.72 0.35 1 0 0 1 0 0 not limited 0 0 0 0 0 +female 0.72 0.35 1 0 0 1 0 2 not limited 0 0 0 0 0 +female 0.72 0.35 1 0 0 2 0 1 not limited 1 0 2 11 1 +female 0.72 0.35 1 0 0 2 0 0 not limited 1 0 0 0 4 +female 0.72 0.35 1 0 0 3 0 3 not limited 1 0 0 0 1 +female 0.72 0.35 1 0 0 3 0 0 not limited 0 0 0 0 2 +female 0.72 0.35 1 0 0 3 0 0 not limited 0 0 0 0 6 +female 0.72 0.35 1 0 0 4 0 0 not limited 4 0 3 7 3 +female 0.72 0.35 1 0 0 4 14 6 limited 1 11 1 80 4 +female 0.72 0.35 1 0 0 4 13 4 limited 6 2 1 5 6 +female 0.72 0.35 1 0 0 4 0 1 not limited 0 0 0 0 4 +female 0.72 0.35 1 0 0 4 0 7 not limited 0 0 0 0 5 +female 0.72 0.35 1 0 0 4 0 10 not limited 0 0 0 0 1 +female 0.72 0.35 1 0 0 5 7 1 not limited 2 1 0 0 2 +female 0.72 0.35 1 0 0 5 0 2 limited 1 0 0 0 5 +female 0.72 0.45 0 0 0 1 0 3 not limited 0 0 0 0 1 +female 0.72 0.45 0 0 1 0 0 0 not limited 0 1 0 0 2 +female 0.72 0.45 0 0 1 0 0 0 not limited 0 0 0 0 1 +female 0.72 0.45 0 0 1 0 0 0 not limited 0 0 0 0 4 +female 0.72 0.45 0 0 1 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.45 0 0 1 1 14 1 otherwise 1 0 0 0 5 +female 0.72 0.45 0 0 1 1 0 0 otherwise 0 0 0 0 0 +female 0.72 0.45 0 0 1 2 0 0 not limited 1 0 1 45 2 +female 0.72 0.45 0 0 1 4 0 2 not limited 0 0 0 0 2 +female 0.72 0.45 0 0 1 5 6 1 not limited 1 0 0 0 4 +female 0.72 0.45 1 0 0 0 0 0 not limited 0 0 0 0 0 +female 0.72 0.45 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.72 0.45 1 0 0 0 0 0 not limited 0 0 0 0 2 +female 0.72 0.45 1 0 0 1 0 0 not limited 1 0 0 0 1 +female 0.72 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 0 +female 0.72 0.45 1 0 0 1 0 0 limited 0 0 0 0 2 +female 0.72 0.45 1 0 0 1 0 2 not limited 0 1 0 0 0 +female 0.72 0.45 1 0 0 1 14 4 limited 0 1 1 22 6 +female 0.72 0.45 1 0 0 1 0 0 not limited 0 0 0 0 1 +female 0.72 0.45 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.72 0.45 1 0 0 2 0 0 limited 0 0 0 0 3 +female 0.72 0.45 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.72 0.45 1 0 0 2 0 0 otherwise 0 0 0 0 1 +female 0.72 0.45 1 0 0 3 0 0 not limited 1 0 0 0 2 +female 0.72 0.45 1 0 0 3 0 1 not limited 1 0 0 0 2 +female 0.72 0.45 1 0 0 3 14 4 not limited 0 2 0 0 0 +female 0.72 0.45 1 0 0 3 2 1 not limited 0 0 0 0 3 +female 0.72 0.45 1 0 0 4 14 2 limited 1 0 0 0 4 +female 0.72 0.45 1 0 0 5 7 2 not limited 3 0 0 0 6 +female 0.72 0.45 1 0 0 5 0 2 not limited 0 1 5 11 8 +female 0.72 0.45 1 0 0 5 0 3 not limited 0 1 0 0 2 +female 0.72 0.55 0 0 0 0 14 3 limited 0 4 0 0 2 +female 0.72 0.55 0 0 1 0 0 0 not limited 0 0 0 0 0 +female 0.72 0.55 0 0 1 1 0 4 not limited 1 1 0 0 2 +female 0.72 0.55 0 0 1 1 0 1 limited 2 7 1 80 2 +female 0.72 0.55 0 0 1 1 0 2 otherwise 0 0 0 0 1 +female 0.72 0.55 0 0 1 1 14 1 not limited 0 0 0 0 0 +female 0.72 0.55 0 0 1 2 0 0 not limited 0 0 1 22 4 +female 0.72 0.55 0 0 1 2 0 3 limited 0 1 0 0 6 +female 0.72 0.55 0 0 1 3 0 0 not limited 1 0 0 0 6 +female 0.72 0.55 0 0 1 3 7 0 not limited 0 0 0 0 3 +female 0.72 0.55 0 0 1 3 0 1 limited 0 7 0 0 4 +female 0.72 0.55 0 0 1 3 14 10 not limited 0 0 0 0 0 +female 0.72 0.55 0 0 1 4 0 1 not limited 1 1 0 0 1 +female 0.72 0.55 0 0 1 4 0 1 not limited 0 1 0 0 4 +female 0.72 0.55 0 0 1 4 0 0 not limited 0 0 0 0 3 +female 0.72 0.55 0 0 1 5 10 7 limited 2 1 0 0 3 +female 0.72 0.55 0 0 1 5 0 2 not limited 0 0 0 0 7 +female 0.72 0.55 1 0 0 0 0 0 not limited 1 0 0 0 4 +female 0.72 0.55 1 0 0 0 0 0 not limited 0 0 0 0 4 +female 0.72 0.55 1 0 0 0 0 0 otherwise 0 0 1 4 0 +female 0.72 0.55 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.55 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.72 0.55 1 0 0 1 0 4 otherwise 1 0 0 0 2 +female 0.72 0.55 1 0 0 1 0 2 not limited 0 0 0 0 1 +female 0.72 0.55 1 0 0 1 0 0 otherwise 0 0 1 1 1 +female 0.72 0.55 1 0 0 1 0 1 not limited 0 0 1 1 4 +female 0.72 0.55 1 0 0 1 0 0 otherwise 0 0 0 0 1 +female 0.72 0.55 1 0 0 2 0 6 not limited 0 0 0 0 1 +female 0.72 0.55 1 0 0 2 0 0 not limited 0 1 0 0 1 +female 0.72 0.55 1 0 0 2 0 4 not limited 0 0 0 0 0 +female 0.72 0.55 1 0 0 2 0 0 not limited 0 0 0 0 1 +female 0.72 0.55 1 0 0 3 0 3 not limited 0 0 1 22 4 +female 0.72 0.55 1 0 0 3 14 2 not limited 0 1 0 0 4 +female 0.72 0.55 1 0 0 4 0 2 limited 1 0 0 0 5 +female 0.72 0.55 1 0 0 4 0 0 not limited 1 0 0 0 3 +female 0.72 0.55 1 0 0 4 0 0 not limited 0 0 0 0 1 +female 0.72 0.65 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.65 0 0 0 1 14 0 otherwise 1 1 0 0 2 +female 0.72 0.65 0 0 1 3 0 10 not limited 1 0 2 11 4 +female 0.72 0.65 0 0 1 4 14 5 not limited 1 0 0 0 8 +female 0.72 0.65 0 0 1 5 0 3 limited 1 0 1 22 4 +female 0.72 0.65 1 0 0 1 2 0 not limited 0 0 0 0 3 +female 0.72 0.65 1 0 0 1 14 0 not limited 0 0 1 22 1 +female 0.72 0.65 1 0 0 1 0 0 not limited 0 1 0 0 2 +female 0.72 0.65 1 0 0 2 0 3 otherwise 0 1 0 0 3 +female 0.72 0.65 1 0 0 2 0 2 otherwise 0 0 0 0 1 +female 0.72 0.65 1 0 0 3 0 0 not limited 1 1 0 0 3 +female 0.72 0.65 1 0 0 4 0 9 not limited 0 0 1 11 5 +female 0.72 0.65 1 0 0 5 0 3 not limited 0 0 0 0 3 +female 0.72 0.75 0 0 1 1 0 1 not limited 0 0 0 0 1 +female 0.72 0.75 1 0 0 0 0 0 otherwise 1 0 0 0 2 +female 0.72 0.75 1 0 0 0 0 0 not limited 0 0 0 0 2 +female 0.72 0.75 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.72 0.75 1 0 0 1 0 1 not limited 1 0 0 0 2 +female 0.72 0.75 1 0 0 1 0 0 not limited 0 1 0 0 4 +female 0.72 0.75 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.72 0.75 1 0 0 1 0 0 not limited 0 0 1 22 0 +female 0.72 0.75 1 0 0 1 0 0 not limited 0 0 0 0 2 +female 0.72 0.75 1 0 0 1 0 1 not limited 0 1 0 0 0 +female 0.72 0.75 1 0 0 4 0 1 not limited 0 0 0 0 4 +female 0.72 0.9 1 0 0 0 0 1 otherwise 0 0 0 0 0 +female 0.72 0.9 1 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 0.9 1 0 0 1 0 0 not limited 0 2 0 0 1 +female 0.72 0.9 1 0 0 2 14 4 limited 1 9 2 7 3 +female 0.72 0.9 1 0 0 2 0 1 limited 0 1 0 0 3 +female 0.72 0.9 1 0 0 3 0 0 not limited 1 1 0 0 3 +female 0.72 0.9 1 0 0 3 0 0 otherwise 0 0 0 0 1 +female 0.72 0.9 1 0 0 5 0 0 not limited 1 0 0 0 3 +female 0.72 1.1 1 0 0 0 0 0 not limited 0 0 0 0 3 +female 0.72 1.1 1 0 0 0 0 0 not limited 0 0 0 0 1 +female 0.72 1.1 1 0 0 0 0 0 otherwise 0 0 0 0 1 +female 0.72 1.1 1 0 0 2 0 0 not limited 0 0 0 0 0 +female 0.72 1.3 0 0 0 0 0 0 otherwise 0 0 0 0 0 +female 0.72 1.3 0 0 1 2 0 0 not limited 0 0 0 0 0 +female 0.72 1.3 1 0 0 0 0 0 otherwise 0 1 0 0 1 +female 0.72 1.5 1 0 0 2 0 0 not limited 0 0 1 11 1 diff --git a/man/mc_influence.Rd b/man/mc_influence.Rd deleted file mode 100644 index 2886d739c81d4688bc55658ce53b94a54d5689e3..0000000000000000000000000000000000000000 --- a/man/mc_influence.Rd +++ /dev/null @@ -1,23 +0,0 @@ -% Generated by roxygen2 (4.1.1): do not edit by hand -% Please edit documentation in R/mc_influence.R -\name{mc_influence} -\alias{mc_influence} -\title{Influence measures} -\usage{ -mc_influence(object, id) -} -\arguments{ -\item{object}{An object of mcglm class.} - -\item{id}{a vector which identifies the clusters. The length and order of id should be the -same as the number of observations. Data are assumed to be sorted so that observations on a cluster -are contiguous rows for all entities in the formula.} -} -\value{ -A matrix. Note that the function assumes that the data are in the correct order. -} -\description{ -Compute influence measures for multivariate covariance generalized linear models. -Leverage, DFBETA and Cook's distance for unit sample and observations. -} - diff --git a/man/mc_qll.Rd b/man/mc_qll.Rd deleted file mode 100644 index 7de1f9f44baf290c559806a32271f49e2ab9befc..0000000000000000000000000000000000000000 --- a/man/mc_qll.Rd +++ /dev/null @@ -1,24 +0,0 @@ -% Generated by roxygen2 (4.1.1): do not edit by hand -% Please edit documentation in R/mc_qll.R -\name{mc_qll} -\alias{mc_qll} -\title{Compute quasi-likelihood function.} -\usage{ -mc_qll(y, mu, variance, power) -} -\arguments{ -\item{y}{A vector of observed values.} - -\item{mu}{A vector of fitted values.} - -\item{variance}{Variance function (constant, tweedie, poisson_tweedie, binomial).} - -\item{power}{Power parameter value.} -} -\value{ -The quasi-likelihood values. -} -\description{ -Given a variance function mc_qll function computes the quasi-likelihood values. -} - diff --git a/man/mc_rw1.Rd b/man/mc_rw1.Rd deleted file mode 100644 index 4c7a136378607fbee49b92e3977198fcbc826240..0000000000000000000000000000000000000000 --- a/man/mc_rw1.Rd +++ /dev/null @@ -1,20 +0,0 @@ -% Generated by roxygen2 (4.1.1): do not edit by hand -% Please edit documentation in R/mc_rw1.R -\name{mc_rw1} -\alias{mc_rw1} -\title{Random walk first order model} -\usage{ -mc_rw1(n_time, intrinsic = TRUE) -} -\arguments{ -\item{n_time}{Number observations time.} - -\item{intrinsic}{Logical indicating if the models is intrinsic (rho = 1) or not.} -} -\value{ -A matrix. Note that the function assumes that the data are in the correct order. -} -\description{ -Builds a random walk first order model matrix. -} - diff --git a/man/mc_rw2.Rd b/man/mc_rw2.Rd deleted file mode 100644 index b8c7ee1500e87c1ae627518c1296f2619a871872..0000000000000000000000000000000000000000 --- a/man/mc_rw2.Rd +++ /dev/null @@ -1,20 +0,0 @@ -% Generated by roxygen2 (4.1.1): do not edit by hand -% Please edit documentation in R/mc_rw2.R -\name{mc_rw2} -\alias{mc_rw2} -\title{Random walk second order model} -\usage{ -mc_rw2(n_time, intrinsic = TRUE) -} -\arguments{ -\item{n_time}{Number observations time.} - -\item{intrinsic}{Logical indicating if the models is intrinsic (rho = 1) or not.} -} -\value{ -A matrix. Note that the function assumes that the data are in the correct order. -} -\description{ -Builds a random walk second order model matrix. -} - diff --git a/man/mc_sic.Rd b/man/mc_sic.Rd new file mode 100644 index 0000000000000000000000000000000000000000..e88fc662558ee3878db5ef2caf0fbc8831cacb60 --- /dev/null +++ b/man/mc_sic.Rd @@ -0,0 +1,28 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/mc_sic.R +\name{mc_sic} +\alias{mc_sic} +\title{Compute the score information criterion (SIC) for multivariate +covariance generalized linear models.} +\usage{ +mc_sic(object, scope, data, response, penalty = 2) +} +\arguments{ +\item{object}{an object representing a model of \code{mcglm} class.} + +\item{scope}{a vector containing all covariate names to be tested.} + +\item{data}{data frame containing the all variables envolved} + +\item{response}{Indicate for which response variable SIC is computed.} + +\item{penalty}{penalty term (default = 2).} +} +\value{ +A data frame with SIC values for each covariate in the scope +argument. +} +\description{ +Compute the SIC for McGLMS. +} + diff --git a/man/mc_sic_covariance.Rd b/man/mc_sic_covariance.Rd new file mode 100644 index 0000000000000000000000000000000000000000..01fab7dcea81b0e6fc4d091c1cdf151d63396ac5 --- /dev/null +++ b/man/mc_sic_covariance.Rd @@ -0,0 +1,31 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/mc_sic_covariance.R +\name{mc_sic_covariance} +\alias{mc_sic_covariance} +\title{Compute the score information criterion (SIC) for multivariate +covariance generalized linear models.} +\usage{ +mc_sic_covariance(object, scope, idx, data, penalty = 2, response) +} +\arguments{ +\item{object}{an object representing a model of \code{mcglm} class.} + +\item{scope}{a list of matrices to be tested in the matrix linear +predictor.} + +\item{idx}{Indicator of matrices belong to the same effect.} + +\item{data}{data frame containing all variables envolved in the model.} + +\item{penalty}{penalty term (default = 2).} + +\item{response}{Indicate for which response variable SIC is computed.} +} +\value{ +A data frame with SIC values for each matrix in the scope +argument. +} +\description{ +Compute SIC for covariance parameters in McGLMS. +} + diff --git a/man/mc_unstructured.Rd b/man/mc_unstructured.Rd deleted file mode 100644 index 52e12987bc6a47f591ad7751770d43f3465a34e4..0000000000000000000000000000000000000000 --- a/man/mc_unstructured.Rd +++ /dev/null @@ -1,18 +0,0 @@ -% Generated by roxygen2 (4.1.1): do not edit by hand -% Please edit documentation in R/mc_unstructured.R -\name{mc_unstructured} -\alias{mc_unstructured} -\title{Unstructured model} -\usage{ -mc_unstructured(n_time) -} -\arguments{ -\item{n_time}{Number of observations per unit sample.} -} -\value{ -A matrix. Note that the function assumes that the data are in the correct order. -} -\description{ -Builds a unstructured model matrix. -} - diff --git a/man/qic.mcglm.Rd b/man/qic.mcglm.Rd deleted file mode 100644 index 02235c1afd4b475b93b3badb8ff5f0aed4dd594f..0000000000000000000000000000000000000000 --- a/man/qic.mcglm.Rd +++ /dev/null @@ -1,25 +0,0 @@ -% Generated by roxygen2 (4.1.1): do not edit by hand -% Please edit documentation in R/mc_qic.R -\name{qic.mcglm} -\alias{qic.mcglm} -\title{Compute Quasi Information Criterion (QIC) for McGLMs.} -\usage{ -qic.mcglm(object, object.iid) -} -\arguments{ -\item{object}{An object of \code{mcglm} class.} - -\item{object.iid}{An object of \code{mcglm} class contained the model - fitted using independent covariance structure.} -} -\value{ -The QIC value. -} -\description{ -\code{qic.mcglm} is a function which computes the QIC - for McGLMs. -} -\author{ -Wagner Hugo Bonat, \email{wbonat@ufpr.br} -} -