diff --git a/R/mc_build_sigma.R b/R/mc_build_sigma.R index d46aa5e5b8fe853f399c2fd393941ed2eb5c7cde..3e858d92821e8605673989574f4cf881220365e7 100644 --- a/R/mc_build_sigma.R +++ b/R/mc_build_sigma.R @@ -30,7 +30,9 @@ mc_build_sigma <- function(mu, Ntrial = 1, tau, power, Z, sparse, variance, Omega <- mc_build_omega(tau = tau, Z = Z, covariance_link = covariance, sparse = sparse) chol_Sigma <- chol(Omega$Omega) inv_chol_Sigma <- solve(chol_Sigma) - output <- list(Sigma_chol = chol_Sigma, Sigma_chol_inv = inv_chol_Sigma, D_Sigma = Omega$D_Omega) + output <- list(Sigma_chol = chol_Sigma, + Sigma_chol_inv = inv_chol_Sigma, + D_Sigma = Omega$D_Omega) } if (covariance == "inverse") { inv_Sigma <- mc_build_omega(tau = tau, Z = Z, covariance_link = "inverse", sparse = sparse) diff --git a/R/mc_variance_function.R b/R/mc_variance_function.R index f6fb9a699fedf0468d230b2174689edbaf69a4ea..0d54ff4a0937c4d77cb8020cdca8f8ccdac42ec1 100644 --- a/R/mc_variance_function.R +++ b/R/mc_variance_function.R @@ -30,7 +30,8 @@ #' mc_variance_function(mu = mu$mu, power = c(2,1), Ntrial = 1, variance = 'binomialPQ', #' inverse = FALSE, derivative_power = TRUE, derivative_mu = TRUE) # Generic variance function --------------------------- -mc_variance_function <- function(mu, power, Ntrial, variance, inverse, derivative_power, derivative_mu) { +mc_variance_function <- function(mu, power, Ntrial, variance, inverse, + derivative_power, derivative_mu) { assert_that(is.logical(inverse)) assert_that(is.logical(derivative_power)) assert_that(is.logical(derivative_mu))