
Discrete Applied Mathematics 261 (2019) 52–62

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Dijkstra graphs✩

Lucila M.S. Bento b, Davidson R. Boccardo b, Raphael C.S. Machado c,d,
Flávio K. Miyazawa f, Vinícius G. Pereira de Sá a, Jayme L. Szwarcfiter a,e,*
a UFRJ—Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
b Clavis Information Security Group, Rio de Janeiro, Brazil
c INMETRO—Nation. Inst. of Metrology, Quality and Technology, Duque de Caxias, Brazil
d CEFET/RJ—Federal Center for Technological Education, Rio de Janeiro, Brazil
e UERJ—State University of Rio de Janeiro, Rio de Janeiro, Brazil
f UNICAMP—University of Campinas, Campinas, Brazil

a r t i c l e i n f o

Article history:

Received 10 February 2017

Accepted 26 July 2017

Available online 24 August 2017

Keywords:

Graph algorithms

Graph isomorphism

Reducibility

Structured programming

a b s t r a c t

We revisit a concept that has been central in some early stages of computer science, that of
structured programming: a set of rules that an algorithm must follow in order to acquire a
certain desirable structure. While much has been written about structured programming,
an important issue has been left unanswered: given an arbitrary program, describe an
algorithm to decide whether or not it is structured, that is, whether it conforms to the
stated principles of structured programming. We refer to a classical concept of structured
programming, as described by Dijkstra. By employing graph theoretic techniques, we
formulate an efficient algorithm for answering this question. First, we introduce the class
of graphs which correspond to structured programs, which we call Dijkstra Graphs. Then
we present a greedy O(n)-time algorithm for recognizing such graphs. Furthermore, we
describe an isomorphism algorithm for Dijkstra graphs, whose complexity is also linear in
the number of vertices of the graph.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Structured programming was one of the main topics in computer science in the years around 1970. It can be viewed as a
method for the development and description of algorithms and programs. Basically, it consists of a top-down formulation of
the algorithm, breaking it into blocks or modules. The blocks are stepwise refined, possibly generating new, smaller blocks,
until refinements no longer exist. The technique constrains the description of themodules to contain only three basic control
structures: sequence, selection and iteration. The first of them corresponds to sequential statements of the algorithm; the
second refers to comparisons leading to different outcomes; the last one corresponds to sets of actions performed repeatedly
in the algorithm.

One of the early papers about structured programming was the article by Dijkstra ‘‘Go-to statement considered
harmful’’ [5], which brought the idea that the unrestricted use of go-to statements is incompatible with well structured
algorithms. That paper was soon followed by a discussion in the literature about go-to’s, as in the papers by Knuth [13],
Knuth and Floyd [14] and Wulf [27]. Other classical papers are those by Dahl and Hoare [4] and Hoare [12], among others.

✩ This paper is dedicated to Pavol Hell, Jacek Blazewicz and Martine Labbé. Raphael C. S. Machado has been supported by CNPq and FAPERJ. Flávio K.

Miyazawa has been supported by FAPESP and CNPq. Vinícius G. Pereira de Sá and Jayme L. Szwarcfiter have been supported by CNPq, Brazil.

* Corresponding author at: UFRJ—Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

E-mail address: jayme@nce.ufrj.br (J.L. Szwarcfiter).

http://dx.doi.org/10.1016/j.dam.2017.07.033

0166-218X/© 2017 Elsevier B.V. All rights reserved.

L.M.S. Bento, D.R. Boccardo, R.C.S. Machado et al. / Discrete Applied Mathematics 261 (2019) 52–62 53

The basic ideas of structured programming appear in detail in an article by Dijkstra [6]. The concept has been also handled by
Wirth [26], among others. Kosaraju [16] describes the idea of reducibility among flowcharts. Moreover, [16] has introduced
and characterized the class ofD-charts, which in fact are graphs properly containing all thosewhich originate from structured
programming. Williams [24] also describes variations of different forms of structuredness, including those by Dijkstra, as
well as D-charts. The different forms of unstructuredness were described in papers by Williams [23] and McCabe [18]. The
conversion of a unstructured flow diagram into a structured one has been considered by Williams and Ossher [25], and
Oulsnam [19]. Formal aspects of structured programming include the papers by Böhm and Jacopini [2], Harel [8], and Kozen
and Tseng [17]. Amathematical theory formodeling structuredness, designed for flow graphs, in general, has been described
by Fenton, Whitty and Kaposi [7]. The actual influence of the concept of structured programming in the development of
algorithms for solving various problems in different areas occurred right from the start, either explicitly, as in the papers
by Henderson and Snow [11], and Knuth and Szwarcfiter [15], or implicitly as in the various graph algorithms by Tarjan,
e.g. [20,22].

A natural question regarding structured programming is to recognize whether a given program is structured. To our
knowledge, such a question has not been solved neither in the early stages of structured programming, nor later. This is the
main purpose of the present paper. We formulate an algorithm for recognizing whether a given program is structured,
according to Dijkstra’s model [6]. Note that the input comprises the binary code, not the source code. A well-known
representation that comes in handy is that of the (control) flow graph of a program. A maximal straight line in the program’s
instructions corresponds to a basic block, and is represented by a vertex in that graph. A directed edge AB (from the exit
of block A to the start of block B) represents the program flowing from A to B at runtime. Considering as input the control
flow graph of the program, the problem becomes graph-theoretic: given a flow graph, decide whether it has been produced
by a structured program. We employ a reducibility method, whose reduction operations iteratively obtain smaller graphs.
Reducibility methods of this kind have been applied in papers, as [16,21].

In this paper, we first define the class of graphs which correspond to structured programs. Such class has then been
named asDijkstra graphs. We describe a characterization that leads to a greedy O(n) time recognition algorithm for a Dijkstra
graph with n vertices. Among the potential applications of the proposed algorithm, we can mention software watermarking
through graphs [1,3]. Additionally, we formulate an isomorphism algorithm for the class of Dijkstra graphs. The method
consists of defining a convenient code for a graph, which consists of a string of integers. Such a code uniquely identifies the
graph, and it is shown that two Dijkstra graphs are isomorphic if and only if their codes coincide. The code itself has size
O(n) and the time complexity of the isomorphism algorithm is also O(n).

Some basic definitions and terminology are given in the next section. Section 3 defines the class of Dijkstra graphs, whose
recognition is described in Section 4. A method for verifying isomorphism of Dijkstra graphs is given in Section 5. Some
additional remarks, as well as a generalization of the class, form the last section.

2. Preliminaries

In this paper, all graphs are finite and directed. For a graph G, we denote its vertex and edge sets by V (G) and E(G),
respectively, with |V (G)| = n, |E(G)| = m. For v,w ∈ V (G), an edge from v to w is written as vw. We say vw is an out-edge

of v and an in-edge of w, with w an out-neighbor of v, and v an in-neighbor of w. We denote by N+
G (v) and N−

G (v) the sets of
out-neighbors and in-neighbors of v, respectively. We may drop the subscript when the graph is clear from the context. For
S ⊆ V , define N+(S) = ∪v∈SN

+(v). Also, we write N2+(v) meaning N+(N+(v)). For v,w ∈ V (G), v reachesw when there is a
path in G from v tow. A source of G is a vertex that reaches all other vertices in G, while a sink is one which reaches no vertex,
except itself. Denote by s(G) and t(G), respectively, a source and a sink of G. A (control) flow graph G is one which contains
a distinguished source s(G). A source–sink graph contains both a distinguished source s(G) and a distinguished sink t(G). A
trivial graph contains a single vertex.

A graph with no directed cycles is called acyclic. In an acyclic graph if there is a path from vertex v to vertex w, then v is
an ancestor of w, and the latter a descendant of v. Let G be a flow graph with source s(G), and C a cycle of G. The cycle C is
called single-entry if it contains a vertex v ∈ C that separates s(G) from the vertices of C \ {v}. A flow graph in which each of
its cycles is single-entry is called reducible. Reducible graphs were characterized by Hecht and Ullman [9,10], while efficient
recognition has been described by Tarjan [21].

In a depth-first search (DFS) of a directed graph, in each step a vertex is inserted in a stack, or removed from it. Every vertex
is inserted and removed from the stack exactly once. An edge vw ∈ E(G), such that v is inserted in the stack after w, and
before the removal ofw, is called a cycle edge. Let EC be the set of cycle edges of a graph, relative to some DFS. Clearly, G− EC
is acyclic. The following characterization is relevant for our purposes.

Theorem 2.1. [10,21] A flow graph G is reducible if and only if, for any depth-first search of G starting at s(G), the set of cycle

edges is invariant.

In a flow graph G, we may write DFS of G, as to mean a DFS of G starting at s(G). In addition, if G is reducible, we may
use the terms ancestor or descendant of G, as to mean ancestor or descendant of G − EC . A topological sort of a graph G is a
sequence v1, . . . , vn of its vertices, such that vivj ∈ E(G) implies i < j. Finally, write G1

∼= G2, to denote that graphs G1,G2

are isomorphic.

54 L.M.S. Bento, D.R. Boccardo, R.C.S. Machado et al. / Discrete Applied Mathematics 261 (2019) 52–62

Fig. 1. Statement graphs (a)–(d).

Fig. 2. Statement graphs (e)–(g).

3. The graphs of structured programming

In this section, we describe the graphs of structured programming. First, we introduce a family of graphs, following
Dijkstra’s description [6].

A statement graph is defined as being one of the following: (a) trivial graph; (b) sequence graph; (c) if graph; (d) if-then-else
graph; (e) p-case graph, p ≥ 3; (f) while graph; (g) repeat graph.

For our purposes, it is convenient to assign labels to the vertices of statement graphs as follows. Each vertex is either an
expansible vertex, labeled X , or a regular vertex, labeled R. See Figs. 1 and 2, where the statement graphs are depicted with the
corresponding vertex labels. All statement graphs are source–sink. If there is more than one candidate to be the source of a
statement graph, we choose always the one which appears as the topmost vertex in the corresponding figure. Then vertex
v denotes the source of the graph in each case of Figs. 1 and 2.

Let G be an unlabeled reducible graph, and H a subgraph of G, having source s(H) and sink t(H). We say H is closedwhen

• v ∈ V (H) \ s(H) ⇒ N−(v) ⊆ V (H);
• v ∈ V (H) \ t(H) ⇒ N+(v) ⊆ V (H); and
• vs(H) is a cycle edge⇒ v ∈ N+(s(H)).

Note that the while and repeat graphs, respectively, (f) and (g) of Fig. 2, are isomorphic when considered in an isolated
framework. However, this is not so in the context of flow reducible graphs, as observed in the lemma below.

Lemma 3.1. Let G be a flow reducible graph, containing both a while graph A and a repeat graph B, as induced subgraphs. Then
A and B are distinguishable subgraphs, even when there are no labels.

Proof. The cycle edge, which is an invariant for flow reducible graphs, can distinguish between the while and repeat graph.
In the while graph the source has an out-edge to the sink, while this is not so in the repeat graph. □

Let H be an induced subgraph of G. Say H is primewhen it is closed and isomorphic to some non-trivial statement graph.
Next, let G,H be two graphs, V (G) ∩ V (H) = ∅, H source–sink, v ∈ V (G). The expansion of v into a source–sink graph H

(Fig. 3) consists of replacing v by H , in G, such that N−
G (s(H)) := N−

G (v), N+
G (t(H)) := N+

G (v), and preserving the remaining
adjacencies.

Similarly, in the contraction of a source–sink graph H into a single vertex (Fig. 4), we identify (coalesce) the vertices of H
into the source s(H) of H , and remove all possible parallel edges and loops.

A Dijkstra graph (DG) is one whose vertices are labeled X or R, recursively defined as:

1. A trivial graph is a DG.
2. Any graph obtained from a DG by expanding some X-vertex into a statement graph is also a DG (See Fig. 5).

The above definition leads directly to a method for constructing Dijkstra graphs, as follows. Find a sequence of graphs
G0, . . . ,Gk, such that G0 is the trivial graph, and Gi is obtained from Gi−1, i ≥ 1, by expanding some X-vertex v of it into a
statement graph H .

It is relevant to note that the labels are used merely for constructing the graphs. For the actual recognition process, there
are no labels. We are interested in the problem of deciding whether a given unlabeled flow graph is actually a Dijkstra graph.

L.M.S. Bento, D.R. Boccardo, R.C.S. Machado et al. / Discrete Applied Mathematics 261 (2019) 52–62 55

Fig. 3. Expansion operation.

Fig. 4. Contraction operation.

Fig. 5. Obtaining a Dijkstra graph via vertex expansions.

4. Recognition of Dijkstra graphs

By hypothesis, we are given an arbitrary unlabeled flow graph G, and the aim is to decide whether or not G is a DG.

4.1. Basic lemmas

We describe some lemmas which are implicitly employed in the recognition process.

Lemma 4.1. If G is a Dijkstra graph, then

(i) G contains some prime subgraph;

(ii) G is a source–sink graph; and

(iii) G is reducible.

56 L.M.S. Bento, D.R. Boccardo, R.C.S. Machado et al. / Discrete Applied Mathematics 261 (2019) 52–62

Fig. 6. Independent primes.

Proof. By definition, there is a sequence of graphs G0, . . . ,Gk, where G0 is trivial, Gk = G and Gi is obtained from Gi−1

by expanding some X-vertex vi−1 ∈ V (Gi−1) into a statement graph Hi ⊆ Gi. Then no vertex vi ∈ V (Hi), except s(Hi)
has in-neighbors outside Hi, and also no vertex vi ∈ V (Hi), except t(Hi), has out-neighbors outside Hi. Furthermore, if Hi

contains any cycle then Hi is necessarily a while graph or a repeat graph. The latter implies that such a cycle is s(H)v, where
v ∈ N+(s(H)). Therefore Hi is prime in Gi meaning that (i) holds. To show (ii) and (iii), first observe that any statement graph
is single-source and reducible. Next, apply induction. For G0, there is nothing to prove. Assume it holds for Gi, i > 1. Let
vi−1 ∈ V (Gi−1) be the vertex that expanded into the subgraph Hi ⊆ Gi. Then the external neighborhoods of Hi coincide
with the neighborhoods of vi−1, respectively. Consequently, Gi is single-source. Now, let Ci be any cycle of Gi, if existing. If
Ci ∩ Hi = ∅ then Ci is single-entry, since Gi−1 is reducible. Otherwise, if Ci ⊂ V (Hi) the same is valid, since any statement
graph is reducible. Finally, if Ci ̸⊂ V (Hi), then vi−1 is contained in a single-entry cycle Ci−1 of Gi−1. Then Ci has been formed
by Ci−1, replacing vi−1 by a path contained in Hi. Since Ci−1 is single-entry, it follows that Ci must be so. □

Denote by H(G) the set of non-trivial prime graphs of G. Let H,H ′ ∈ H(G). Call H,H ′ independent when

• V (H) ∩ V (H ′) = ∅, or
• V (H) ∩ V (H ′) = {v}, where v = s(H) = t(H ′) or v = t(H) = s(H ′).

Lemma 4.2 (Prime Independency). If H,H ′ ∈ H(G) then H,H ′ are independent.

Proof. If V (H) ∩ V (H ′) = ∅ the lemma holds. Otherwise, let v ∈ V (H) ∩ V (H ′). The alternatives v = s(H1) = s(H2),
v = t(H1) = t(H2), v ̸= s(H1), t(H1) or v ̸= s(H2), t(H2) do not occur because they imply H1 or H2 not to be closed. Next, let
v1, v2 ∈ V (H1)∩V (H2), v1 ̸= v2. In this situation, examine the alternative where v1 = s(H1) = t(H2) and v2 = s(H2) = t(H1).
The latter implies that exactly one of H1 or H2, say H2, is a while graph or a repeat graph. Then there is a cycle edge ws(H1),
satisfying w ∈ N−(s(H1)) and w ∈ V (H2) \ {t(H2)}. Consequently, w ̸∈ N+(s(H1)), contradicting H1 to be closed. The only
remaining alternative is V (H1) ∩ V (H2) = {v}, with v = s(H1) = t(H2) or v = s(H2) = t(H1). Then H1,H2 are indeed
independent (see Fig. 6). □

For a graph G, denote by G ↓ H the graph obtained from G by contracting H . For v ∈ V (G), the image of v in G ↓ H ,
denoted IG↓H (v), is

IG↓H (v) =

{

v, if v ̸∈ V (H)
s(H), otherwise.

For V ′ ⊆ V (G), define the (subset) image of V ′ in G ↓ H , as IG↓H (V
′) = ∪v∈V ′ IG↓H (v). Similarly, for H ′ ⊆ G, the (subgraph)

image of H ′ in G ↓ H , denoted by IG↓H (H
′), is the subgraph induced in G ↓ H by the subset of vertices IG↓H (V (H ′)).

Let G be an arbitrary flow graph, H,H ′ ∈ H(G), H ̸= H ′.

Lemma 4.3 (Prime Preservation). If H,H ′ ∈ H(G), H ̸= H ′, then IG↓H (H
′) ∈ H(G ↓ H).

Proof. Let H,H ′ ∈ H(G), H ̸= H ′. By Lemma 4.2, H,H ′ are independent. If H,H ′ are disjoint the contraction of H does
not affect H ′, and the lemma holds. Otherwise, by the independence condition, it follows that V (H) ∩ V (H ′) = {v}, where
v = s(H) = t(H ′) or v = s(H ′) = t(H). Examine the first of these alternatives. By contracting H , all neighborhoods of
the vertices of IG↓H (H

′) remain unchanged, except that of IG↓H (s(H
′)), since its in-neighborhood becomes equal to N−

G (s(H)).
On the other hand, the contraction of H into v cannot introduce new cycles in H ′. Consequently, H ′ preserves in G ↓ H its
property of being a non-trivial and closed statement graph, moreover, prime. Finally, suppose v = s(H) = t(H ′). Again, the
neighborhoods of the vertices of IG↓H (H

′) are preserved, except possibly the out-neighborhoods of the vertices of IG↓H (t(H
′)),

which become N+
G (t(H)), after possibly removing self-loops. Consequently, IG↓H (H

′) ∈ H(G ↓ H). □

Lemma 4.4 (Commutative Law). If subgraphs H,H ′ ∈ H(G), it follows that

(G ↓ H) ↓ (IG↓H (H
′)) ∼= (G ↓ H ′) ↓ (IG↓H ′ (H)).

L.M.S. Bento, D.R. Boccardo, R.C.S. Machado et al. / Discrete Applied Mathematics 261 (2019) 52–62 57

Proof. Let A ∼= (G ↓ H) ↓ (IG↓H (H
′)) and B ∼= (G ↓ H ′) ↓ (IG↓H ′ (H)). By Lemma 4.2, H,H ′ are independent. First, suppose

H,H ′ are disjoint. Then IG↓H (H
′) = H ′ and IG↓H ′ (H) = H . It follows that, in both graphs A and B, the subgraphs H and H ′

are respectively replaced by a pair of non-adjacent vertices, whose in-neighborhoods are N−
G (s(H)) and N−

G (s(H ′)), and out-
neighborhoods N+

G (t(H)) and N+
G (t(H ′)), respectively. Then A = B. In the second alternatives, suppose H,H ′ are not disjoint.

Then V (H) ∩ V (H ′) = {v}, where v = s(H) = t(H ′), or v = t(H) = s(H ′). In both cases, and in both graphs A and B, the
subgraphsH andH ′ are contracted into a common vertexw.When v = s(H) = t(H ′), it followsN−

A (w) = N−
G (s(H ′)) = N−

B (w)
and N+

A (w) = N+
G (t(H)) = N+

B (w). Finally, when v = t(H) = s(H ′), we obtain a similar result. Consequently, A = B in any
situation. □

4.2. Contractile sequences

A sequence of graphs G0, . . . ,Gk is a contractile sequence for a graph G, when

• G ∼= G0, and
• Gi+1

∼= (Gi ↓ Hi), for some Hi ∈ H(Gi), i < k. Call Hi the contracting prime of Gi.

We say G0, . . . ,Gk ismaximalwhen H(Gk) = ∅. In particular, if Gk is the trivial graph then G0, . . . ,Gk is maximal.
Let G0, . . . ,Gk, be a contractile sequence of G, and Hj the contracting prime of Gj. That is, Gj+1

∼= (Gj ↓ Hj)), 0 ≤ j < k.
For H ′

j ⊆ Gj and q ≥ j, the iterated image of H ′
j in Gq is the subgraph IGq (H

′
j) of Gq, obtained by iteratively finding the image

IGj+1
(H ′

j) of H
′
j in Gj+1 = Gj ↓ Hj, and then the image IGj+2

(H ′
j) of IGj+1

(H ′
j) in Gj+2 = Gj+1 ↓ Hj+1, and so on until reaching the

image IGq (H
′
j) of IGq−1

(H ′
j) in Gq = Gq−1 ↓ Hq. That is IGq (H

′
j) can be defined recursively as

IGq (H
′
j) =

{

H ′
j , if q = j

IGq−1↓Hq−1
(IGq−1

(H ′
j)), otherwise.

Finally, we describe the required characterization.

Theorem 4.5. Let G be an arbitrary flow graph, with G0, . . . ,Gk and G′
0, . . . ,G

′
k′
two maximal contractile sequences of G. Then

Gk
∼= G′

k′
. Furthermore, k = k′.

Proof. Let G0, . . . ,Gk and G′
0, . . . ,G

′
k′
be two maximal contractile sequences, denoted respectively by S and S ′ of a graph G.

Let Hj and H ′
j be the contracting primes of Gj and G′

j , respectively. That is, Gj+1
∼= (Gj ↓ Hj) and G′

j+1
∼= (G′

j ↓ H ′
j), j < k and

j < k′. Without loss of generality, assume k ≤ k′. Let i be the least index, such that Gj
∼= G′

j , j ≤ i. Such an index exists since

G ∼= G0
∼= G′

0. If i = k then Gk
∼= G′

k′
, implying k = k′ and the theorem holds. Otherwise, i < k, Gi

∼= G′
i and Gi+1 ̸∼= G′

i+1.
Since Gi

∼= G′
i , it follows Hi ∈ H(G′

i). By Lemma 4.3, the iterated image Hiq , of Hi in G′
q is preserved as a prime subgraph for

all G′
q, as long as it does not become the contracting prime of G′

q−1. Since G′
k′
has no prime subgraph, it follows there exists

some index p, i < p < k′, such that G′
p+1

∼= (Gp ↓ Hip), where Hip represents the iterated image of Hi in G′
p. Let Hip−1

be the

iterated image ofHi in G′
p−1. Clearly,H

′
p−1,Hip−1

∈ H(G′
p−1), and by Lemma 4.2,H ′

p−1 andHip−1
are independent in G′

p−1. Since

((G′
p−1 ↓ H ′

p−1) ↓ Hip)
∼= G′

p+1, by Lemma 4.3, it follows that ((G′
p−1 ↓ Hip−1

) ↓ H ′′
p−1)

∼= G′
p+1, where H ′′

p−1 represents the

image of H ′
p−1 in G′

p−1 ↓ Hip−1
. Consequently, we have exchanged the positions in S ′ of two contracting primes, respectively

at indices p−1 and p, while preserving graphs G′
q, for q < p−1 and q > p. In particular, also preserving G′

p+1 and the graphs

lying after G′
p+1 in S ′, together with their contracting primes.

Finally, apply the above operation iteratively, until eventually the iterated image of Hi becomes the contracting prime
of G′

i . In the latter situation, the two sequences coincide up to index i + 1, while preserving the original graphs Gk and G′
k′
.

Again, applying iteratively such an argument, we eventually obtain that the two sequences turned coincident, preserving
the original graphs Gk and G′

k′
. Consequently, Gk

∼= G′
k′
and k = k′. □

4.3. The recognition algorithm

We start with a bound for the numberm of edges of Dijkstra graphs.

Lemma 4.6. Let G be a DG graph. Then m ≤ 2n− 2.

Proof. If G is a DG graph there is a sequence of graphs G0, . . . ,Gk, where G0 is the trivial graph, Gk
∼= G and Gi is obtained

from Gi−1 by expanding an X-vertex of Gi−1 into a statement graph. Apply induction on the number of expansions employed
in the construction of G. If k = 0 then G is a trivial graph, which satisfies the lemma. For k ≥ 0, Suppose the lemma true for
any graph G′ ∼= Gi, i < k. In particular, let Gi

∼= Gk−1. Let n
′ and m′ be the number of vertices and edges of G′, respectively.

Thenm′ ≤ 2n′ −2.We know that Gk has been obtained by expanding a vertex of Gk−1 into a statement graphH . Consider the
alternatives for H . If H is the trivial graph then n = n′ andm = m′. If H is a sequence graph then n = n′ + 1 andm = m′ + 1.
If H is an if graph, a while graph or repeat graph then n = n′ + 2 and m = m′ + 3. If H is an if then else graph or a p-case
graph then n = n′ + p + 1 and m = m′ + 2p, where p is the outdegree of the source of H . In any of these alternatives, a
simple calculation impliesm ≤ 2n− 2. □

58 L.M.S. Bento, D.R. Boccardo, R.C.S. Machado et al. / Discrete Applied Mathematics 261 (2019) 52–62

Fig. 7. Contracting H generates prime H’.

We describe an algorithm for recognizingDijkstra graphs based on Theorem4.5. LetG be a flow reducible graph. Construct
a contractile sequence G0, . . . ,Gk of G. That is, find iteratively a non-trivial prime subgraph Hi of the Gi and contract it, until
either the graph becomes trivial or otherwise no such subgraph exists. In the first case the graph is a DG, while in the second
it is not. Recall from Lemma 4.3 that whenever Gi contains another prime Hj ̸= Hi then the iterated image of Hj is preserved,
as long as it does not become the contracting prime. On the other hand, the contraction Gi ↓ Hi may generate a new prime
H ′

i , as shown in Fig. 7. However, the generation of new primes obeys a rule, described by the lemma below.

Lemma 4.7. Let G be a reducible graph, H ∈ H(G), H ′ ∈ H(G ↓ H) \H(G). Then s(H) is a proper descendant of s(H ′) in G ↓ H.

Let G be a reducible graph, G0, . . . ,Gk a contractile sequence C of G, and Hi the contracting prime of Gi, 0 ≤ i < k. Say
that C is a bottom-up sequence of Gwhen s(Hi) is not a descendant of s(H), for any prime H ̸= Hi of Gi.

The recognition algorithm then becomes as follows. Let G be a reducible graph. Traverse G in a bottom-up order.
Iteratively, find a lowest vertex v of G, s.t. v is the source of a prime subgraph H of G. Then contract H . Stop when no primes
exist any longer.

A complete description of the algorithm is then detailed. The algorithm answers YES or NO, according to respectively G

is a Dijkstra graph or not.

Algorithm 1: Dijkstra graphs recognition algorithm

1 G, arbitrary flow graph (no labels)
2 Count the numberm of edges of G, stopping counting ifm reached 2n− 1.
3 Ifm > 2n− 2 then return NO
4 EC , set of cycle edges of a DFS of G, starting at s(G)
5 v1, . . . , vn, topological sorting of G− EC
6 i := n

7 while i ≥ 1 do

8 if G is the trivial graph
9 then return YES

10 if vi is the source of a prime subgraph H of G
11 then G := G ↓ H

12 i := i− 1
13 return NO

The correctness of Algorithm 1 follows basically from Theorem 4.5 and Lemma 4.7. However, the latter relies on the
fact that G is a reducible graph, whereas the input to Algorithm 1 is an arbitrary graph, and no explicit step for recognizing
whether G is a reducible graph is performed. The purpose was to avoid such a previous recognition, whose complexity is not
linear. The lemma below justifies it.

Lemma 4.8. Let G be an arbitrary flow graph input to Algorithm 1. If G is not a reducible graph then the algorithmwould correctly

answer NO.

Proof. If G is not a reducible graph let EC be the set of cycle edges, relative to some DFS starting at s(G). Then G contains
some cycle C , such that w does not separate s(G) from v, where vw ∈ EC is the cycle edge of C . Without loss of generality,
consider the innermost of these cycles. The only way in which the edge vw, or any of its possible images, can be contracted
is in the context of a while or repeat prime subgraph H , in which the cycle would be contracted into vertex w, or a possible
iterated image of it. However there is no possibility for H to be identified as such, because the edge entering the cycle from
outside prevents the subgraph to be closed. Consequently, the algorithm necessarily would answer NO. □

As for the complexity, first observe that to decide whether the graph contains a non-trivial prime subgraphwhose source
is a given vertex v ∈ V (G), we need O|(N+(v))| steps. Therefore, when considering all vertices of G we require O(m) time.
There can be O(n) prime subgraphs altogether, and each time some prime H is identified, it is contracted. The size of the

L.M.S. Bento, D.R. Boccardo, R.C.S. Machado et al. / Discrete Applied Mathematics 261 (2019) 52–62 59

Table 1

Statement graph types and codes C(H) of prime subgraphs H .

Statement graphs H Type(H) C(H), v = s(H)

trivial 1

sequence 2 2 ∥ C(N+(v))

if-then 3 3∥C(N+(v) \ N+2(v))∥C(N+2(v))

while 4 4∥C(N+(v) ∩ N−(v))∥C(N+(v) \ N−(v))

repeat 5 5∥C(N+(v))∥C(N+2(v) \ {v})

if-then-else 6 6∥lex(C(N+(v)))∥C(N+2(v))

p-case p+ 4 p+ 4∥lex(C(N+(v)))∥C(N+2(v))

graph decreases by |E(H)|. The number of steps required to contract a prime H is O|E(H)|. If an edge is contracted it is not
considered again in the process. Hence each edge is examined at most a constant number of times during the entire process.
Finding a topological sorting of a graph can be done in O(m). Thus, the time complexity is O(m), that is, O(n), by Lemma 4.6.

5. Isomorphism of Dijkstra graphs

In this section, we describe a linear time algorithm for the isomorphism of Dijkstra graphs.
Given a Dijkstra graph G, define a code C(G) for G, s.t. for any two Dijkstra graphs G1,G2, G1

∼= G2 if and only if
C(G1) = C(G2).

As in the recognition algorithm, the codes are obtained by constructing a bottom-up contractile sequence of each graph.
The codes consist of (linear) strings and refer explicitly to the statement graphs having source v as depicted in Figs. 1 and 2.
The string C(G) that will be coding G is constructed over an alphabet whose symbols belong to the set {1, . . . ,∆+(G) + 4},
where∆+(G) is the maximum out-neighborhood size of G. Let, A, B be a pair of strings. Denote by A ∥ B the string formed by
A, immediately followed by B.

We assign an integer, named type(H), for each statement graph H , a code C(v) for each vertex v ∈ V (G), and a code C(H)
for each prime subgraph H of a bottom-up contractile sequence of G. The code C(G) of graph G is defined as equal to C(s(G)).
For a subset V ′ ⊆ V (G), the code C(V ′) of V ′ is the set of strings C(V ′) = {C(vi)|vi ∈ V ′}. Write lex(C(V ′)) = C(v1)∥ · · · ∥C(vr)
whenever V ′ = {v1, . . . , vr} and C(vi) is lexicographically not greater than C(vi+1).

The types of the statement graphs are shown in the second column of Table 1. For a vertex v ∈ V (G), the code C(v)
is initially set to 1. Subsequently, if v becomes the source of a prime graph H , the string C(v) is updated by assigning
C(v) := C(v) ∥ C(H), where C(H) is given by the third column of the table. In fact it corresponds to the expansion of v.
A possible expansion of some vertex w ̸= v contained in H would imply in a new update of C(v), and so iteratively.

5.1. The isomorphism algorithm

Let G be a DG. Algorithm 2 constructs the code C(G) for G.

Algorithm 2: Dijkstra graphs isomorphism algorithm

1 G, DG; EC , set of cycle edges of G
2 Find a topological sorting v1, . . . , vn of G− EC
3 for i = n, n− 1, . . . , 1 do

4 C(vi) := 1
5 if vi is the source of a prime subgraph H then

6 C(vi) := C(vi)||

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2||C(N+(vi)), if H is a sequence graph;

3||C(N+(vi) \ N+2(vi))||C(N
+2(vi)),

if H is an if-then graph;

4||C(N+(vi) ∩ N−(vi))||C(N
+(vi) \ N−(vi)),

if H is a while graph,

5||C(N+(vi))||C(N
+2(vi) \ {vi}),

if H is a repeat graph;

6||lex(C(N+(vi)))||C(N
+2(vi)),
if H is an if-then-else graph.

p+ 4||lex(C(N+(vi)))||C(N
+2(vi)),

if H is a p-case graph.

C(G) := C(v1)

As an example, we determine the code of the DG of Fig. 8. The codes of all vertices are initially set to 1. Using a bottom-up
sequence, the following vertices vi would be iteratively chosen as sources of primes, leading to codes C(vi):
source: v10 ⇒ C(v10) := 12 ∥ C(v14) = 121
source: v9 ⇒ C(v9) := 16∥lex(C(v11), C(v12))∥C(v13) = 16111
source: v4 ⇒ C(v4) := 12 ∥ C(v9) = 1216111

60 L.M.S. Bento, D.R. Boccardo, R.C.S. Machado et al. / Discrete Applied Mathematics 261 (2019) 52–62

Fig. 8. Example for isomorphism algorithm.

source: v6 ⇒ C(v6) := 12 ∥ C(v7) = 121
source: v3 ⇒ C(v3) := 13∥C(v6)∥C(v8) = 131211
source: v2 ⇒ C(v2) := 14∥C(v4)∥C(v5) = 1412161111
source: v1 ⇒ C(v1) := 16∥lex(C(v2), C(v3))∥C(v10) = 161312111412161111121

Finally, C(G) := C(v1) = 161312111412161111121

5.2. Correctness and complexity

Theorem 5.1. Let G,G′ be Dijkstra graphs, and C(G), C(G′) their codes, respectively. Then G,G′ are isomorphic if and only if

C(G) = C(G′).

Proof. First, consider thatG,G′ are isomorphic.We show that it implies C(G) = C(G′). Following the isomorphism algorithm,
observe that the number of 1’s in the strings C(G), C(G′) represents the number of vertices of G,G′, respectively, whereas
each integer> 1 in the strings, represents the contraction of a prime subgraph. Furthermore, each prime subgraph H , which
is initially contained in the input graph G, corresponds in C(G), to a substring formed by the integer type(H) followed by one
1, if type(H) = 2; or two 1’s, if type(H) = 3; or three 1’s, if 4 ≤ type(H) ≤ 6; or type(H)+ 1 1’s, if type(H) > 6; respectively.
Clearly, the same holds for the graph G′ and its code C(G′). The proof is by induction on the number k of contractions needed
to reduce both G and G′ to a trivial vertex. By Theorem 4.5, k is invariant and applies for both graphs G and G′. If k = 0 then
both G and G′ are trivial graphs, and the theorem holds, since C(G) = C(G′) = 1. When k > 0, assume that if G− and G′

−

are isomorphic DG graphs which require less than k contractions for reduction then C(G−) = C(G′
−). Furthermore, assume

also by the induction hypothesis, that if v, v′ are vertices of G−,G
′
−, corresponding to 1’s at the same relative positions in

C(G) and C(G−), respectively, then v
′ = f (v), where f is the isomorphism function between G− and G′

−. Now, consider the
graphs G and G′. Choose a prime subgraph H of G, and let v = s(H). Let v′ = f (v) be a vertex of G′ corresponding to v by
the isomorphism. Since G ∼= G′, it follows that v′ is the source of a prime subgraph H ′ of G′. Moreover H ∼= H ′. Consider the
contractions G ↓ H and G′ ↓ H ′, leading to graphs G− and G′

−, respectively. Let C−(G) and C−(G
′) be the strings obtained

from C(G) and C(G′), respectively by contracting the substrings corresponding to H and H ′, as above. That is, all the 1’s of
C(H) and C(H ′) are compressed into the positions of v = s(H) and v

′ = s(H ′), respectively, while the integers type(H)
and type(H ′) become 1, maintaining their original positions. It follows that C(G−) = C−(G) and C(G′

−) = C−(G
′). By the

induction hypothesis C(G−) = C(G′
−) and the 1’s corresponding to v and v

′ lie in the same relative positions in the strings.
Consequently, by replacing the latter 1’s for the substrings which originally represented H and H ′, we conclude that indeed
C(G) = C(G′), and moreover the induction hypothesis is still verified. The converse is similar. □

Corollary 5.2. Let G be a DG. The following affirmatives hold.

1. There is a one-to-one correspondence between the 1’s of C(G) and vertices of G.

2. The code C(G) of G is unique and is a representation of G.

Finally, consider the complexity of the isomorphism algorithm.

Lemma 5.3. Let G be a Dijkstra graph, and C(G) its code. Then |C(G)| = n+ k ≤ 2n− 1, where n is the number of vertices of G

and k the number of contractions needed to reduce it to a trivial vertex.

Proof. The encoding C(G) consists of exactly n 1’s, together with elements of a multiset U ⊆ {2, 3, . . . ,∆+(G) + 4}. We
know that C(G) starts and ends with an 1, and it contains no two consecutive elements of U . Therefore C(G) ≤ 2n− 1. When
G consists of the induced path Pn, it follows |C(Pn)| = 2n− 1, attaining the bound. □

L.M.S. Bento, D.R. Boccardo, R.C.S. Machado et al. / Discrete Applied Mathematics 261 (2019) 52–62 61

Fig. 9. Generalized Dijkstra graphs.

Theorem 5.4. The isomorphism algorithm terminates within O(n) time.

Proof. Recall that m = O(n), by Lemma 4.6. The construction of a bottom-up contractile sequence requires O(n) steps. For

each v ∈ V (G), following the isomorphism algorithm, C(v) can be constructed in time |C(v)|. We remark that lexicographic

ordering takes linear time on the total length of the strings to be sorted. It follows that the algorithm requires no more than

O(n) time to construct the code C(G) of G. □

6. Conclusions

The analysis of control flow graphs and different forms of structuring have been considered in various papers. To our

knowledge, no full characterization and no recognition algorithm for control flow graphs of structured programs have been

described before. There are some related classes for which characterizations and efficient recognition algorithms do exist,

e.g. the classes of reducible graphs and D-charts. However, both contain and are much larger than Dijkstra graphs.

An important question solved in this paper is that of recognizing whether two control flow graphs (of structured

programs) are syntactically equivalent, i.e., isomorphic. Such question fits in the area of code similarity analysis, with

applications in clone detection, plagiarism and software forensics.

Since the establishment of structured programming, some new statements have been proposed to add to the original

structures which forms the classical structured programming, enlarging the collection of allowed statements. Some of such

relevant statements are depicted in Fig. 9.

(a) break-while: Allows an early exit from a while statement;

(b) continue-while: Allows a while statement to proceed, after its original termination;

(c) break-repeat: Allows an early exit from a repeat statement;

(d) continue-repeat: Allows a repeat statement to proceed, after its original termination;

(e) divergent-if-then-else: A selection statement, similar to the standard if-then-else, except that the comparisons do not

converge afterwords to a same point, but lead to disjoint structures. Note that the corresponding graph has no longer

a (unique) sink.

In fact, the inclusion of some of the above additional control blocks into structured programming has been already

predicted in some papers, as [13]. The basic ideas and techniques described in the present work can be generalized, so

as to efficiently recognize graphs that incorporate the above statements, in addition to those of Dijkstra graphs. Similarly,

for the isomorphism algorithm.

Acknowledgments

The authors are grateful to Victor Campos for the helpful discussions and comments during the French-Brazilian

Workshop of Graphs and Optimizations, in Redonda, CE, Brazil, 2016. He pointed out the possibility of decreasing the

complexity of a previous version of the recognition algorithm from O(n2) to O(n).

62 L.M.S. Bento, D.R. Boccardo, R.C.S. Machado et al. / Discrete Applied Mathematics 261 (2019) 52–62

References

[1] L.M.S. Bento, D. Boccardo, R.C.S. Machado, V.G. Pereira de Sá, J.L. Szwarcfiter, Towards a Provably Resilient Scheme for Graph-Based Watermarking,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 50–63.

[2] C. Böhm, G. Jacopini, Flow diagrams, turing machines and languages with only two formation rules, Commun. ACM 9 (1966) 366–371.

[3] C. Collberg, S. Kobourov, E. Carter, C. Thomborson, Error-correcting graphs for software watermarking, Lecture Notes in Comput. Sci. 2880 (2003)

156–167.

[4] O.-J. Dahl, C.A.R. Hoare, Structured Programming, Academic Press Ltd, London, UK, UK, 1972, pp. 175–220.

[5] E.W. Dijkstra, Letters to the editor: Go to statement considered harmful, Commun. ACM 11 (1968) 147–148.

[6] E.W. Dijkstra, Structured Programming, Academic Press Ltd, London, UK, UK, 1972, pp. 1–82.

[7] N. Fenton, R. Whitty, A. Kaposi, A generalised mathematical theory of structured programming, Theoret. Comput. Sci. 36 (1985) 145–171.

[8] D. Harel, On folk theorems, Commun. ACM 23 (1980) 379–389.

[9] M.S. Hecht, J.D. Ullman, Flow graph reducibility, in: Proceedings of the Fourth Annual ACM Symposium on Theory of Computing, STOC ’72, ACM, New

York, NY, USA, 1972, pp. 238–250.

[10] M.S. Hecht, J.D. Ullman, Characterizations of reducible flow graphs, J. ACM 21 (1974) 367–375.

[11] P. Henderson, R. Snowdon, An experiment in structured programming, BIT 12 (1972) 38–53.

[12] C.A.R. Hoare, Structured Programming, Academic Press Ltd, London, UK, UK, 1972, pp. 83–174.

[13] D.E. Knuth, Structured programming with go to statements, ACM Comput. Surv. 6 (1974) 261–301.

[14] D.E. Knuth, R.W. Floyd, Notes on avoiding ‘‘go to’’ statements, Inform. Process. Lett. 1 (1971) 23–31.

[15] D.E. Knuth, J.L. Szwarcfiter, A structured program to generate all topological sorting arrangements, Inform. Process. Lett. 2 (1974) 153–157.

[16] S.R. Kosaraju, Analysis of structured programs, J. Comput. System Sci. 9 (1974) 232–255.

[17] D. Kozen, W.-L.D. Tseng, The Böhm–Jacopini theorem is false, propositionally, in: P. Audebaud, C. Paulin-Mohring (Eds.), Mathematics of Program

Construction: 9th International Conference,MPC 2008,Marseille, France, July 15–18, 2008 Proceedings, Springer, Berlin Heidelberg, Berlin, Heidelberg,

2008, pp. 177–192.

[18] T.J. McCabe, A complexity measure, in: Proceedings of the 2nd International Conference on Software Engineering, ICSE ’76, IEEE Computer Society

Press, Los Alamitos, CA, USA, 1976, p. 407.

[19] G. Oulsnam, Unravelling unstructured programs, Comput. J. 25 (1982) 379–387.

[20] R. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146–160.

[21] R. Tarjan, Testing flow graph reducibility, in: Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, STOC ’73, ACM, New York, NY,

USA, 1973, pp. 96–107.

[22] R. Tarjan, Finding dominators in directed graphs, SIAM J. Comput. 3 (1974) 62–89.

[23] M.H. Williams, Generating structured flow diagrams: the nature of unstructuredness, Comput. J. 20 (1977) 45–50.

[24] M.H. Williams, Flowchart schemata and the problem of nomenclature, Comput. J. 26 (1983) 270–276.

[25] M.H. Williams, H.L. Ossher, Conversion of unstructured flow diagrams to structured form, Comput. J. 21 (1978) 101–107.

[26] N. Wirth, Program Development By Stepwise Refinement, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 149–169.

[27] W.A. Wulf, A case against the goto, in: Proceedings of the ACM Annual Conference - Vol. 2, ACM ’72, ACM, New York, NY, USA, 1972, pp. 791–797.

