diff --git a/.ipynb_checkpoints/distCalc-checkpoint.ipynb b/.ipynb_checkpoints/distCalc-checkpoint.ipynb index 9d3908717cae5e192e84bbb7a994a32899f54e7b..8ecafaf9ed9832954cf1c059ba30ca351c90d2db 100644 --- a/.ipynb_checkpoints/distCalc-checkpoint.ipynb +++ b/.ipynb_checkpoints/distCalc-checkpoint.ipynb @@ -1,8 +1,26 @@ { "cells": [ + { + "cell_type": "markdown", + "id": "ef5cb5f9-4c96-4c02-b8f9-6e233af4437b", + "metadata": {}, + "source": [ + "# Schema Evolution analysis\n", + "\n", + "The goal of this notebook is to analyze the results of the statistical methods used on the PDE Dataset columns and verify if it is possible to detect Schema Evolution from them. Three situations will be analyzed: columns that received data (matched columns), columns that didn't receive data (empty columns), and new information added (new columns)." + ] + }, + { + "cell_type": "markdown", + "id": "655a12e4-babc-4a42-a3d3-a93d84269684", + "metadata": {}, + "source": [ + "## 1. Define the DistCalc class to help store the analyzed data" + ] + }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "id": "2c81bc78-04e0-4bad-83ef-380cf3be1610", "metadata": { "tags": [] @@ -15,7 +33,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 134, "id": "af419e44-d6ef-41f7-970c-78c316aeb712", "metadata": { "tags": [] @@ -40,7 +58,6 @@ " self.stat_ks_empty = []\n", " self.stat_t_empty = []\n", " self.stat_cohend_empty = []\n", - " \n", " self.stat_f_top3 = []\n", " self.stat_ks_top3 = []\n", " self.stat_t_top3 = []\n", @@ -57,7 +74,6 @@ " self.stat_ks_empty_top3 = []\n", " self.stat_t_empty_top3 = []\n", " self.stat_cohend_empty_top3 = []\n", - " \n", " self.years = []\n", " \n", " @property\n", @@ -95,45 +111,51 @@ " @property\n", " def get_years(self):\n", " return self.years\n", - " \n", - " def calc(self, df, stat_column, threshold):\n", + "\n", + " # Calculates the most likely new column (Top1) to match each existing column in PDE Dataset along the years\n", + " def calc(self, df, stat_column, stat_method, threshold, threshGreater=True):\n", " anos = df.ano_coluna1.unique()\n", " self.years = np.union1d(self.years, anos)\n", "\n", - " # Itera sobre todos os anos\n", + " # Iterate over the years\n", " for ano in anos:\n", - " # Constroi dataframe do ano\n", + " # Build the year dataframe\n", " ano_df = df[df.ano_coluna1 == ano]\n", "\n", - " # Estruturas\n", - " base_columns = ano_df.coluna1.unique() # Colunas que ja existiam na base\n", - " new_columns = ano_df.coluna2.unique() # Colunas do próximo ano\n", - " true_new_columns = np.setdiff1d(new_columns, base_columns) # Colunas que nao existiam na base\n", - " base_empty_columns = np.setdiff1d(base_columns, new_columns) # Colunas da base que nao receberam dados\n", - " all_columns = np.union1d(base_columns, new_columns) # Todas as colunas possiveis\n", - " # Alterar para um dicionario\n", - " prev_col = [] # Colunas da base para match\n", - " next_col = [] # Colunas do proximo ano para match\n", + " # Structure\n", + " base_columns = ano_df.coluna1.unique() # Existing PDE columns (base columns) \n", + " new_columns = ano_df.coluna2.unique() # New columns information\n", + " true_new_columns = np.setdiff1d(new_columns, base_columns) # Columns that didn't exist in PDE\n", + " base_empty_columns = np.setdiff1d(base_columns, new_columns) # Columns that didn't receive data\n", + " all_columns = np.union1d(base_columns, new_columns) # All the columns\n", + " prev_col = [] # Support array for columns match (base columns)\n", + " next_col = [] # Support array for columns match (new columns)\n", "\n", - " # Itera sobre o dataframe\n", + " # Iterate over the year dataframe\n", " for index, row in ano_df.iterrows():\n", - " # Ignora colunas ja selecionadas\n", + " # Ignore already selected columns\n", " if row['coluna1'] in prev_col or row['coluna2'] in next_col:\n", " continue\n", - " # Testa treshold\n", - " if row[stat_column] > threshold:\n", - " break\n", + " # Test threshold\n", + " if(threshGreater):\n", + " if row[stat_column] < threshold:\n", + " break\n", + " else:\n", + " if row[stat_column] > threshold:\n", + " break\n", "\n", - " # Adiciona nas listas\n", + " # Append the matched columns in the support arrays\n", " prev_col.append(row['coluna1'])\n", " next_col.append(row['coluna2'])\n", "\n", - " all_match_columns = np.union1d(prev_col, next_col)\n", - " not_match_columns = np.setdiff1d(all_columns, all_match_columns)\n", - " found_new_columns = np.setdiff1d(new_columns, next_col) # Colunas novas encontradas pelo algoritmo\n", - " no_data_columns = np.setdiff1d(base_columns, prev_col) # Colunas que não receram dados encontradas pelo algoritmo\n", + " # Define other important structure subsets\n", + " all_match_columns = np.union1d(prev_col, next_col) # All the matched columns the algorithm found\n", + " not_match_columns = np.setdiff1d(all_columns, all_match_columns) # All the matched columns the algorithm didn't find\n", + " found_new_columns = np.setdiff1d(new_columns, next_col) # All the new columns the algorithm found\n", + " no_data_columns = np.setdiff1d(base_columns, prev_col) # All the empty columns the algorithm didn't find\n", "\n", - " # ========== CALCULA ACURACIAS ========== \n", + " # ========== ACCURACY ========== \n", + " # Match columns accuracy\n", " acertos_p = 0\n", " acertos = 0\n", " for i in range(len(prev_col)):\n", @@ -141,7 +163,8 @@ " acertos_p += 1\n", " acuracia_matches = acertos_p / len(prev_col)\n", " acertos += acertos_p\n", - " \n", + "\n", + " # New columns accuracy\n", " acertos_p = 0\n", " unionNewColumns = np.union1d(found_new_columns, true_new_columns)\n", " for col in unionNewColumns:\n", @@ -152,7 +175,8 @@ " else:\n", " acuracia_new_columns = 1.0\n", " acertos += acertos_p \n", - " \n", + "\n", + " # Empty columns accuracy\n", " acertos_p = 0\n", " unionEmptyColumns = np.union1d(no_data_columns, base_empty_columns)\n", " for col in unionEmptyColumns:\n", @@ -163,77 +187,81 @@ " else:\n", " acuracia_empty_columns = 1.0\n", " acertos += acertos_p\n", - " \n", - " soma_acuracia = acuracia_matches * len(prev_col) + acuracia_new_columns * len(unionNewColumns) + acuracia_empty_columns * len(unionEmptyColumns)\n", - " # acuracia_total = soma_acuracia / (len(prev_col) + len(unionNewColumns) + len(unionEmptyColumns))\n", + "\n", + " # Total accuracy\n", " acuracia_total = acertos / len(all_columns)\n", " \n", - " # ========== ADICIONA ACURACIAS ==========\n", - " if(stat_column == 'estatistica_f'):\n", + " # ========== ADDING RESULTS ON CLASS VARIABLES ==========\n", + " if(stat_method == 'estatistica_f'):\n", " self.stat_f.append([ano, acuracia_total])\n", " self.stat_f_matches.append([ano, acuracia_matches])\n", " self.stat_f_new.append([ano, acuracia_new_columns])\n", " self.stat_f_empty.append([ano, acuracia_empty_columns])\n", - " elif(stat_column == 'estatistica_t'):\n", + " elif(stat_method == 'estatistica_t'):\n", " self.stat_t.append([ano, acuracia_total])\n", " self.stat_t_matches.append([ano, acuracia_matches])\n", " self.stat_t_new.append([ano, acuracia_new_columns])\n", " self.stat_t_empty.append([ano, acuracia_empty_columns])\n", - " elif(stat_column == 'estatistica_ks'):\n", + " elif(stat_method == 'estatistica_ks'):\n", " self.stat_ks.append([ano, acuracia_total])\n", " self.stat_ks_matches.append([ano, acuracia_matches])\n", " self.stat_ks_new.append([ano, acuracia_new_columns])\n", " self.stat_ks_empty.append([ano, acuracia_empty_columns])\n", - " elif(stat_column == 'estatistica_cohend'):\n", + " elif(stat_method == 'estatistica_cohend'):\n", " self.stat_cohend.append([ano, acuracia_total])\n", " self.stat_cohend_matches.append([ano, acuracia_matches])\n", " self.stat_cohend_new.append([ano, acuracia_new_columns])\n", " self.stat_cohend_empty.append([ano, acuracia_empty_columns])\n", "\n", - " \n", - " def calcTop3(self, df, stat_column, threshold):\n", + "\n", + " # Calculates the three most likely new columns (Top3) to match each existing column in PDE Dataset along the years\n", + " def calcTop3(self, df, stat_column, stat_method, threshold, threshGreater=True):\n", " anos = df.ano_coluna1.unique()\n", " \n", - " # Itera sobre todos os anos\n", + " # Iterate over the years\n", " for ano in anos:\n", - " # Constroi dataframe do ano\n", + " # Build the year dataframe\n", " ano_df = df[df.ano_coluna1 == ano]\n", "\n", - " # Estruturas\n", - " base_columns = ano_df.coluna1.unique() # Colunas que ja existiam na base\n", - " new_columns = ano_df.coluna2.unique() # Colunas do próximo ano\n", - " intersection_columns = np.intersect1d(base_columns, new_columns) # Colunas que possuem match\n", - " true_new_columns = np.setdiff1d(new_columns, base_columns) # Colunas que nao existiam na base\n", - " true_empty_columns = np.setdiff1d(base_columns, new_columns) # Colunas da base que nao receberam dados\n", - " all_columns = np.union1d(base_columns, new_columns) # Todas as colunas possiveis\n", - " resultados = [] # Resultados dos matches\n", - " prev_col = [] # Colunas da base que tiveram match\n", - " next_col = [] # Colunas do proximo ano que tiveram match\n", + " # Structure\n", + " base_columns = ano_df.coluna1.unique() # Existing PDE columns (base columns) \n", + " new_columns = ano_df.coluna2.unique() # New columns information\n", + " intersection_columns = np.intersect1d(base_columns, new_columns) # Columns that received data\n", + " true_new_columns = np.setdiff1d(new_columns, base_columns) # Columns that didn't exist in PDE\n", + " true_empty_columns = np.setdiff1d(base_columns, new_columns) # Columns that didn't receive data\n", + " all_columns = np.union1d(base_columns, new_columns) # All the columns\n", + " resultados = [] # Matches results\n", + " prev_col = [] # Support array for columns match (base columns)\n", + " next_col = [] # Support array for columns match (new columns)\n", "\n", - " # Encontra as top3 novas colunas que mais se encaixam com as colunas base\n", + " # Find the Top3 columns for each base column\n", " for col in base_columns:\n", - " top3 = ano_df[(ano_df.coluna1 == col) & (ano_df[stat_column] < threshold)].iloc[:3,:]\n", + " if(threshGreater):\n", + " top3 = ano_df[(ano_df.coluna1 == col) & (ano_df[stat_column] > threshold)].iloc[:3,:]\n", + " else:\n", + " top3 = ano_df[(ano_df.coluna1 == col) & (ano_df[stat_column] < threshold)].iloc[:3,:]\n", " resultados.append(top3.values)\n", "\n", - " # Preenche prev_col e next_col\n", + " # Fill the support arrays\n", " for res in resultados:\n", + " if(len(res) == 0):\n", + " continue\n", " for i in res:\n", " prev_col = np.union1d(prev_col, i[0])\n", " next_col = np.union1d(next_col, i[2])\n", + " \n", + " # Define other important structure subsets\n", + " all_match_columns = np.union1d(prev_col, next_col) # All the matched columns the algorithm found\n", + " not_match_columns = np.setdiff1d(all_columns, all_match_columns) # All the matched columns the algorithm didn't find\n", + " found_new_columns = np.setdiff1d(new_columns, next_col) # All the new columns the algorithm found\n", + " no_data_columns = np.setdiff1d(base_columns, prev_col) # All the empty columns the algorithm didn't find\n", "\n", - " # Determina alguns c\n", - " all_match_columns = np.union1d(next_col, prev_col) # Colunas que tiveram algum match\n", - " not_match_columns = np.setdiff1d(all_columns, all_match_columns) # Colunas que não tiveram nenhum match\n", - " found_new_columns = np.setdiff1d(new_columns, next_col) # Colunas novas encontradas pelo algoritmo\n", - " no_data_columns = np.setdiff1d(base_columns, prev_col) # Colunas que não receram dados encontradas pelo algoritmo\n", - "\n", - " # Calcula acurácia\n", + " # ========== ACCURACY ========== \n", " acuracia_matches = 0\n", " acuracia_novas_colunas = 0\n", " acuracia_colunas_vazias = 0\n", " \n", - " # ========== CALCULA ACURACIA TOTAL ==========\n", - " # Acurácia matches\n", + " # Total accuracy\n", " acertos = 0\n", " for res in resultados:\n", " if(len(res) == 0):\n", @@ -243,21 +271,18 @@ " acertos += 1\n", " break\n", " \n", - " # Acurácia novas colunas\n", " for new in found_new_columns:\n", " if new in true_new_columns:\n", " acertos += 1\n", "\n", - " # Acurácia colunas vazias\n", " for no_data in no_data_columns:\n", " if no_data in true_empty_columns:\n", " acertos += 1\n", "\n", - " # Acurácia total\n", " acuracia_total = acertos / len(all_columns)\n", " \n", " \n", - " # ========== CALCULA ACURACIA PARCIAL ==========\n", + " # New columns accuracy\n", " acertos_p = 0\n", " unionNewColumns = np.union1d(found_new_columns, true_new_columns)\n", " if len(unionNewColumns) > 0:\n", @@ -268,6 +293,7 @@ " else:\n", " acuracia_new_columns = 1.0\n", "\n", + " # Empty columns accuracy\n", " acertos_p = 0\n", " unionEmptyColumns = np.union1d(no_data_columns, true_empty_columns)\n", " if len(unionEmptyColumns) > 0:\n", @@ -277,7 +303,8 @@ " acuracia_empty_columns = acertos_p / len(unionEmptyColumns) \n", " else:\n", " acuracia_empty_columns = 1.0\n", - " \n", + "\n", + " # Match columns accuracy\n", " acertos_p = 0\n", " results_len = 0\n", " for res in resultados:\n", @@ -289,42 +316,24 @@ " acertos_p += 1\n", " break\n", " \n", - " acuracia_matches = acertos_p / len(prev_col)\n", - " # soma_acuracia = acuracia_matches * results_len + acuracia_new_columns * len(unionNewColumns) + acuracia_empty_columns * len(unionEmptyColumns)\n", - " # acuracia_total = soma_acuracia / (results_len + len(unionNewColumns) + len(unionEmptyColumns))\n", - " \n", - " # print(ano)\n", - " # print(f'{acuracia_matches} matches')\n", - " # print(f'{acuracia_new_columns} new')\n", - " # print(f'{acuracia_empty_columns} empty')\n", - " # print(f'{acuracia_total} total')\n", - " \n", - " # =========================\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " # Adiciona acuracia\n", - " if(stat_column == 'estatistica_f'):\n", + " acuracia_matches = acertos_p / results_len \n", + " # ========== ADDING RESULTS ON CLASS VARIABLES ==========\n", + " if(stat_method == 'estatistica_f'):\n", " self.stat_f_top3.append([ano, acuracia_total])\n", " self.stat_f_matches_top3.append([ano, acuracia_matches])\n", " self.stat_f_new_top3.append([ano, acuracia_new_columns])\n", " self.stat_f_empty_top3.append([ano, acuracia_empty_columns])\n", - " elif(stat_column == 'estatistica_t'):\n", + " elif(stat_method == 'estatistica_t'):\n", " self.stat_t_top3.append([ano, acuracia_total])\n", " self.stat_t_matches_top3.append([ano, acuracia_matches])\n", " self.stat_t_new_top3.append([ano, acuracia_new_columns])\n", " self.stat_t_empty_top3.append([ano, acuracia_empty_columns])\n", - " elif(stat_column == 'estatistica_ks'):\n", + " elif(stat_method == 'estatistica_ks'):\n", " self.stat_ks_top3.append([ano, acuracia_total])\n", " self.stat_ks_matches_top3.append([ano, acuracia_matches])\n", " self.stat_ks_new_top3.append([ano, acuracia_new_columns])\n", " self.stat_ks_empty_top3.append([ano, acuracia_empty_columns])\n", - " elif(stat_column == 'estatistica_cohend'):\n", + " elif(stat_method == 'estatistica_cohend'):\n", " self.stat_cohend_top3.append([ano, acuracia_total])\n", " self.stat_cohend_matches_top3.append([ano, acuracia_matches])\n", " self.stat_cohend_new_top3.append([ano, acuracia_new_columns])\n", @@ -336,12 +345,12 @@ "id": "9eaff904-7ee7-45a0-9768-0f21989c65bd", "metadata": {}, "source": [ - "## Import the results for each statistical method" + "## 2. Import the R results for each statistical method and prepare the data" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 135, "id": "26287a6f-5537-4509-a09d-52dd59b3a76d", "metadata": { "tags": [] @@ -349,31 +358,31 @@ "outputs": [], "source": [ "# Import F results\n", - "df_f = pd.read_csv('Testes_hist/Result_F/F_subsequente.csv', sep=',')\n", - "stat_column = 'estatistica_f'\n", - "df_f[stat_column] = (df_f[stat_column] - 1).abs()\n", - "df_f = df_f.sort_values(by=['ano_coluna1', stat_column])\n", + "df_f = pd.read_csv('R_resultados/Histograma_10/F_subsequente.csv', sep=',')\n", + "stat_column = 'p_valor'\n", + "df_f[stat_column] = df_f[stat_column].abs()\n", + "df_f = df_f.sort_values(by=['ano_coluna1', stat_column], ascending=[True, False])\n", "df_f = df_f[~df_f['coluna1'].str.contains('ANO_CENSO') & ~df_f['coluna2'].str.contains('ANO_CENSO')]\n", "\n", "# Import T results\n", - "df_t = pd.read_csv('Testes_hist/Result_T/T_subsequente.csv', sep=',')\n", - "stat_column = 'estatistica_t'\n", + "df_t = pd.read_csv('R_resultados/Histograma_10/T_subsequente.csv', sep=',')\n", + "stat_column = 'p_valor'\n", "df_t[stat_column] = df_t[stat_column].abs()\n", - "df_t = df_t.sort_values(by=['ano_coluna1', stat_column])\n", + "df_t = df_t.sort_values(by=['ano_coluna1', stat_column], ascending=[True, False])\n", "df_t = df_t[~df_t['coluna1'].str.contains('ANO_CENSO') & ~df_t['coluna2'].str.contains('ANO_CENSO')]\n", "\n", "# Import COHEND results\n", - "df_c = pd.read_csv('Testes_hist/Result_COHEND/COHEND_subsequente.csv', sep=',')\n", + "df_c = pd.read_csv('R_resultados/Histograma_10/COHEND_subsequente.csv', sep=',')\n", "stat_column = 'estatistica_cohend'\n", "df_c[stat_column] = df_c[stat_column].abs()\n", "df_c = df_c.sort_values(by=['ano_coluna1', stat_column])\n", "df_c = df_c[~df_c['coluna1'].str.contains('ANO_CENSO') & ~df_c['coluna2'].str.contains('ANO_CENSO')]\n", "\n", "# Import KS results\n", - "df_ks = pd.read_csv('Testes_hist/Result_KS/KS_subsequente.csv', sep=',')\n", - "stat_column = 'estatistica_ks'\n", + "df_ks = pd.read_csv('R_resultados/Histograma_10/KS_subsequente.csv', sep=',')\n", + "stat_column = 'p_valor'\n", "df_ks[stat_column] = (df_ks[stat_column]).abs()\n", - "df_ks = df_ks.sort_values(by=['ano_coluna1', stat_column])\n", + "df_ks = df_ks.sort_values(by=['ano_coluna1', stat_column], ascending=[True, False])\n", "df_ks = df_ks[~df_ks['coluna1'].str.contains('ANO_CENSO') & ~df_ks['coluna2'].str.contains('ANO_CENSO')]" ] }, @@ -382,41 +391,28 @@ "id": "e25f4f2d-3fb9-4cfc-8a92-c2e8b887262c", "metadata": {}, "source": [ - "## Calcule the columns matches" + "## 3. Calculates the matches" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 136, "id": "f9541a11-c1bf-4318-847a-100917e13204", "metadata": { "tags": [] }, - "outputs": [ - { - "ename": "ZeroDivisionError", - "evalue": "division by zero", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[9], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m dist \u001b[38;5;241m=\u001b[39m DistCalc()\n\u001b[0;32m----> 2\u001b[0m \u001b[43mdist\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcalc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf_f\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mestatistica_f\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0.7\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3\u001b[0m dist\u001b[38;5;241m.\u001b[39mcalc(df_t, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mestatistica_t\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;241m40\u001b[39m)\n\u001b[1;32m 4\u001b[0m dist\u001b[38;5;241m.\u001b[39mcalc(df_c, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mestatistica_cohend\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;241m0.15\u001b[39m)\n", - "Cell \u001b[0;32mIn[7], line 118\u001b[0m, in \u001b[0;36mDistCalc.calc\u001b[0;34m(self, df, stat_column, threshold)\u001b[0m\n\u001b[1;32m 116\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m prev_col[i] \u001b[38;5;241m==\u001b[39m next_col[i]: \n\u001b[1;32m 117\u001b[0m acertos_p \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[0;32m--> 118\u001b[0m acuracia_matches \u001b[38;5;241m=\u001b[39m \u001b[43macertos_p\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mprev_col\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 119\u001b[0m acertos \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m acertos_p\n\u001b[1;32m 121\u001b[0m acertos_p \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n", - "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" - ] - } - ], + "outputs": [], "source": [ "dist = DistCalc()\n", - "dist.calc(df_f, 'estatistica_f', 0.7)\n", - "dist.calc(df_t, 'estatistica_t', 40)\n", - "dist.calc(df_c, 'estatistica_cohend', 0.15)\n", - "dist.calc(df_ks, 'estatistica_ks', 0.10)\n", + "dist.calc(df_f, 'p_valor', 'estatistica_f', 0.05)\n", + "dist.calc(df_t, 'p_valor', 'estatistica_t', 0.05)\n", + "dist.calc(df_c, 'estatistica_cohend', 'estatistica_cohend', 0.15, threshGreater=False)\n", + "dist.calc(df_ks, 'p_valor', 'estatistica_ks', 0.05)\n", "\n", - "dist.calcTop3(df_f, 'estatistica_f', 0.7)\n", - "dist.calcTop3(df_t, 'estatistica_t', 40)\n", - "dist.calcTop3(df_c, 'estatistica_cohend', 0.15)\n", - "dist.calcTop3(df_ks, 'estatistica_ks', 0.10)" + "dist.calcTop3(df_f, 'p_valor', 'estatistica_f', 0.05)\n", + "dist.calcTop3(df_t, 'p_valor', 'estatistica_t', 0.05)\n", + "dist.calcTop3(df_c, 'estatistica_cohend', 'estatistica_cohend', 0.15, threshGreater=False)\n", + "dist.calcTop3(df_ks, 'p_valor', 'estatistica_ks', 0.05)" ] }, { @@ -424,12 +420,12 @@ "id": "47bcb19b-6aba-4d4a-9de0-4633bfa0eb20", "metadata": {}, "source": [ - "## Create the result dataframes" + "## 4. Create the result dataframes and store all the data on it" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 137, "id": "527ff27d-f321-4749-a94d-dd7d824ef682", "metadata": { "tags": [] @@ -501,9 +497,17 @@ "resultTop3_t = resultTop3_t.round(3)" ] }, + { + "cell_type": "markdown", + "id": "5c9338be-a29e-4fd4-9aa2-905eadf59cf7", + "metadata": {}, + "source": [ + "## 5. Export the results into CSVs" + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 138, "id": "4cb4afc8-6149-40a7-8f77-af06183d4d23", "metadata": { "tags": [] diff --git a/Testes_hist/Result_COHEND/COHEND_acumulado.csv b/R_resultados/Histograma_10/COHEND_acumulado.csv similarity index 100% rename from Testes_hist/Result_COHEND/COHEND_acumulado.csv rename to R_resultados/Histograma_10/COHEND_acumulado.csv diff --git a/Testes_hist/Result_COHEND/COHEND_subsequente.csv b/R_resultados/Histograma_10/COHEND_subsequente.csv similarity index 100% rename from Testes_hist/Result_COHEND/COHEND_subsequente.csv rename to R_resultados/Histograma_10/COHEND_subsequente.csv diff --git a/Testes_hist/Result_F/F_acumulado.csv b/R_resultados/Histograma_10/F_acumulado.csv similarity index 100% rename from Testes_hist/Result_F/F_acumulado.csv rename to R_resultados/Histograma_10/F_acumulado.csv diff --git a/Testes_hist/Result_F/F_subsequente.csv b/R_resultados/Histograma_10/F_subsequente.csv similarity index 100% rename from Testes_hist/Result_F/F_subsequente.csv rename to R_resultados/Histograma_10/F_subsequente.csv diff --git a/Testes_hist/Result_KS/KS_acumulado.csv b/R_resultados/Histograma_10/KS_acumulado.csv similarity index 100% rename from Testes_hist/Result_KS/KS_acumulado.csv rename to R_resultados/Histograma_10/KS_acumulado.csv diff --git a/Testes_hist/Result_KS/KS_subsequente.csv b/R_resultados/Histograma_10/KS_subsequente.csv similarity index 100% rename from Testes_hist/Result_KS/KS_subsequente.csv rename to R_resultados/Histograma_10/KS_subsequente.csv diff --git a/Testes_hist/Result_T/T_acumulado.csv b/R_resultados/Histograma_10/T_acumulado.csv similarity index 100% rename from Testes_hist/Result_T/T_acumulado.csv rename to R_resultados/Histograma_10/T_acumulado.csv diff --git a/Testes_hist/Result_T/T_subsequente.csv b/R_resultados/Histograma_10/T_subsequente.csv similarity index 100% rename from Testes_hist/Result_T/T_subsequente.csv rename to R_resultados/Histograma_10/T_subsequente.csv diff --git a/Testes_R/Result_COHEND/COHEND_acumulado.csv b/R_resultados/Sem_histograma/COHEND_acumulado.csv similarity index 100% rename from Testes_R/Result_COHEND/COHEND_acumulado.csv rename to R_resultados/Sem_histograma/COHEND_acumulado.csv diff --git a/Testes_R/Result_COHEND/COHEND_subsequente.csv b/R_resultados/Sem_histograma/COHEND_subsequente.csv similarity index 100% rename from Testes_R/Result_COHEND/COHEND_subsequente.csv rename to R_resultados/Sem_histograma/COHEND_subsequente.csv diff --git a/Testes_R/Result_F/F_acumulado.csv b/R_resultados/Sem_histograma/F_acumulado.csv similarity index 100% rename from Testes_R/Result_F/F_acumulado.csv rename to R_resultados/Sem_histograma/F_acumulado.csv diff --git a/Testes_R/Result_F/F_subsequente.csv b/R_resultados/Sem_histograma/F_subsequente.csv similarity index 100% rename from Testes_R/Result_F/F_subsequente.csv rename to R_resultados/Sem_histograma/F_subsequente.csv diff --git a/Testes_R/Result_KS/KS_acumulado.csv b/R_resultados/Sem_histograma/KS_acumulado.csv similarity index 100% rename from Testes_R/Result_KS/KS_acumulado.csv rename to R_resultados/Sem_histograma/KS_acumulado.csv diff --git a/Testes_R/Result_KS/KS_subsequente.csv b/R_resultados/Sem_histograma/KS_subsequente.csv similarity index 100% rename from Testes_R/Result_KS/KS_subsequente.csv rename to R_resultados/Sem_histograma/KS_subsequente.csv diff --git a/Testes_R/Result_T/T_acumulado.csv b/R_resultados/Sem_histograma/T_acumulado.csv similarity index 100% rename from Testes_R/Result_T/T_acumulado.csv rename to R_resultados/Sem_histograma/T_acumulado.csv diff --git a/Testes_R/Result_T/T_subsequente.csv b/R_resultados/Sem_histograma/T_subsequente.csv similarity index 100% rename from Testes_R/Result_T/T_subsequente.csv rename to R_resultados/Sem_histograma/T_subsequente.csv diff --git a/Testes_R/raw_tests/.ipynb_checkpoints/run-checkpoint.sh b/Testes_R/raw_tests/.ipynb_checkpoints/run-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..aa197aa4e8cb3cb757f94ae49db98015bb0b7290 --- /dev/null +++ b/Testes_R/raw_tests/.ipynb_checkpoints/run-checkpoint.sh @@ -0,0 +1,6 @@ +#!/bin/bash + +#Rscript ./teste_ks.r +#Rscript ./teste_f.r +#Rscript ./teste_t.r +Rscript ./teste_cohend.r diff --git a/Testes_R/raw_tests/run.sh b/Testes_R/raw_tests/run.sh index aa197aa4e8cb3cb757f94ae49db98015bb0b7290..4c43edad38d7afc62dfd117cbfd35e213dbfb5e4 100644 --- a/Testes_R/raw_tests/run.sh +++ b/Testes_R/raw_tests/run.sh @@ -1,6 +1,6 @@ #!/bin/bash -#Rscript ./teste_ks.r -#Rscript ./teste_f.r -#Rscript ./teste_t.r +Rscript ./teste_ks.r +Rscript ./teste_f.r +Rscript ./teste_t.r Rscript ./teste_cohend.r diff --git a/Testes_hist/raw_tests/.ipynb_checkpoints/Rplots-checkpoint.pdf b/Testes_hist/raw_tests/.ipynb_checkpoints/Rplots-checkpoint.pdf deleted file mode 100644 index 07ef8c186be21d6eb311769c3539a1f993883226..0000000000000000000000000000000000000000 Binary files a/Testes_hist/raw_tests/.ipynb_checkpoints/Rplots-checkpoint.pdf and /dev/null differ diff --git a/Testes_hist/raw_tests/.ipynb_checkpoints/run-checkpoint.sh b/Testes_hist/raw_tests/.ipynb_checkpoints/run-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..4c43edad38d7afc62dfd117cbfd35e213dbfb5e4 --- /dev/null +++ b/Testes_hist/raw_tests/.ipynb_checkpoints/run-checkpoint.sh @@ -0,0 +1,6 @@ +#!/bin/bash + +Rscript ./teste_ks.r +Rscript ./teste_f.r +Rscript ./teste_t.r +Rscript ./teste_cohend.r diff --git a/Testes_hist/raw_tests/Rplots.pdf b/Testes_hist/raw_tests/Rplots.pdf deleted file mode 100644 index 07ef8c186be21d6eb311769c3539a1f993883226..0000000000000000000000000000000000000000 Binary files a/Testes_hist/raw_tests/Rplots.pdf and /dev/null differ diff --git a/Trashcan/.ipynb_checkpoints/distCalcSemHist-checkpoint.ipynb b/Trashcan/.ipynb_checkpoints/distCalcSemHist-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f151d0c97d9d86e583c3836593262e1e16462403 --- /dev/null +++ b/Trashcan/.ipynb_checkpoints/distCalcSemHist-checkpoint.ipynb @@ -0,0 +1,535 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "id": "2c81bc78-04e0-4bad-83ef-380cf3be1610", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "af419e44-d6ef-41f7-970c-78c316aeb712", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "class DistCalc:\n", + " def __init__(self):\n", + " self.stat_f = []\n", + " self.stat_ks = []\n", + " self.stat_t = []\n", + " self.stat_cohend = []\n", + " self.stat_f_matches = []\n", + " self.stat_ks_matches = []\n", + " self.stat_t_matches = []\n", + " self.stat_cohend_matches = []\n", + " self.stat_f_new = []\n", + " self.stat_ks_new = []\n", + " self.stat_t_new = []\n", + " self.stat_cohend_new = []\n", + " self.stat_f_empty = []\n", + " self.stat_ks_empty = []\n", + " self.stat_t_empty = []\n", + " self.stat_cohend_empty = []\n", + " \n", + " self.stat_f_top3 = []\n", + " self.stat_ks_top3 = []\n", + " self.stat_t_top3 = []\n", + " self.stat_cohend_top3 = []\n", + " self.stat_f_matches_top3 = []\n", + " self.stat_ks_matches_top3 = []\n", + " self.stat_t_matches_top3 = []\n", + " self.stat_cohend_matches_top3 = []\n", + " self.stat_f_new_top3 = []\n", + " self.stat_ks_new_top3 = []\n", + " self.stat_t_new_top3 = []\n", + " self.stat_cohend_new_top3 = []\n", + " self.stat_f_empty_top3 = []\n", + " self.stat_ks_empty_top3 = []\n", + " self.stat_t_empty_top3 = []\n", + " self.stat_cohend_empty_top3 = []\n", + " \n", + " self.years = []\n", + " \n", + " @property\n", + " def get_stat_f(self):\n", + " return self.stat_f\n", + " \n", + " @property\n", + " def get_stat_ks(self):\n", + " return self.stat_ks\n", + " \n", + " @property\n", + " def get_stat_t(self):\n", + " return self.stat_t\n", + " \n", + " @property\n", + " def get_stat_cohend(self):\n", + " return self.stat_cohend\n", + " \n", + " @property\n", + " def get_stat_f_top3(self):\n", + " return self.stat_f\n", + " \n", + " @property\n", + " def get_stat_ks_top3(self):\n", + " return self.stat_ks\n", + " \n", + " @property\n", + " def get_stat_t_top3(self):\n", + " return self.stat_t\n", + " \n", + " @property\n", + " def get_stat_cohend_top3(self):\n", + " return self.stat_cohend\n", + " \n", + " @property\n", + " def get_years(self):\n", + " return self.years\n", + " \n", + " def calc(self, df, stat_column, threshold):\n", + " anos = df.ano_coluna1.unique()\n", + " self.years = np.union1d(self.years, anos)\n", + "\n", + " # Itera sobre todos os anos\n", + " for ano in anos:\n", + " # Constroi dataframe do ano\n", + " ano_df = df[df.ano_coluna1 == ano]\n", + "\n", + " # Estruturas\n", + " base_columns = ano_df.coluna1.unique() # Colunas que ja existiam na base\n", + " new_columns = ano_df.coluna2.unique() # Colunas do próximo ano\n", + " true_new_columns = np.setdiff1d(new_columns, base_columns) # Colunas que nao existiam na base\n", + " base_empty_columns = np.setdiff1d(base_columns, new_columns) # Colunas da base que nao receberam dados\n", + " all_columns = np.union1d(base_columns, new_columns) # Todas as colunas possiveis\n", + " # Alterar para um dicionario\n", + " prev_col = [] # Colunas da base para match\n", + " next_col = [] # Colunas do proximo ano para match\n", + "\n", + " # Itera sobre o dataframe\n", + " for index, row in ano_df.iterrows():\n", + " # Ignora colunas ja selecionadas\n", + " if row['coluna1'] in prev_col or row['coluna2'] in next_col:\n", + " continue\n", + " # Testa treshold\n", + " if row[stat_column] > threshold:\n", + " break\n", + "\n", + " # Adiciona nas listas\n", + " prev_col.append(row['coluna1'])\n", + " next_col.append(row['coluna2'])\n", + "\n", + " all_match_columns = np.union1d(prev_col, next_col)\n", + " not_match_columns = np.setdiff1d(all_columns, all_match_columns)\n", + " found_new_columns = np.setdiff1d(new_columns, next_col) # Colunas novas encontradas pelo algoritmo\n", + " no_data_columns = np.setdiff1d(base_columns, prev_col) # Colunas que não receram dados encontradas pelo algoritmo\n", + "\n", + " # ========== CALCULA ACURACIAS ========== \n", + " acertos_p = 0\n", + " acertos = 0\n", + " for i in range(len(prev_col)):\n", + " if prev_col[i] == next_col[i]: \n", + " acertos_p += 1\n", + " acuracia_matches = acertos_p / len(prev_col)\n", + " acertos += acertos_p\n", + " \n", + " acertos_p = 0\n", + " unionNewColumns = np.union1d(found_new_columns, true_new_columns)\n", + " for col in unionNewColumns:\n", + " if col in true_new_columns and col in found_new_columns:\n", + " acertos_p += 1\n", + " if(len(unionNewColumns) > 0):\n", + " acuracia_new_columns = acertos_p / len(unionNewColumns)\n", + " else:\n", + " acuracia_new_columns = 1.0\n", + " acertos += acertos_p \n", + " \n", + " acertos_p = 0\n", + " unionEmptyColumns = np.union1d(no_data_columns, base_empty_columns)\n", + " for col in unionEmptyColumns:\n", + " if col in base_empty_columns and col in no_data_columns:\n", + " acertos_p += 1\n", + " if(len(unionEmptyColumns) > 0):\n", + " acuracia_empty_columns = acertos_p / len(unionEmptyColumns)\n", + " else:\n", + " acuracia_empty_columns = 1.0\n", + " acertos += acertos_p\n", + " \n", + " soma_acuracia = acuracia_matches * len(prev_col) + acuracia_new_columns * len(unionNewColumns) + acuracia_empty_columns * len(unionEmptyColumns)\n", + " # acuracia_total = soma_acuracia / (len(prev_col) + len(unionNewColumns) + len(unionEmptyColumns))\n", + " acuracia_total = acertos / len(all_columns)\n", + " \n", + " # ========== ADICIONA ACURACIAS ==========\n", + " if(stat_column == 'estatistica_f'):\n", + " self.stat_f.append([ano, acuracia_total])\n", + " self.stat_f_matches.append([ano, acuracia_matches])\n", + " self.stat_f_new.append([ano, acuracia_new_columns])\n", + " self.stat_f_empty.append([ano, acuracia_empty_columns])\n", + " elif(stat_column == 'estatistica_t'):\n", + " self.stat_t.append([ano, acuracia_total])\n", + " self.stat_t_matches.append([ano, acuracia_matches])\n", + " self.stat_t_new.append([ano, acuracia_new_columns])\n", + " self.stat_t_empty.append([ano, acuracia_empty_columns])\n", + " elif(stat_column == 'estatistica_ks'):\n", + " self.stat_ks.append([ano, acuracia_total])\n", + " self.stat_ks_matches.append([ano, acuracia_matches])\n", + " self.stat_ks_new.append([ano, acuracia_new_columns])\n", + " self.stat_ks_empty.append([ano, acuracia_empty_columns])\n", + " elif(stat_column == 'estatistica_cohend'):\n", + " self.stat_cohend.append([ano, acuracia_total])\n", + " self.stat_cohend_matches.append([ano, acuracia_matches])\n", + " self.stat_cohend_new.append([ano, acuracia_new_columns])\n", + " self.stat_cohend_empty.append([ano, acuracia_empty_columns])\n", + "\n", + " \n", + " def calcTop3(self, df, stat_column, threshold):\n", + " anos = df.ano_coluna1.unique()\n", + " \n", + " # Itera sobre todos os anos\n", + " for ano in anos:\n", + " # Constroi dataframe do ano\n", + " ano_df = df[df.ano_coluna1 == ano]\n", + "\n", + " # Estruturas\n", + " base_columns = ano_df.coluna1.unique() # Colunas que ja existiam na base\n", + " new_columns = ano_df.coluna2.unique() # Colunas do próximo ano\n", + " intersection_columns = np.intersect1d(base_columns, new_columns) # Colunas que possuem match\n", + " true_new_columns = np.setdiff1d(new_columns, base_columns) # Colunas que nao existiam na base\n", + " true_empty_columns = np.setdiff1d(base_columns, new_columns) # Colunas da base que nao receberam dados\n", + " all_columns = np.union1d(base_columns, new_columns) # Todas as colunas possiveis\n", + " resultados = [] # Resultados dos matches\n", + " prev_col = [] # Colunas da base que tiveram match\n", + " next_col = [] # Colunas do proximo ano que tiveram match\n", + "\n", + " # Encontra as top3 novas colunas que mais se encaixam com as colunas base\n", + " for col in base_columns:\n", + " top3 = ano_df[(ano_df.coluna1 == col) & (ano_df[stat_column] < threshold)].iloc[:3,:]\n", + " resultados.append(top3.values)\n", + "\n", + " # Preenche prev_col e next_col\n", + " for res in resultados:\n", + " for i in res:\n", + " prev_col = np.union1d(prev_col, i[0])\n", + " next_col = np.union1d(next_col, i[2])\n", + "\n", + " # Determina alguns c\n", + " all_match_columns = np.union1d(next_col, prev_col) # Colunas que tiveram algum match\n", + " not_match_columns = np.setdiff1d(all_columns, all_match_columns) # Colunas que não tiveram nenhum match\n", + " found_new_columns = np.setdiff1d(new_columns, next_col) # Colunas novas encontradas pelo algoritmo\n", + " no_data_columns = np.setdiff1d(base_columns, prev_col) # Colunas que não receram dados encontradas pelo algoritmo\n", + "\n", + " # Calcula acurácia\n", + " acuracia_matches = 0\n", + " acuracia_novas_colunas = 0\n", + " acuracia_colunas_vazias = 0\n", + " \n", + " # ========== CALCULA ACURACIA TOTAL ==========\n", + " # Acurácia matches\n", + " acertos = 0\n", + " for res in resultados:\n", + " if(len(res) == 0):\n", + " continue\n", + " for i in res:\n", + " if i[0] == i[2]:\n", + " acertos += 1\n", + " break\n", + " \n", + " # Acurácia novas colunas\n", + " for new in found_new_columns:\n", + " if new in true_new_columns:\n", + " acertos += 1\n", + "\n", + " # Acurácia colunas vazias\n", + " for no_data in no_data_columns:\n", + " if no_data in true_empty_columns:\n", + " acertos += 1\n", + "\n", + " # Acurácia total\n", + " acuracia_total = acertos / len(all_columns)\n", + " \n", + " \n", + " # ========== CALCULA ACURACIA PARCIAL ==========\n", + " acertos_p = 0\n", + " unionNewColumns = np.union1d(found_new_columns, true_new_columns)\n", + " if len(unionNewColumns) > 0:\n", + " for col in unionNewColumns:\n", + " if col in found_new_columns and col in true_new_columns:\n", + " acertos_p += 1\n", + " acuracia_new_columns = acertos_p / len(unionNewColumns) \n", + " else:\n", + " acuracia_new_columns = 1.0\n", + "\n", + " acertos_p = 0\n", + " unionEmptyColumns = np.union1d(no_data_columns, true_empty_columns)\n", + " if len(unionEmptyColumns) > 0:\n", + " for col in unionEmptyColumns:\n", + " if col in no_data_columns and col in true_empty_columns:\n", + " acertos_p += 1\n", + " acuracia_empty_columns = acertos_p / len(unionEmptyColumns) \n", + " else:\n", + " acuracia_empty_columns = 1.0\n", + " \n", + " acertos_p = 0\n", + " results_len = 0\n", + " for res in resultados:\n", + " if(len(res) == 0):\n", + " continue\n", + " results_len += 1\n", + " for i in res:\n", + " if i[0] == i[2]:\n", + " acertos_p += 1\n", + " break\n", + " \n", + " acuracia_matches = acertos_p / len(prev_col)\n", + " # soma_acuracia = acuracia_matches * results_len + acuracia_new_columns * len(unionNewColumns) + acuracia_empty_columns * len(unionEmptyColumns)\n", + " # acuracia_total = soma_acuracia / (results_len + len(unionNewColumns) + len(unionEmptyColumns))\n", + " \n", + " # print(ano)\n", + " # print(f'{acuracia_matches} matches')\n", + " # print(f'{acuracia_new_columns} new')\n", + " # print(f'{acuracia_empty_columns} empty')\n", + " # print(f'{acuracia_total} total')\n", + " \n", + " # =========================\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " # Adiciona acuracia\n", + " if(stat_column == 'estatistica_f'):\n", + " self.stat_f_top3.append([ano, acuracia_total])\n", + " self.stat_f_matches_top3.append([ano, acuracia_matches])\n", + " self.stat_f_new_top3.append([ano, acuracia_new_columns])\n", + " self.stat_f_empty_top3.append([ano, acuracia_empty_columns])\n", + " elif(stat_column == 'estatistica_t'):\n", + " self.stat_t_top3.append([ano, acuracia_total])\n", + " self.stat_t_matches_top3.append([ano, acuracia_matches])\n", + " self.stat_t_new_top3.append([ano, acuracia_new_columns])\n", + " self.stat_t_empty_top3.append([ano, acuracia_empty_columns])\n", + " elif(stat_column == 'estatistica_ks'):\n", + " self.stat_ks_top3.append([ano, acuracia_total])\n", + " self.stat_ks_matches_top3.append([ano, acuracia_matches])\n", + " self.stat_ks_new_top3.append([ano, acuracia_new_columns])\n", + " self.stat_ks_empty_top3.append([ano, acuracia_empty_columns])\n", + " elif(stat_column == 'estatistica_cohend'):\n", + " self.stat_cohend_top3.append([ano, acuracia_total])\n", + " self.stat_cohend_matches_top3.append([ano, acuracia_matches])\n", + " self.stat_cohend_new_top3.append([ano, acuracia_new_columns])\n", + " self.stat_cohend_empty_top3.append([ano, acuracia_empty_columns])" + ] + }, + { + "cell_type": "markdown", + "id": "9eaff904-7ee7-45a0-9768-0f21989c65bd", + "metadata": {}, + "source": [ + "## Import the results for each statistical method" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "26287a6f-5537-4509-a09d-52dd59b3a76d", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Import F results\n", + "df_f = pd.read_csv('Testes_hist/Result_F/F_subsequente.csv', sep=',')\n", + "stat_column = 'estatistica_f'\n", + "df_f[stat_column] = (df_f[stat_column] - 1).abs()\n", + "df_f = df_f.sort_values(by=['ano_coluna1', stat_column])\n", + "df_f = df_f[~df_f['coluna1'].str.contains('ANO_CENSO') & ~df_f['coluna2'].str.contains('ANO_CENSO')]\n", + "\n", + "# Import T results\n", + "df_t = pd.read_csv('Testes_hist/Result_T/T_subsequente.csv', sep=',')\n", + "stat_column = 'estatistica_t'\n", + "df_t[stat_column] = df_t[stat_column].abs()\n", + "df_t = df_t.sort_values(by=['ano_coluna1', stat_column])\n", + "df_t = df_t[~df_t['coluna1'].str.contains('ANO_CENSO') & ~df_t['coluna2'].str.contains('ANO_CENSO')]\n", + "\n", + "# Import COHEND results\n", + "df_c = pd.read_csv('Testes_hist/Result_COHEND/COHEND_subsequente.csv', sep=',')\n", + "stat_column = 'estatistica_cohend'\n", + "df_c[stat_column] = df_c[stat_column].abs()\n", + "df_c = df_c.sort_values(by=['ano_coluna1', stat_column])\n", + "df_c = df_c[~df_c['coluna1'].str.contains('ANO_CENSO') & ~df_c['coluna2'].str.contains('ANO_CENSO')]\n", + "\n", + "# Import KS results\n", + "df_ks = pd.read_csv('Testes_hist/Result_KS/KS_subsequente.csv', sep=',')\n", + "stat_column = 'estatistica_ks'\n", + "df_ks[stat_column] = (df_ks[stat_column]).abs()\n", + "df_ks = df_ks.sort_values(by=['ano_coluna1', stat_column])\n", + "df_ks = df_ks[~df_ks['coluna1'].str.contains('ANO_CENSO') & ~df_ks['coluna2'].str.contains('ANO_CENSO')]" + ] + }, + { + "cell_type": "markdown", + "id": "e25f4f2d-3fb9-4cfc-8a92-c2e8b887262c", + "metadata": {}, + "source": [ + "## Calcule the columns matches" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f9541a11-c1bf-4318-847a-100917e13204", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "dist = DistCalc()\n", + "dist.calc(df_f, 'estatistica_f', 0.7)\n", + "dist.calc(df_t, 'estatistica_t', 40)\n", + "dist.calc(df_c, 'estatistica_cohend', 0.15)\n", + "dist.calc(df_ks, 'estatistica_ks', 0.10)\n", + "\n", + "dist.calcTop3(df_f, 'estatistica_f', 0.7)\n", + "dist.calcTop3(df_t, 'estatistica_t', 40)\n", + "dist.calcTop3(df_c, 'estatistica_cohend', 0.15)\n", + "dist.calcTop3(df_ks, 'estatistica_ks', 0.10)" + ] + }, + { + "cell_type": "markdown", + "id": "47bcb19b-6aba-4d4a-9de0-4633bfa0eb20", + "metadata": {}, + "source": [ + "## Create the result dataframes" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "527ff27d-f321-4749-a94d-dd7d824ef682", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# ================= KS =================\n", + "result_ks = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "resultTop3_ks = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "for i, ano in enumerate(dist.get_years):\n", + " new_row = [ano, dist.stat_ks_matches[i][1], dist.stat_ks_new[i][1], dist.stat_ks_empty[i][1], dist.stat_ks[i][1]]\n", + " result_ks.loc[len(result_ks)] = new_row\n", + " new_row = [ano, dist.stat_ks_matches_top3[i][1], dist.stat_ks_new_top3[i][1], dist.stat_ks_empty_top3[i][1], dist.stat_ks_top3[i][1]]\n", + " resultTop3_ks.loc[len(resultTop3_ks)] = new_row\n", + " \n", + "result_ks.loc[len(result_ks)] = result_ks.mean()\n", + "result_ks.loc[len(result_ks)] = result_ks.std()\n", + "resultTop3_ks.loc[len(resultTop3_ks)] = resultTop3_ks.mean()\n", + "resultTop3_ks.loc[len(resultTop3_ks)] = resultTop3_ks.std()\n", + "result_ks = result_ks.round(3)\n", + "resultTop3_ks = resultTop3_ks.round(3)\n", + "\n", + "# ================= F =================\n", + "result_f = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "resultTop3_f = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "for i, ano in enumerate(dist.get_years):\n", + " new_row = [ano, dist.stat_f_matches[i][1], dist.stat_f_new[i][1], dist.stat_f_empty[i][1], dist.stat_f[i][1]]\n", + " result_f.loc[len(result_f)] = new_row\n", + " new_row = [ano, dist.stat_f_matches_top3[i][1], dist.stat_f_new_top3[i][1], dist.stat_f_empty_top3[i][1], dist.stat_f_top3[i][1]]\n", + " resultTop3_f.loc[len(resultTop3_f)] = new_row\n", + " \n", + "result_f.loc[len(result_f)] = result_f.mean()\n", + "result_f.loc[len(result_f)] = result_f.std()\n", + "resultTop3_f.loc[len(resultTop3_f)] = resultTop3_f.mean()\n", + "resultTop3_f.loc[len(resultTop3_f)] = resultTop3_f.std()\n", + "result_f = result_f.round(3)\n", + "resultTop3_f = resultTop3_f.round(3)\n", + "\n", + "# ================= COHEN =================\n", + "result_cohend = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "resultTop3_cohend = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "for i, ano in enumerate(dist.get_years):\n", + " new_row = [ano, dist.stat_cohend_matches[i][1], dist.stat_cohend_new[i][1], dist.stat_cohend_empty[i][1], dist.stat_cohend[i][1]]\n", + " result_cohend.loc[len(result_cohend)] = new_row\n", + " new_row = [ano, dist.stat_cohend_matches_top3[i][1], dist.stat_cohend_new_top3[i][1], dist.stat_cohend_empty_top3[i][1], dist.stat_cohend_top3[i][1]]\n", + " resultTop3_cohend.loc[len(resultTop3_cohend)] = new_row\n", + " \n", + "result_cohend.loc[len(result_cohend)] = result_cohend.mean()\n", + "result_cohend.loc[len(result_cohend)] = result_cohend.std()\n", + "resultTop3_cohend.loc[len(resultTop3_cohend)] = resultTop3_cohend.mean()\n", + "resultTop3_cohend.loc[len(resultTop3_cohend)] = resultTop3_cohend.std()\n", + "result_cohend = result_cohend.round(3)\n", + "resultTop3_cohend = resultTop3_cohend.round(3)\n", + "\n", + "# ================= T =================\n", + "result_t = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "resultTop3_t = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "for i, ano in enumerate(dist.get_years):\n", + " new_row = [ano, dist.stat_t_matches[i][1], dist.stat_t_new[i][1], dist.stat_t_empty[i][1], dist.stat_t[i][1]]\n", + " result_t.loc[len(result_t)] = new_row\n", + " new_row = [ano, dist.stat_t_matches_top3[i][1], dist.stat_t_new_top3[i][1], dist.stat_t_empty_top3[i][1], dist.stat_t_top3[i][1]]\n", + " resultTop3_t.loc[len(resultTop3_t)] = new_row\n", + " \n", + "result_t.loc[len(result_t)] = result_t.mean()\n", + "result_t.loc[len(result_t)] = result_t.std()\n", + "resultTop3_t.loc[len(resultTop3_t)] = resultTop3_t.mean()\n", + "resultTop3_t.loc[len(resultTop3_t)] = resultTop3_t.std()\n", + "result_t = result_t.round(3)\n", + "resultTop3_t = resultTop3_t.round(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "4cb4afc8-6149-40a7-8f77-af06183d4d23", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "result_ks.to_csv(f'./result_ks.csv', index=False)\n", + "resultTop3_ks.to_csv(f'./resultTop3_ks.csv', index=False)\n", + "\n", + "result_f.to_csv(f'./result_f.csv', index=False)\n", + "resultTop3_f.to_csv(f'./resultTop3_f.csv', index=False)\n", + "\n", + "result_t.to_csv(f'./result_t.csv', index=False)\n", + "resultTop3_t.to_csv(f'./resultTop3_t.csv', index=False)\n", + "\n", + "result_cohend.to_csv(f'./result_cohend.csv', index=False)\n", + "resultTop3_cohend.to_csv(f'./resultTop3_cohend.csv', index=False)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Resultados/.ipynb_checkpoints/COHEND_resuoltados-checkpoint.ipynb b/Trashcan/Resultados/.ipynb_checkpoints/COHEND_resuoltados-checkpoint.ipynb similarity index 100% rename from Resultados/.ipynb_checkpoints/COHEND_resuoltados-checkpoint.ipynb rename to Trashcan/Resultados/.ipynb_checkpoints/COHEND_resuoltados-checkpoint.ipynb diff --git a/Resultados/.ipynb_checkpoints/F_resultados-checkpoint.ipynb b/Trashcan/Resultados/.ipynb_checkpoints/F_resultados-checkpoint.ipynb similarity index 100% rename from Resultados/.ipynb_checkpoints/F_resultados-checkpoint.ipynb rename to Trashcan/Resultados/.ipynb_checkpoints/F_resultados-checkpoint.ipynb diff --git a/Resultados/.ipynb_checkpoints/KS_resultados-checkpoint.ipynb b/Trashcan/Resultados/.ipynb_checkpoints/KS_resultados-checkpoint.ipynb similarity index 100% rename from Resultados/.ipynb_checkpoints/KS_resultados-checkpoint.ipynb rename to Trashcan/Resultados/.ipynb_checkpoints/KS_resultados-checkpoint.ipynb diff --git a/Resultados/.ipynb_checkpoints/T_resultados-checkpoint.ipynb b/Trashcan/Resultados/.ipynb_checkpoints/T_resultados-checkpoint.ipynb similarity index 100% rename from Resultados/.ipynb_checkpoints/T_resultados-checkpoint.ipynb rename to Trashcan/Resultados/.ipynb_checkpoints/T_resultados-checkpoint.ipynb diff --git a/Resultados/COHEND_resuoltados.ipynb b/Trashcan/Resultados/COHEND_resuoltados.ipynb similarity index 100% rename from Resultados/COHEND_resuoltados.ipynb rename to Trashcan/Resultados/COHEND_resuoltados.ipynb diff --git a/Resultados/F_resultados.ipynb b/Trashcan/Resultados/F_resultados.ipynb similarity index 100% rename from Resultados/F_resultados.ipynb rename to Trashcan/Resultados/F_resultados.ipynb diff --git a/Resultados/KS_resultados.ipynb b/Trashcan/Resultados/KS_resultados.ipynb similarity index 100% rename from Resultados/KS_resultados.ipynb rename to Trashcan/Resultados/KS_resultados.ipynb diff --git a/Resultados/T_resultados.ipynb b/Trashcan/Resultados/T_resultados.ipynb similarity index 100% rename from Resultados/T_resultados.ipynb rename to Trashcan/Resultados/T_resultados.ipynb diff --git a/algorithm results/.ipynb_checkpoints/resultTop3-checkpoint.csv b/Trashcan/algorithm results/.ipynb_checkpoints/resultTop3-checkpoint.csv similarity index 100% rename from algorithm results/.ipynb_checkpoints/resultTop3-checkpoint.csv rename to Trashcan/algorithm results/.ipynb_checkpoints/resultTop3-checkpoint.csv diff --git a/algorithm results/.ipynb_checkpoints/resultTop3_ks-checkpoint.csv b/Trashcan/algorithm results/.ipynb_checkpoints/resultTop3_ks-checkpoint.csv similarity index 100% rename from algorithm results/.ipynb_checkpoints/resultTop3_ks-checkpoint.csv rename to Trashcan/algorithm results/.ipynb_checkpoints/resultTop3_ks-checkpoint.csv diff --git a/algorithm results/.ipynb_checkpoints/result_ks-checkpoint.csv b/Trashcan/algorithm results/.ipynb_checkpoints/result_ks-checkpoint.csv similarity index 100% rename from algorithm results/.ipynb_checkpoints/result_ks-checkpoint.csv rename to Trashcan/algorithm results/.ipynb_checkpoints/result_ks-checkpoint.csv diff --git a/algorithm results/result.csv b/Trashcan/algorithm results/result.csv similarity index 100% rename from algorithm results/result.csv rename to Trashcan/algorithm results/result.csv diff --git a/algorithm results/resultTop3.csv b/Trashcan/algorithm results/resultTop3.csv similarity index 100% rename from algorithm results/resultTop3.csv rename to Trashcan/algorithm results/resultTop3.csv diff --git a/algorithm results/resultTop3_cohend.csv b/Trashcan/algorithm results/resultTop3_cohend.csv similarity index 100% rename from algorithm results/resultTop3_cohend.csv rename to Trashcan/algorithm results/resultTop3_cohend.csv diff --git a/algorithm results/resultTop3_f.csv b/Trashcan/algorithm results/resultTop3_f.csv similarity index 100% rename from algorithm results/resultTop3_f.csv rename to Trashcan/algorithm results/resultTop3_f.csv diff --git a/algorithm results/resultTop3_ks.csv b/Trashcan/algorithm results/resultTop3_ks.csv similarity index 100% rename from algorithm results/resultTop3_ks.csv rename to Trashcan/algorithm results/resultTop3_ks.csv diff --git a/algorithm results/resultTop3_t.csv b/Trashcan/algorithm results/resultTop3_t.csv similarity index 100% rename from algorithm results/resultTop3_t.csv rename to Trashcan/algorithm results/resultTop3_t.csv diff --git a/algorithm results/result_cohend.csv b/Trashcan/algorithm results/result_cohend.csv similarity index 100% rename from algorithm results/result_cohend.csv rename to Trashcan/algorithm results/result_cohend.csv diff --git a/algorithm results/result_f.csv b/Trashcan/algorithm results/result_f.csv similarity index 100% rename from algorithm results/result_f.csv rename to Trashcan/algorithm results/result_f.csv diff --git a/algorithm results/result_ks.csv b/Trashcan/algorithm results/result_ks.csv similarity index 100% rename from algorithm results/result_ks.csv rename to Trashcan/algorithm results/result_ks.csv diff --git a/algorithm results/result_t.csv b/Trashcan/algorithm results/result_t.csv similarity index 100% rename from algorithm results/result_t.csv rename to Trashcan/algorithm results/result_t.csv diff --git a/Trashcan/distCalcSemHist.ipynb b/Trashcan/distCalcSemHist.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f151d0c97d9d86e583c3836593262e1e16462403 --- /dev/null +++ b/Trashcan/distCalcSemHist.ipynb @@ -0,0 +1,535 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "id": "2c81bc78-04e0-4bad-83ef-380cf3be1610", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "af419e44-d6ef-41f7-970c-78c316aeb712", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "class DistCalc:\n", + " def __init__(self):\n", + " self.stat_f = []\n", + " self.stat_ks = []\n", + " self.stat_t = []\n", + " self.stat_cohend = []\n", + " self.stat_f_matches = []\n", + " self.stat_ks_matches = []\n", + " self.stat_t_matches = []\n", + " self.stat_cohend_matches = []\n", + " self.stat_f_new = []\n", + " self.stat_ks_new = []\n", + " self.stat_t_new = []\n", + " self.stat_cohend_new = []\n", + " self.stat_f_empty = []\n", + " self.stat_ks_empty = []\n", + " self.stat_t_empty = []\n", + " self.stat_cohend_empty = []\n", + " \n", + " self.stat_f_top3 = []\n", + " self.stat_ks_top3 = []\n", + " self.stat_t_top3 = []\n", + " self.stat_cohend_top3 = []\n", + " self.stat_f_matches_top3 = []\n", + " self.stat_ks_matches_top3 = []\n", + " self.stat_t_matches_top3 = []\n", + " self.stat_cohend_matches_top3 = []\n", + " self.stat_f_new_top3 = []\n", + " self.stat_ks_new_top3 = []\n", + " self.stat_t_new_top3 = []\n", + " self.stat_cohend_new_top3 = []\n", + " self.stat_f_empty_top3 = []\n", + " self.stat_ks_empty_top3 = []\n", + " self.stat_t_empty_top3 = []\n", + " self.stat_cohend_empty_top3 = []\n", + " \n", + " self.years = []\n", + " \n", + " @property\n", + " def get_stat_f(self):\n", + " return self.stat_f\n", + " \n", + " @property\n", + " def get_stat_ks(self):\n", + " return self.stat_ks\n", + " \n", + " @property\n", + " def get_stat_t(self):\n", + " return self.stat_t\n", + " \n", + " @property\n", + " def get_stat_cohend(self):\n", + " return self.stat_cohend\n", + " \n", + " @property\n", + " def get_stat_f_top3(self):\n", + " return self.stat_f\n", + " \n", + " @property\n", + " def get_stat_ks_top3(self):\n", + " return self.stat_ks\n", + " \n", + " @property\n", + " def get_stat_t_top3(self):\n", + " return self.stat_t\n", + " \n", + " @property\n", + " def get_stat_cohend_top3(self):\n", + " return self.stat_cohend\n", + " \n", + " @property\n", + " def get_years(self):\n", + " return self.years\n", + " \n", + " def calc(self, df, stat_column, threshold):\n", + " anos = df.ano_coluna1.unique()\n", + " self.years = np.union1d(self.years, anos)\n", + "\n", + " # Itera sobre todos os anos\n", + " for ano in anos:\n", + " # Constroi dataframe do ano\n", + " ano_df = df[df.ano_coluna1 == ano]\n", + "\n", + " # Estruturas\n", + " base_columns = ano_df.coluna1.unique() # Colunas que ja existiam na base\n", + " new_columns = ano_df.coluna2.unique() # Colunas do próximo ano\n", + " true_new_columns = np.setdiff1d(new_columns, base_columns) # Colunas que nao existiam na base\n", + " base_empty_columns = np.setdiff1d(base_columns, new_columns) # Colunas da base que nao receberam dados\n", + " all_columns = np.union1d(base_columns, new_columns) # Todas as colunas possiveis\n", + " # Alterar para um dicionario\n", + " prev_col = [] # Colunas da base para match\n", + " next_col = [] # Colunas do proximo ano para match\n", + "\n", + " # Itera sobre o dataframe\n", + " for index, row in ano_df.iterrows():\n", + " # Ignora colunas ja selecionadas\n", + " if row['coluna1'] in prev_col or row['coluna2'] in next_col:\n", + " continue\n", + " # Testa treshold\n", + " if row[stat_column] > threshold:\n", + " break\n", + "\n", + " # Adiciona nas listas\n", + " prev_col.append(row['coluna1'])\n", + " next_col.append(row['coluna2'])\n", + "\n", + " all_match_columns = np.union1d(prev_col, next_col)\n", + " not_match_columns = np.setdiff1d(all_columns, all_match_columns)\n", + " found_new_columns = np.setdiff1d(new_columns, next_col) # Colunas novas encontradas pelo algoritmo\n", + " no_data_columns = np.setdiff1d(base_columns, prev_col) # Colunas que não receram dados encontradas pelo algoritmo\n", + "\n", + " # ========== CALCULA ACURACIAS ========== \n", + " acertos_p = 0\n", + " acertos = 0\n", + " for i in range(len(prev_col)):\n", + " if prev_col[i] == next_col[i]: \n", + " acertos_p += 1\n", + " acuracia_matches = acertos_p / len(prev_col)\n", + " acertos += acertos_p\n", + " \n", + " acertos_p = 0\n", + " unionNewColumns = np.union1d(found_new_columns, true_new_columns)\n", + " for col in unionNewColumns:\n", + " if col in true_new_columns and col in found_new_columns:\n", + " acertos_p += 1\n", + " if(len(unionNewColumns) > 0):\n", + " acuracia_new_columns = acertos_p / len(unionNewColumns)\n", + " else:\n", + " acuracia_new_columns = 1.0\n", + " acertos += acertos_p \n", + " \n", + " acertos_p = 0\n", + " unionEmptyColumns = np.union1d(no_data_columns, base_empty_columns)\n", + " for col in unionEmptyColumns:\n", + " if col in base_empty_columns and col in no_data_columns:\n", + " acertos_p += 1\n", + " if(len(unionEmptyColumns) > 0):\n", + " acuracia_empty_columns = acertos_p / len(unionEmptyColumns)\n", + " else:\n", + " acuracia_empty_columns = 1.0\n", + " acertos += acertos_p\n", + " \n", + " soma_acuracia = acuracia_matches * len(prev_col) + acuracia_new_columns * len(unionNewColumns) + acuracia_empty_columns * len(unionEmptyColumns)\n", + " # acuracia_total = soma_acuracia / (len(prev_col) + len(unionNewColumns) + len(unionEmptyColumns))\n", + " acuracia_total = acertos / len(all_columns)\n", + " \n", + " # ========== ADICIONA ACURACIAS ==========\n", + " if(stat_column == 'estatistica_f'):\n", + " self.stat_f.append([ano, acuracia_total])\n", + " self.stat_f_matches.append([ano, acuracia_matches])\n", + " self.stat_f_new.append([ano, acuracia_new_columns])\n", + " self.stat_f_empty.append([ano, acuracia_empty_columns])\n", + " elif(stat_column == 'estatistica_t'):\n", + " self.stat_t.append([ano, acuracia_total])\n", + " self.stat_t_matches.append([ano, acuracia_matches])\n", + " self.stat_t_new.append([ano, acuracia_new_columns])\n", + " self.stat_t_empty.append([ano, acuracia_empty_columns])\n", + " elif(stat_column == 'estatistica_ks'):\n", + " self.stat_ks.append([ano, acuracia_total])\n", + " self.stat_ks_matches.append([ano, acuracia_matches])\n", + " self.stat_ks_new.append([ano, acuracia_new_columns])\n", + " self.stat_ks_empty.append([ano, acuracia_empty_columns])\n", + " elif(stat_column == 'estatistica_cohend'):\n", + " self.stat_cohend.append([ano, acuracia_total])\n", + " self.stat_cohend_matches.append([ano, acuracia_matches])\n", + " self.stat_cohend_new.append([ano, acuracia_new_columns])\n", + " self.stat_cohend_empty.append([ano, acuracia_empty_columns])\n", + "\n", + " \n", + " def calcTop3(self, df, stat_column, threshold):\n", + " anos = df.ano_coluna1.unique()\n", + " \n", + " # Itera sobre todos os anos\n", + " for ano in anos:\n", + " # Constroi dataframe do ano\n", + " ano_df = df[df.ano_coluna1 == ano]\n", + "\n", + " # Estruturas\n", + " base_columns = ano_df.coluna1.unique() # Colunas que ja existiam na base\n", + " new_columns = ano_df.coluna2.unique() # Colunas do próximo ano\n", + " intersection_columns = np.intersect1d(base_columns, new_columns) # Colunas que possuem match\n", + " true_new_columns = np.setdiff1d(new_columns, base_columns) # Colunas que nao existiam na base\n", + " true_empty_columns = np.setdiff1d(base_columns, new_columns) # Colunas da base que nao receberam dados\n", + " all_columns = np.union1d(base_columns, new_columns) # Todas as colunas possiveis\n", + " resultados = [] # Resultados dos matches\n", + " prev_col = [] # Colunas da base que tiveram match\n", + " next_col = [] # Colunas do proximo ano que tiveram match\n", + "\n", + " # Encontra as top3 novas colunas que mais se encaixam com as colunas base\n", + " for col in base_columns:\n", + " top3 = ano_df[(ano_df.coluna1 == col) & (ano_df[stat_column] < threshold)].iloc[:3,:]\n", + " resultados.append(top3.values)\n", + "\n", + " # Preenche prev_col e next_col\n", + " for res in resultados:\n", + " for i in res:\n", + " prev_col = np.union1d(prev_col, i[0])\n", + " next_col = np.union1d(next_col, i[2])\n", + "\n", + " # Determina alguns c\n", + " all_match_columns = np.union1d(next_col, prev_col) # Colunas que tiveram algum match\n", + " not_match_columns = np.setdiff1d(all_columns, all_match_columns) # Colunas que não tiveram nenhum match\n", + " found_new_columns = np.setdiff1d(new_columns, next_col) # Colunas novas encontradas pelo algoritmo\n", + " no_data_columns = np.setdiff1d(base_columns, prev_col) # Colunas que não receram dados encontradas pelo algoritmo\n", + "\n", + " # Calcula acurácia\n", + " acuracia_matches = 0\n", + " acuracia_novas_colunas = 0\n", + " acuracia_colunas_vazias = 0\n", + " \n", + " # ========== CALCULA ACURACIA TOTAL ==========\n", + " # Acurácia matches\n", + " acertos = 0\n", + " for res in resultados:\n", + " if(len(res) == 0):\n", + " continue\n", + " for i in res:\n", + " if i[0] == i[2]:\n", + " acertos += 1\n", + " break\n", + " \n", + " # Acurácia novas colunas\n", + " for new in found_new_columns:\n", + " if new in true_new_columns:\n", + " acertos += 1\n", + "\n", + " # Acurácia colunas vazias\n", + " for no_data in no_data_columns:\n", + " if no_data in true_empty_columns:\n", + " acertos += 1\n", + "\n", + " # Acurácia total\n", + " acuracia_total = acertos / len(all_columns)\n", + " \n", + " \n", + " # ========== CALCULA ACURACIA PARCIAL ==========\n", + " acertos_p = 0\n", + " unionNewColumns = np.union1d(found_new_columns, true_new_columns)\n", + " if len(unionNewColumns) > 0:\n", + " for col in unionNewColumns:\n", + " if col in found_new_columns and col in true_new_columns:\n", + " acertos_p += 1\n", + " acuracia_new_columns = acertos_p / len(unionNewColumns) \n", + " else:\n", + " acuracia_new_columns = 1.0\n", + "\n", + " acertos_p = 0\n", + " unionEmptyColumns = np.union1d(no_data_columns, true_empty_columns)\n", + " if len(unionEmptyColumns) > 0:\n", + " for col in unionEmptyColumns:\n", + " if col in no_data_columns and col in true_empty_columns:\n", + " acertos_p += 1\n", + " acuracia_empty_columns = acertos_p / len(unionEmptyColumns) \n", + " else:\n", + " acuracia_empty_columns = 1.0\n", + " \n", + " acertos_p = 0\n", + " results_len = 0\n", + " for res in resultados:\n", + " if(len(res) == 0):\n", + " continue\n", + " results_len += 1\n", + " for i in res:\n", + " if i[0] == i[2]:\n", + " acertos_p += 1\n", + " break\n", + " \n", + " acuracia_matches = acertos_p / len(prev_col)\n", + " # soma_acuracia = acuracia_matches * results_len + acuracia_new_columns * len(unionNewColumns) + acuracia_empty_columns * len(unionEmptyColumns)\n", + " # acuracia_total = soma_acuracia / (results_len + len(unionNewColumns) + len(unionEmptyColumns))\n", + " \n", + " # print(ano)\n", + " # print(f'{acuracia_matches} matches')\n", + " # print(f'{acuracia_new_columns} new')\n", + " # print(f'{acuracia_empty_columns} empty')\n", + " # print(f'{acuracia_total} total')\n", + " \n", + " # =========================\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " # Adiciona acuracia\n", + " if(stat_column == 'estatistica_f'):\n", + " self.stat_f_top3.append([ano, acuracia_total])\n", + " self.stat_f_matches_top3.append([ano, acuracia_matches])\n", + " self.stat_f_new_top3.append([ano, acuracia_new_columns])\n", + " self.stat_f_empty_top3.append([ano, acuracia_empty_columns])\n", + " elif(stat_column == 'estatistica_t'):\n", + " self.stat_t_top3.append([ano, acuracia_total])\n", + " self.stat_t_matches_top3.append([ano, acuracia_matches])\n", + " self.stat_t_new_top3.append([ano, acuracia_new_columns])\n", + " self.stat_t_empty_top3.append([ano, acuracia_empty_columns])\n", + " elif(stat_column == 'estatistica_ks'):\n", + " self.stat_ks_top3.append([ano, acuracia_total])\n", + " self.stat_ks_matches_top3.append([ano, acuracia_matches])\n", + " self.stat_ks_new_top3.append([ano, acuracia_new_columns])\n", + " self.stat_ks_empty_top3.append([ano, acuracia_empty_columns])\n", + " elif(stat_column == 'estatistica_cohend'):\n", + " self.stat_cohend_top3.append([ano, acuracia_total])\n", + " self.stat_cohend_matches_top3.append([ano, acuracia_matches])\n", + " self.stat_cohend_new_top3.append([ano, acuracia_new_columns])\n", + " self.stat_cohend_empty_top3.append([ano, acuracia_empty_columns])" + ] + }, + { + "cell_type": "markdown", + "id": "9eaff904-7ee7-45a0-9768-0f21989c65bd", + "metadata": {}, + "source": [ + "## Import the results for each statistical method" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "26287a6f-5537-4509-a09d-52dd59b3a76d", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Import F results\n", + "df_f = pd.read_csv('Testes_hist/Result_F/F_subsequente.csv', sep=',')\n", + "stat_column = 'estatistica_f'\n", + "df_f[stat_column] = (df_f[stat_column] - 1).abs()\n", + "df_f = df_f.sort_values(by=['ano_coluna1', stat_column])\n", + "df_f = df_f[~df_f['coluna1'].str.contains('ANO_CENSO') & ~df_f['coluna2'].str.contains('ANO_CENSO')]\n", + "\n", + "# Import T results\n", + "df_t = pd.read_csv('Testes_hist/Result_T/T_subsequente.csv', sep=',')\n", + "stat_column = 'estatistica_t'\n", + "df_t[stat_column] = df_t[stat_column].abs()\n", + "df_t = df_t.sort_values(by=['ano_coluna1', stat_column])\n", + "df_t = df_t[~df_t['coluna1'].str.contains('ANO_CENSO') & ~df_t['coluna2'].str.contains('ANO_CENSO')]\n", + "\n", + "# Import COHEND results\n", + "df_c = pd.read_csv('Testes_hist/Result_COHEND/COHEND_subsequente.csv', sep=',')\n", + "stat_column = 'estatistica_cohend'\n", + "df_c[stat_column] = df_c[stat_column].abs()\n", + "df_c = df_c.sort_values(by=['ano_coluna1', stat_column])\n", + "df_c = df_c[~df_c['coluna1'].str.contains('ANO_CENSO') & ~df_c['coluna2'].str.contains('ANO_CENSO')]\n", + "\n", + "# Import KS results\n", + "df_ks = pd.read_csv('Testes_hist/Result_KS/KS_subsequente.csv', sep=',')\n", + "stat_column = 'estatistica_ks'\n", + "df_ks[stat_column] = (df_ks[stat_column]).abs()\n", + "df_ks = df_ks.sort_values(by=['ano_coluna1', stat_column])\n", + "df_ks = df_ks[~df_ks['coluna1'].str.contains('ANO_CENSO') & ~df_ks['coluna2'].str.contains('ANO_CENSO')]" + ] + }, + { + "cell_type": "markdown", + "id": "e25f4f2d-3fb9-4cfc-8a92-c2e8b887262c", + "metadata": {}, + "source": [ + "## Calcule the columns matches" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f9541a11-c1bf-4318-847a-100917e13204", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "dist = DistCalc()\n", + "dist.calc(df_f, 'estatistica_f', 0.7)\n", + "dist.calc(df_t, 'estatistica_t', 40)\n", + "dist.calc(df_c, 'estatistica_cohend', 0.15)\n", + "dist.calc(df_ks, 'estatistica_ks', 0.10)\n", + "\n", + "dist.calcTop3(df_f, 'estatistica_f', 0.7)\n", + "dist.calcTop3(df_t, 'estatistica_t', 40)\n", + "dist.calcTop3(df_c, 'estatistica_cohend', 0.15)\n", + "dist.calcTop3(df_ks, 'estatistica_ks', 0.10)" + ] + }, + { + "cell_type": "markdown", + "id": "47bcb19b-6aba-4d4a-9de0-4633bfa0eb20", + "metadata": {}, + "source": [ + "## Create the result dataframes" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "527ff27d-f321-4749-a94d-dd7d824ef682", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# ================= KS =================\n", + "result_ks = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "resultTop3_ks = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "for i, ano in enumerate(dist.get_years):\n", + " new_row = [ano, dist.stat_ks_matches[i][1], dist.stat_ks_new[i][1], dist.stat_ks_empty[i][1], dist.stat_ks[i][1]]\n", + " result_ks.loc[len(result_ks)] = new_row\n", + " new_row = [ano, dist.stat_ks_matches_top3[i][1], dist.stat_ks_new_top3[i][1], dist.stat_ks_empty_top3[i][1], dist.stat_ks_top3[i][1]]\n", + " resultTop3_ks.loc[len(resultTop3_ks)] = new_row\n", + " \n", + "result_ks.loc[len(result_ks)] = result_ks.mean()\n", + "result_ks.loc[len(result_ks)] = result_ks.std()\n", + "resultTop3_ks.loc[len(resultTop3_ks)] = resultTop3_ks.mean()\n", + "resultTop3_ks.loc[len(resultTop3_ks)] = resultTop3_ks.std()\n", + "result_ks = result_ks.round(3)\n", + "resultTop3_ks = resultTop3_ks.round(3)\n", + "\n", + "# ================= F =================\n", + "result_f = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "resultTop3_f = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "for i, ano in enumerate(dist.get_years):\n", + " new_row = [ano, dist.stat_f_matches[i][1], dist.stat_f_new[i][1], dist.stat_f_empty[i][1], dist.stat_f[i][1]]\n", + " result_f.loc[len(result_f)] = new_row\n", + " new_row = [ano, dist.stat_f_matches_top3[i][1], dist.stat_f_new_top3[i][1], dist.stat_f_empty_top3[i][1], dist.stat_f_top3[i][1]]\n", + " resultTop3_f.loc[len(resultTop3_f)] = new_row\n", + " \n", + "result_f.loc[len(result_f)] = result_f.mean()\n", + "result_f.loc[len(result_f)] = result_f.std()\n", + "resultTop3_f.loc[len(resultTop3_f)] = resultTop3_f.mean()\n", + "resultTop3_f.loc[len(resultTop3_f)] = resultTop3_f.std()\n", + "result_f = result_f.round(3)\n", + "resultTop3_f = resultTop3_f.round(3)\n", + "\n", + "# ================= COHEN =================\n", + "result_cohend = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "resultTop3_cohend = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "for i, ano in enumerate(dist.get_years):\n", + " new_row = [ano, dist.stat_cohend_matches[i][1], dist.stat_cohend_new[i][1], dist.stat_cohend_empty[i][1], dist.stat_cohend[i][1]]\n", + " result_cohend.loc[len(result_cohend)] = new_row\n", + " new_row = [ano, dist.stat_cohend_matches_top3[i][1], dist.stat_cohend_new_top3[i][1], dist.stat_cohend_empty_top3[i][1], dist.stat_cohend_top3[i][1]]\n", + " resultTop3_cohend.loc[len(resultTop3_cohend)] = new_row\n", + " \n", + "result_cohend.loc[len(result_cohend)] = result_cohend.mean()\n", + "result_cohend.loc[len(result_cohend)] = result_cohend.std()\n", + "resultTop3_cohend.loc[len(resultTop3_cohend)] = resultTop3_cohend.mean()\n", + "resultTop3_cohend.loc[len(resultTop3_cohend)] = resultTop3_cohend.std()\n", + "result_cohend = result_cohend.round(3)\n", + "resultTop3_cohend = resultTop3_cohend.round(3)\n", + "\n", + "# ================= T =================\n", + "result_t = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "resultTop3_t = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "for i, ano in enumerate(dist.get_years):\n", + " new_row = [ano, dist.stat_t_matches[i][1], dist.stat_t_new[i][1], dist.stat_t_empty[i][1], dist.stat_t[i][1]]\n", + " result_t.loc[len(result_t)] = new_row\n", + " new_row = [ano, dist.stat_t_matches_top3[i][1], dist.stat_t_new_top3[i][1], dist.stat_t_empty_top3[i][1], dist.stat_t_top3[i][1]]\n", + " resultTop3_t.loc[len(resultTop3_t)] = new_row\n", + " \n", + "result_t.loc[len(result_t)] = result_t.mean()\n", + "result_t.loc[len(result_t)] = result_t.std()\n", + "resultTop3_t.loc[len(resultTop3_t)] = resultTop3_t.mean()\n", + "resultTop3_t.loc[len(resultTop3_t)] = resultTop3_t.std()\n", + "result_t = result_t.round(3)\n", + "resultTop3_t = resultTop3_t.round(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "4cb4afc8-6149-40a7-8f77-af06183d4d23", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "result_ks.to_csv(f'./result_ks.csv', index=False)\n", + "resultTop3_ks.to_csv(f'./resultTop3_ks.csv', index=False)\n", + "\n", + "result_f.to_csv(f'./result_f.csv', index=False)\n", + "resultTop3_f.to_csv(f'./resultTop3_f.csv', index=False)\n", + "\n", + "result_t.to_csv(f'./result_t.csv', index=False)\n", + "resultTop3_t.to_csv(f'./resultTop3_t.csv', index=False)\n", + "\n", + "result_cohend.to_csv(f'./result_cohend.csv', index=False)\n", + "resultTop3_cohend.to_csv(f'./resultTop3_cohend.csv', index=False)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/dados/colunas/.ipynb_checkpoints/num_computador_adm-checkpoint.csv b/dados/colunas/.ipynb_checkpoints/num_computador_adm-checkpoint.csv new file mode 100644 index 0000000000000000000000000000000000000000..5911145eee871d4dbbccf0d8e3a41ad3e09537c8 --- /dev/null +++ b/dados/colunas/.ipynb_checkpoints/num_computador_adm-checkpoint.csv @@ -0,0 +1,2223 @@ +| 2007 | 0 | 0.046 | +| 2007 | 1 | 14.853 | +| 2007 | 2 | 7.510 | +| 2007 | 3 | 4.120 | +| 2007 | 4 | 2.350 | +| 2007 | 5 | 1.476 | +| 2007 | 6 | 0.880 | +| 2007 | 7 | 0.582 | +| 2007 | 8 | 0.416 | +| 2007 | 9 | 0.255 | +| 2007 | 10 | 0.275 | +| 2007 | 11 | 0.132 | +| 2007 | 12 | 0.150 | +| 2007 | 13 | 0.100 | +| 2007 | 14 | 0.075 | +| 2007 | 15 | 0.077 | +| 2007 | 16 | 0.053 | +| 2007 | 17 | 0.042 | +| 2007 | 18 | 0.040 | +| 2007 | 19 | 0.028 | +| 2007 | 20 | 0.055 | +| 2007 | 21 | 0.020 | +| 2007 | 22 | 0.026 | +| 2007 | 23 | 0.013 | +| 2007 | 24 | 0.015 | +| 2007 | 25 | 0.025 | +| 2007 | 26 | 0.016 | +| 2007 | 27 | 0.013 | +| 2007 | 28 | 0.016 | +| 2007 | 29 | 0.007 | +| 2007 | 30 | 0.023 | +| 2007 | 31 | 0.013 | +| 2007 | 32 | 0.008 | +| 2007 | 33 | 0.005 | +| 2007 | 34 | 0.002 | +| 2007 | 35 | 0.013 | +| 2007 | 36 | 0.005 | +| 2007 | 37 | 0.005 | +| 2007 | 38 | 0.007 | +| 2007 | 39 | 0.005 | +| 2007 | 40 | 0.013 | +| 2007 | 41 | 0.005 | +| 2007 | 42 | 0.001 | +| 2007 | 43 | 0.003 | +| 2007 | 44 | 0.005 | +| 2007 | 45 | 0.005 | +| 2007 | 46 | 0.005 | +| 2007 | 47 | 0.002 | +| 2007 | 48 | 0.003 | +| 2007 | 49 | 0.002 | +| 2007 | 50 | 0.005 | +| 2007 | 51 | 0.001 | +| 2007 | 52 | 0.004 | +| 2007 | 53 | 0.002 | +| 2007 | 54 | 0.003 | +| 2007 | 55 | 0.004 | +| 2007 | 56 | 0.001 | +| 2007 | 57 | 0.002 | +| 2007 | 58 | 0.002 | +| 2007 | 59 | 0.002 | +| 2007 | 60 | 0.003 | +| 2007 | 61 | 0.000 | +| 2007 | 62 | 0.000 | +| 2007 | 63 | 0.002 | +| 2007 | 64 | 0.002 | +| 2007 | 65 | 0.002 | +| 2007 | 66 | 0.000 | +| 2007 | 68 | 0.001 | +| 2007 | 69 | 0.001 | +| 2007 | 70 | 0.003 | +| 2007 | 71 | 0.001 | +| 2007 | 72 | 0.001 | +| 2007 | 73 | 0.001 | +| 2007 | 75 | 0.000 | +| 2007 | 77 | 0.001 | +| 2007 | 78 | 0.001 | +| 2007 | 79 | 0.000 | +| 2007 | 80 | 0.003 | +| 2007 | 81 | 0.000 | +| 2007 | 82 | 0.000 | +| 2007 | 84 | 0.000 | +| 2007 | 85 | 0.000 | +| 2007 | 88 | 0.000 | +| 2007 | 89 | 0.000 | +| 2007 | 90 | 0.001 | +| 2007 | 91 | 0.000 | +| 2007 | 92 | 0.000 | +| 2007 | 93 | 0.000 | +| 2007 | 94 | 0.000 | +| 2007 | 95 | 0.001 | +| 2007 | 96 | 0.000 | +| 2007 | 97 | 0.001 | +| 2007 | 98 | 0.000 | +| 2007 | 100 | 0.001 | +| 2007 | 103 | 0.000 | +| 2007 | 104 | 0.000 | +| 2007 | 105 | 0.002 | +| 2007 | 108 | 0.000 | +| 2007 | 110 | 0.001 | +| 2007 | 114 | 0.000 | +| 2007 | 115 | 0.000 | +| 2007 | 117 | 0.000 | +| 2007 | 120 | 0.001 | +| 2007 | 122 | 0.000 | +| 2007 | 125 | 0.000 | +| 2007 | 127 | 0.000 | +| 2007 | 130 | 0.000 | +| 2007 | 133 | 0.000 | +| 2007 | 134 | 0.000 | +| 2007 | 135 | 0.000 | +| 2007 | 139 | 0.000 | +| 2007 | 140 | 0.000 | +| 2007 | 141 | 0.000 | +| 2007 | 142 | 0.000 | +| 2007 | 149 | 0.001 | +| 2007 | 150 | 0.000 | +| 2007 | 178 | 0.000 | +| 2007 | 180 | 0.000 | +| 2007 | 188 | 0.000 | +| 2007 | 189 | 0.000 | +| 2007 | 200 | 0.000 | +| 2007 | 215 | 0.000 | +| 2007 | 222 | 0.000 | +| 2007 | 229 | 0.000 | +| 2007 | 232 | 0.000 | +| 2007 | 244 | 0.000 | +| 2007 | 250 | 0.000 | +| 2007 | 253 | 0.000 | +| 2007 | 294 | 0.000 | +| 2007 | 300 | 0.000 | +| 2007 | 346 | 0.000 | +| 2007 | 549 | 0.000 | +| 2007 | 574 | 0.000 | +| 2007 | 647 | 0.000 | +| 2007 | 999 | 0.000 | +| 2007 | 1370 | 0.000 | +| 2007 | 4000 | 0.000 | +| 2008 | 1 | 17.185 | +| 2008 | 2 | 8.744 | +| 2008 | 3 | 4.787 | +| 2008 | 4 | 2.942 | +| 2008 | 5 | 1.954 | +| 2008 | 6 | 1.230 | +| 2008 | 7 | 0.768 | +| 2008 | 8 | 0.536 | +| 2008 | 9 | 0.360 | +| 2008 | 10 | 0.361 | +| 2008 | 11 | 0.182 | +| 2008 | 12 | 0.180 | +| 2008 | 13 | 0.121 | +| 2008 | 14 | 0.102 | +| 2008 | 15 | 0.117 | +| 2008 | 16 | 0.066 | +| 2008 | 17 | 0.055 | +| 2008 | 18 | 0.048 | +| 2008 | 19 | 0.035 | +| 2008 | 20 | 0.066 | +| 2008 | 21 | 0.021 | +| 2008 | 22 | 0.033 | +| 2008 | 23 | 0.020 | +| 2008 | 24 | 0.017 | +| 2008 | 25 | 0.033 | +| 2008 | 26 | 0.019 | +| 2008 | 27 | 0.011 | +| 2008 | 28 | 0.019 | +| 2008 | 29 | 0.012 | +| 2008 | 30 | 0.030 | +| 2008 | 31 | 0.012 | +| 2008 | 32 | 0.008 | +| 2008 | 33 | 0.008 | +| 2008 | 34 | 0.008 | +| 2008 | 35 | 0.013 | +| 2008 | 36 | 0.008 | +| 2008 | 37 | 0.010 | +| 2008 | 38 | 0.006 | +| 2008 | 39 | 0.005 | +| 2008 | 40 | 0.012 | +| 2008 | 41 | 0.006 | +| 2008 | 42 | 0.004 | +| 2008 | 43 | 0.007 | +| 2008 | 44 | 0.003 | +| 2008 | 45 | 0.009 | +| 2008 | 46 | 0.005 | +| 2008 | 47 | 0.003 | +| 2008 | 48 | 0.003 | +| 2008 | 49 | 0.003 | +| 2008 | 50 | 0.009 | +| 2008 | 51 | 0.001 | +| 2008 | 52 | 0.003 | +| 2008 | 53 | 0.003 | +| 2008 | 54 | 0.003 | +| 2008 | 55 | 0.003 | +| 2008 | 56 | 0.004 | +| 2008 | 57 | 0.002 | +| 2008 | 58 | 0.001 | +| 2008 | 59 | 0.002 | +| 2008 | 60 | 0.007 | +| 2008 | 61 | 0.002 | +| 2008 | 62 | 0.001 | +| 2008 | 63 | 0.003 | +| 2008 | 64 | 0.001 | +| 2008 | 65 | 0.003 | +| 2008 | 66 | 0.000 | +| 2008 | 67 | 0.001 | +| 2008 | 68 | 0.002 | +| 2008 | 69 | 0.002 | +| 2008 | 70 | 0.004 | +| 2008 | 71 | 0.001 | +| 2008 | 72 | 0.000 | +| 2008 | 73 | 0.002 | +| 2008 | 74 | 0.001 | +| 2008 | 75 | 0.002 | +| 2008 | 76 | 0.001 | +| 2008 | 77 | 0.001 | +| 2008 | 78 | 0.001 | +| 2008 | 79 | 0.001 | +| 2008 | 80 | 0.003 | +| 2008 | 81 | 0.000 | +| 2008 | 82 | 0.000 | +| 2008 | 83 | 0.001 | +| 2008 | 85 | 0.001 | +| 2008 | 86 | 0.000 | +| 2008 | 88 | 0.000 | +| 2008 | 89 | 0.000 | +| 2008 | 90 | 0.001 | +| 2008 | 91 | 0.001 | +| 2008 | 93 | 0.000 | +| 2008 | 94 | 0.001 | +| 2008 | 95 | 0.001 | +| 2008 | 97 | 0.000 | +| 2008 | 98 | 0.000 | +| 2008 | 99 | 0.000 | +| 2008 | 100 | 0.001 | +| 2008 | 103 | 0.000 | +| 2008 | 104 | 0.000 | +| 2008 | 105 | 0.001 | +| 2008 | 106 | 0.000 | +| 2008 | 108 | 0.002 | +| 2008 | 110 | 0.001 | +| 2008 | 112 | 0.000 | +| 2008 | 113 | 0.000 | +| 2008 | 114 | 0.000 | +| 2008 | 115 | 0.000 | +| 2008 | 116 | 0.000 | +| 2008 | 117 | 0.000 | +| 2008 | 118 | 0.000 | +| 2008 | 119 | 0.000 | +| 2008 | 120 | 0.002 | +| 2008 | 121 | 0.000 | +| 2008 | 122 | 0.000 | +| 2008 | 123 | 0.000 | +| 2008 | 126 | 0.000 | +| 2008 | 130 | 0.001 | +| 2008 | 132 | 0.000 | +| 2008 | 133 | 0.000 | +| 2008 | 137 | 0.000 | +| 2008 | 139 | 0.000 | +| 2008 | 140 | 0.000 | +| 2008 | 141 | 0.000 | +| 2008 | 142 | 0.001 | +| 2008 | 145 | 0.002 | +| 2008 | 146 | 0.000 | +| 2008 | 149 | 0.000 | +| 2008 | 150 | 0.000 | +| 2008 | 155 | 0.000 | +| 2008 | 163 | 0.000 | +| 2008 | 165 | 0.000 | +| 2008 | 171 | 0.000 | +| 2008 | 179 | 0.000 | +| 2008 | 180 | 0.000 | +| 2008 | 182 | 0.000 | +| 2008 | 189 | 0.000 | +| 2008 | 191 | 0.000 | +| 2008 | 200 | 0.000 | +| 2008 | 205 | 0.000 | +| 2008 | 215 | 0.000 | +| 2008 | 220 | 0.000 | +| 2008 | 222 | 0.000 | +| 2008 | 227 | 0.000 | +| 2008 | 232 | 0.000 | +| 2008 | 234 | 0.000 | +| 2008 | 235 | 0.000 | +| 2008 | 240 | 0.000 | +| 2008 | 250 | 0.000 | +| 2008 | 253 | 0.000 | +| 2008 | 264 | 0.000 | +| 2008 | 314 | 0.000 | +| 2008 | 320 | 0.000 | +| 2008 | 330 | 0.000 | +| 2008 | 350 | 0.001 | +| 2008 | 387 | 0.000 | +| 2008 | 416 | 0.000 | +| 2008 | 549 | 0.000 | +| 2008 | 574 | 0.000 | +| 2008 | 595 | 0.000 | +| 2008 | 600 | 0.000 | +| 2008 | 954 | 0.000 | +| 2008 | 1370 | 0.000 | +| 2009 | 1 | 17.715 | +| 2009 | 2 | 9.232 | +| 2009 | 3 | 5.167 | +| 2009 | 4 | 3.304 | +| 2009 | 5 | 2.423 | +| 2009 | 6 | 1.489 | +| 2009 | 7 | 0.936 | +| 2009 | 8 | 0.687 | +| 2009 | 9 | 0.419 | +| 2009 | 10 | 0.416 | +| 2009 | 11 | 0.205 | +| 2009 | 12 | 0.216 | +| 2009 | 13 | 0.139 | +| 2009 | 14 | 0.112 | +| 2009 | 15 | 0.124 | +| 2009 | 16 | 0.077 | +| 2009 | 17 | 0.070 | +| 2009 | 18 | 0.054 | +| 2009 | 19 | 0.040 | +| 2009 | 20 | 0.079 | +| 2009 | 21 | 0.032 | +| 2009 | 22 | 0.032 | +| 2009 | 23 | 0.028 | +| 2009 | 24 | 0.030 | +| 2009 | 25 | 0.043 | +| 2009 | 26 | 0.031 | +| 2009 | 27 | 0.021 | +| 2009 | 28 | 0.021 | +| 2009 | 29 | 0.011 | +| 2009 | 30 | 0.036 | +| 2009 | 31 | 0.014 | +| 2009 | 32 | 0.015 | +| 2009 | 33 | 0.012 | +| 2009 | 34 | 0.012 | +| 2009 | 35 | 0.016 | +| 2009 | 36 | 0.011 | +| 2009 | 37 | 0.009 | +| 2009 | 38 | 0.011 | +| 2009 | 39 | 0.009 | +| 2009 | 40 | 0.012 | +| 2009 | 41 | 0.007 | +| 2009 | 42 | 0.004 | +| 2009 | 43 | 0.007 | +| 2009 | 44 | 0.004 | +| 2009 | 45 | 0.011 | +| 2009 | 46 | 0.007 | +| 2009 | 47 | 0.005 | +| 2009 | 48 | 0.004 | +| 2009 | 49 | 0.003 | +| 2009 | 50 | 0.013 | +| 2009 | 51 | 0.002 | +| 2009 | 52 | 0.004 | +| 2009 | 53 | 0.000 | +| 2009 | 54 | 0.006 | +| 2009 | 55 | 0.005 | +| 2009 | 56 | 0.004 | +| 2009 | 57 | 0.002 | +| 2009 | 58 | 0.001 | +| 2009 | 59 | 0.002 | +| 2009 | 60 | 0.003 | +| 2009 | 61 | 0.002 | +| 2009 | 62 | 0.001 | +| 2009 | 63 | 0.003 | +| 2009 | 64 | 0.001 | +| 2009 | 65 | 0.003 | +| 2009 | 66 | 0.001 | +| 2009 | 67 | 0.001 | +| 2009 | 68 | 0.002 | +| 2009 | 69 | 0.000 | +| 2009 | 70 | 0.006 | +| 2009 | 71 | 0.000 | +| 2009 | 72 | 0.000 | +| 2009 | 73 | 0.001 | +| 2009 | 74 | 0.002 | +| 2009 | 75 | 0.003 | +| 2009 | 76 | 0.002 | +| 2009 | 77 | 0.000 | +| 2009 | 78 | 0.002 | +| 2009 | 79 | 0.001 | +| 2009 | 80 | 0.001 | +| 2009 | 81 | 0.001 | +| 2009 | 82 | 0.000 | +| 2009 | 83 | 0.001 | +| 2009 | 84 | 0.000 | +| 2009 | 85 | 0.000 | +| 2009 | 86 | 0.000 | +| 2009 | 87 | 0.001 | +| 2009 | 88 | 0.001 | +| 2009 | 89 | 0.000 | +| 2009 | 90 | 0.001 | +| 2009 | 91 | 0.001 | +| 2009 | 92 | 0.000 | +| 2009 | 93 | 0.000 | +| 2009 | 94 | 0.001 | +| 2009 | 95 | 0.002 | +| 2009 | 96 | 0.000 | +| 2009 | 98 | 0.000 | +| 2009 | 99 | 0.000 | +| 2009 | 100 | 0.002 | +| 2009 | 101 | 0.000 | +| 2009 | 103 | 0.000 | +| 2009 | 104 | 0.001 | +| 2009 | 105 | 0.001 | +| 2009 | 107 | 0.000 | +| 2009 | 108 | 0.000 | +| 2009 | 109 | 0.000 | +| 2009 | 110 | 0.001 | +| 2009 | 112 | 0.000 | +| 2009 | 113 | 0.000 | +| 2009 | 114 | 0.000 | +| 2009 | 115 | 0.001 | +| 2009 | 116 | 0.000 | +| 2009 | 117 | 0.000 | +| 2009 | 118 | 0.000 | +| 2009 | 119 | 0.000 | +| 2009 | 120 | 0.002 | +| 2009 | 121 | 0.000 | +| 2009 | 122 | 0.000 | +| 2009 | 123 | 0.000 | +| 2009 | 124 | 0.000 | +| 2009 | 126 | 0.000 | +| 2009 | 128 | 0.000 | +| 2009 | 129 | 0.000 | +| 2009 | 130 | 0.001 | +| 2009 | 133 | 0.000 | +| 2009 | 134 | 0.000 | +| 2009 | 135 | 0.000 | +| 2009 | 139 | 0.000 | +| 2009 | 141 | 0.000 | +| 2009 | 142 | 0.001 | +| 2009 | 143 | 0.000 | +| 2009 | 145 | 0.000 | +| 2009 | 149 | 0.000 | +| 2009 | 150 | 0.001 | +| 2009 | 152 | 0.000 | +| 2009 | 153 | 0.000 | +| 2009 | 155 | 0.000 | +| 2009 | 160 | 0.000 | +| 2009 | 162 | 0.000 | +| 2009 | 163 | 0.000 | +| 2009 | 165 | 0.000 | +| 2009 | 170 | 0.000 | +| 2009 | 171 | 0.000 | +| 2009 | 172 | 0.000 | +| 2009 | 175 | 0.000 | +| 2009 | 179 | 0.000 | +| 2009 | 180 | 0.000 | +| 2009 | 189 | 0.000 | +| 2009 | 191 | 0.000 | +| 2009 | 205 | 0.000 | +| 2009 | 210 | 0.000 | +| 2009 | 214 | 0.000 | +| 2009 | 215 | 0.000 | +| 2009 | 220 | 0.000 | +| 2009 | 221 | 0.000 | +| 2009 | 224 | 0.000 | +| 2009 | 225 | 0.000 | +| 2009 | 227 | 0.000 | +| 2009 | 232 | 0.000 | +| 2009 | 234 | 0.000 | +| 2009 | 239 | 0.000 | +| 2009 | 240 | 0.000 | +| 2009 | 249 | 0.000 | +| 2009 | 250 | 0.000 | +| 2009 | 253 | 0.000 | +| 2009 | 264 | 0.000 | +| 2009 | 279 | 0.000 | +| 2009 | 281 | 0.000 | +| 2009 | 330 | 0.000 | +| 2009 | 335 | 0.000 | +| 2009 | 345 | 0.000 | +| 2009 | 350 | 0.000 | +| 2009 | 387 | 0.000 | +| 2009 | 416 | 0.000 | +| 2009 | 440 | 0.000 | +| 2009 | 550 | 0.000 | +| 2009 | 574 | 0.000 | +| 2009 | 715 | 0.000 | +| 2009 | 954 | 0.000 | +| 2009 | 1370 | 0.000 | +| 2010 | 0 | 0.001 | +| 2010 | 1 | 17.744 | +| 2010 | 2 | 9.537 | +| 2010 | 3 | 5.388 | +| 2010 | 4 | 3.702 | +| 2010 | 5 | 2.763 | +| 2010 | 6 | 1.739 | +| 2010 | 7 | 1.100 | +| 2010 | 8 | 0.816 | +| 2010 | 9 | 0.504 | +| 2010 | 10 | 0.496 | +| 2010 | 11 | 0.245 | +| 2010 | 12 | 0.242 | +| 2010 | 13 | 0.158 | +| 2010 | 14 | 0.126 | +| 2010 | 15 | 0.155 | +| 2010 | 16 | 0.085 | +| 2010 | 17 | 0.071 | +| 2010 | 18 | 0.069 | +| 2010 | 19 | 0.045 | +| 2010 | 20 | 0.093 | +| 2010 | 21 | 0.033 | +| 2010 | 22 | 0.036 | +| 2010 | 23 | 0.026 | +| 2010 | 24 | 0.030 | +| 2010 | 25 | 0.048 | +| 2010 | 26 | 0.033 | +| 2010 | 27 | 0.020 | +| 2010 | 28 | 0.029 | +| 2010 | 29 | 0.015 | +| 2010 | 30 | 0.038 | +| 2010 | 31 | 0.013 | +| 2010 | 32 | 0.017 | +| 2010 | 33 | 0.011 | +| 2010 | 34 | 0.011 | +| 2010 | 35 | 0.020 | +| 2010 | 36 | 0.012 | +| 2010 | 37 | 0.011 | +| 2010 | 38 | 0.013 | +| 2010 | 39 | 0.009 | +| 2010 | 40 | 0.015 | +| 2010 | 41 | 0.010 | +| 2010 | 42 | 0.007 | +| 2010 | 43 | 0.008 | +| 2010 | 44 | 0.006 | +| 2010 | 45 | 0.008 | +| 2010 | 46 | 0.006 | +| 2010 | 47 | 0.005 | +| 2010 | 48 | 0.005 | +| 2010 | 49 | 0.003 | +| 2010 | 50 | 0.015 | +| 2010 | 51 | 0.004 | +| 2010 | 52 | 0.004 | +| 2010 | 53 | 0.005 | +| 2010 | 54 | 0.006 | +| 2010 | 55 | 0.005 | +| 2010 | 56 | 0.003 | +| 2010 | 57 | 0.002 | +| 2010 | 58 | 0.002 | +| 2010 | 59 | 0.001 | +| 2010 | 60 | 0.007 | +| 2010 | 61 | 0.003 | +| 2010 | 62 | 0.003 | +| 2010 | 63 | 0.002 | +| 2010 | 64 | 0.001 | +| 2010 | 65 | 0.004 | +| 2010 | 66 | 0.001 | +| 2010 | 67 | 0.001 | +| 2010 | 68 | 0.002 | +| 2010 | 69 | 0.001 | +| 2010 | 70 | 0.006 | +| 2010 | 71 | 0.000 | +| 2010 | 72 | 0.001 | +| 2010 | 73 | 0.000 | +| 2010 | 74 | 0.004 | +| 2010 | 75 | 0.003 | +| 2010 | 76 | 0.001 | +| 2010 | 78 | 0.003 | +| 2010 | 79 | 0.002 | +| 2010 | 80 | 0.005 | +| 2010 | 82 | 0.000 | +| 2010 | 83 | 0.002 | +| 2010 | 84 | 0.000 | +| 2010 | 85 | 0.002 | +| 2010 | 86 | 0.000 | +| 2010 | 87 | 0.001 | +| 2010 | 88 | 0.001 | +| 2010 | 89 | 0.000 | +| 2010 | 90 | 0.002 | +| 2010 | 91 | 0.001 | +| 2010 | 92 | 0.000 | +| 2010 | 93 | 0.001 | +| 2010 | 94 | 0.000 | +| 2010 | 95 | 0.001 | +| 2010 | 96 | 0.001 | +| 2010 | 97 | 0.000 | +| 2010 | 98 | 0.000 | +| 2010 | 99 | 0.001 | +| 2010 | 100 | 0.002 | +| 2010 | 103 | 0.000 | +| 2010 | 104 | 0.001 | +| 2010 | 105 | 0.001 | +| 2010 | 106 | 0.000 | +| 2010 | 107 | 0.000 | +| 2010 | 108 | 0.000 | +| 2010 | 109 | 0.000 | +| 2010 | 110 | 0.001 | +| 2010 | 111 | 0.000 | +| 2010 | 112 | 0.000 | +| 2010 | 113 | 0.000 | +| 2010 | 114 | 0.000 | +| 2010 | 115 | 0.001 | +| 2010 | 116 | 0.000 | +| 2010 | 118 | 0.001 | +| 2010 | 119 | 0.000 | +| 2010 | 120 | 0.005 | +| 2010 | 121 | 0.000 | +| 2010 | 123 | 0.000 | +| 2010 | 124 | 0.000 | +| 2010 | 125 | 0.000 | +| 2010 | 126 | 0.000 | +| 2010 | 127 | 0.000 | +| 2010 | 128 | 0.000 | +| 2010 | 129 | 0.000 | +| 2010 | 131 | 0.000 | +| 2010 | 132 | 0.000 | +| 2010 | 134 | 0.000 | +| 2010 | 135 | 0.000 | +| 2010 | 139 | 0.000 | +| 2010 | 140 | 0.002 | +| 2010 | 141 | 0.000 | +| 2010 | 142 | 0.001 | +| 2010 | 143 | 0.000 | +| 2010 | 149 | 0.000 | +| 2010 | 150 | 0.002 | +| 2010 | 151 | 0.000 | +| 2010 | 154 | 0.000 | +| 2010 | 155 | 0.000 | +| 2010 | 157 | 0.000 | +| 2010 | 158 | 0.000 | +| 2010 | 161 | 0.000 | +| 2010 | 162 | 0.000 | +| 2010 | 165 | 0.000 | +| 2010 | 172 | 0.000 | +| 2010 | 174 | 0.000 | +| 2010 | 175 | 0.000 | +| 2010 | 176 | 0.000 | +| 2010 | 178 | 0.000 | +| 2010 | 180 | 0.000 | +| 2010 | 187 | 0.000 | +| 2010 | 189 | 0.000 | +| 2010 | 190 | 0.000 | +| 2010 | 191 | 0.000 | +| 2010 | 193 | 0.000 | +| 2010 | 200 | 0.000 | +| 2010 | 201 | 0.000 | +| 2010 | 205 | 0.000 | +| 2010 | 215 | 0.000 | +| 2010 | 217 | 0.000 | +| 2010 | 220 | 0.000 | +| 2010 | 221 | 0.000 | +| 2010 | 225 | 0.000 | +| 2010 | 240 | 0.000 | +| 2010 | 244 | 0.000 | +| 2010 | 250 | 0.000 | +| 2010 | 252 | 0.000 | +| 2010 | 253 | 0.000 | +| 2010 | 255 | 0.000 | +| 2010 | 256 | 0.000 | +| 2010 | 260 | 0.000 | +| 2010 | 264 | 0.000 | +| 2010 | 266 | 0.000 | +| 2010 | 269 | 0.000 | +| 2010 | 279 | 0.000 | +| 2010 | 290 | 0.000 | +| 2010 | 300 | 0.000 | +| 2010 | 302 | 0.000 | +| 2010 | 328 | 0.000 | +| 2010 | 330 | 0.000 | +| 2010 | 335 | 0.000 | +| 2010 | 387 | 0.000 | +| 2010 | 416 | 0.000 | +| 2010 | 550 | 0.000 | +| 2010 | 574 | 0.000 | +| 2010 | 594 | 0.000 | +| 2010 | 715 | 0.000 | +| 2010 | 1370 | 0.000 | +| 2011 | 1 | 17.907 | +| 2011 | 2 | 9.950 | +| 2011 | 3 | 5.836 | +| 2011 | 4 | 4.065 | +| 2011 | 5 | 3.044 | +| 2011 | 6 | 1.940 | +| 2011 | 7 | 1.284 | +| 2011 | 8 | 0.958 | +| 2011 | 9 | 0.634 | +| 2011 | 10 | 0.622 | +| 2011 | 11 | 0.322 | +| 2011 | 12 | 0.307 | +| 2011 | 13 | 0.186 | +| 2011 | 14 | 0.169 | +| 2011 | 15 | 0.175 | +| 2011 | 16 | 0.108 | +| 2011 | 17 | 0.089 | +| 2011 | 18 | 0.088 | +| 2011 | 19 | 0.056 | +| 2011 | 20 | 0.097 | +| 2011 | 21 | 0.035 | +| 2011 | 22 | 0.050 | +| 2011 | 23 | 0.038 | +| 2011 | 24 | 0.029 | +| 2011 | 25 | 0.044 | +| 2011 | 26 | 0.034 | +| 2011 | 27 | 0.021 | +| 2011 | 28 | 0.027 | +| 2011 | 29 | 0.014 | +| 2011 | 30 | 0.046 | +| 2011 | 31 | 0.013 | +| 2011 | 32 | 0.019 | +| 2011 | 33 | 0.011 | +| 2011 | 34 | 0.010 | +| 2011 | 35 | 0.024 | +| 2011 | 36 | 0.012 | +| 2011 | 37 | 0.010 | +| 2011 | 38 | 0.016 | +| 2011 | 39 | 0.009 | +| 2011 | 40 | 0.023 | +| 2011 | 41 | 0.009 | +| 2011 | 42 | 0.008 | +| 2011 | 43 | 0.006 | +| 2011 | 44 | 0.007 | +| 2011 | 45 | 0.009 | +| 2011 | 46 | 0.006 | +| 2011 | 47 | 0.007 | +| 2011 | 48 | 0.008 | +| 2011 | 49 | 0.003 | +| 2011 | 50 | 0.022 | +| 2011 | 51 | 0.004 | +| 2011 | 52 | 0.005 | +| 2011 | 53 | 0.005 | +| 2011 | 54 | 0.005 | +| 2011 | 55 | 0.006 | +| 2011 | 56 | 0.004 | +| 2011 | 57 | 0.000 | +| 2011 | 58 | 0.004 | +| 2011 | 59 | 0.001 | +| 2011 | 60 | 0.006 | +| 2011 | 61 | 0.004 | +| 2011 | 62 | 0.003 | +| 2011 | 63 | 0.005 | +| 2011 | 64 | 0.001 | +| 2011 | 65 | 0.003 | +| 2011 | 66 | 0.001 | +| 2011 | 67 | 0.003 | +| 2011 | 68 | 0.002 | +| 2011 | 69 | 0.002 | +| 2011 | 70 | 0.008 | +| 2011 | 71 | 0.001 | +| 2011 | 72 | 0.002 | +| 2011 | 73 | 0.002 | +| 2011 | 74 | 0.002 | +| 2011 | 75 | 0.004 | +| 2011 | 76 | 0.000 | +| 2011 | 77 | 0.000 | +| 2011 | 78 | 0.002 | +| 2011 | 79 | 0.002 | +| 2011 | 80 | 0.005 | +| 2011 | 81 | 0.000 | +| 2011 | 82 | 0.001 | +| 2011 | 83 | 0.001 | +| 2011 | 84 | 0.001 | +| 2011 | 85 | 0.004 | +| 2011 | 86 | 0.001 | +| 2011 | 87 | 0.000 | +| 2011 | 88 | 0.001 | +| 2011 | 89 | 0.001 | +| 2011 | 90 | 0.002 | +| 2011 | 91 | 0.002 | +| 2011 | 92 | 0.001 | +| 2011 | 93 | 0.001 | +| 2011 | 94 | 0.001 | +| 2011 | 95 | 0.002 | +| 2011 | 96 | 0.000 | +| 2011 | 97 | 0.000 | +| 2011 | 98 | 0.000 | +| 2011 | 99 | 0.000 | +| 2011 | 100 | 0.003 | +| 2011 | 101 | 0.000 | +| 2011 | 102 | 0.000 | +| 2011 | 103 | 0.000 | +| 2011 | 104 | 0.000 | +| 2011 | 105 | 0.003 | +| 2011 | 106 | 0.001 | +| 2011 | 107 | 0.001 | +| 2011 | 108 | 0.000 | +| 2011 | 109 | 0.000 | +| 2011 | 110 | 0.002 | +| 2011 | 111 | 0.001 | +| 2011 | 113 | 0.000 | +| 2011 | 114 | 0.000 | +| 2011 | 115 | 0.002 | +| 2011 | 116 | 0.000 | +| 2011 | 118 | 0.000 | +| 2011 | 119 | 0.000 | +| 2011 | 120 | 0.002 | +| 2011 | 121 | 0.000 | +| 2011 | 122 | 0.000 | +| 2011 | 123 | 0.000 | +| 2011 | 124 | 0.000 | +| 2011 | 125 | 0.000 | +| 2011 | 126 | 0.000 | +| 2011 | 127 | 0.000 | +| 2011 | 129 | 0.000 | +| 2011 | 130 | 0.000 | +| 2011 | 132 | 0.000 | +| 2011 | 134 | 0.000 | +| 2011 | 136 | 0.001 | +| 2011 | 138 | 0.000 | +| 2011 | 139 | 0.000 | +| 2011 | 140 | 0.002 | +| 2011 | 141 | 0.000 | +| 2011 | 142 | 0.000 | +| 2011 | 143 | 0.000 | +| 2011 | 144 | 0.000 | +| 2011 | 145 | 0.000 | +| 2011 | 147 | 0.000 | +| 2011 | 149 | 0.000 | +| 2011 | 150 | 0.002 | +| 2011 | 151 | 0.000 | +| 2011 | 155 | 0.000 | +| 2011 | 157 | 0.000 | +| 2011 | 158 | 0.000 | +| 2011 | 159 | 0.000 | +| 2011 | 160 | 0.001 | +| 2011 | 161 | 0.000 | +| 2011 | 162 | 0.000 | +| 2011 | 165 | 0.000 | +| 2011 | 167 | 0.000 | +| 2011 | 170 | 0.000 | +| 2011 | 172 | 0.000 | +| 2011 | 173 | 0.000 | +| 2011 | 177 | 0.000 | +| 2011 | 178 | 0.000 | +| 2011 | 180 | 0.000 | +| 2011 | 185 | 0.000 | +| 2011 | 199 | 0.000 | +| 2011 | 200 | 0.001 | +| 2011 | 201 | 0.000 | +| 2011 | 211 | 0.000 | +| 2011 | 214 | 0.000 | +| 2011 | 215 | 0.000 | +| 2011 | 220 | 0.000 | +| 2011 | 224 | 0.000 | +| 2011 | 225 | 0.000 | +| 2011 | 240 | 0.000 | +| 2011 | 244 | 0.000 | +| 2011 | 250 | 0.000 | +| 2011 | 252 | 0.000 | +| 2011 | 256 | 0.000 | +| 2011 | 264 | 0.000 | +| 2011 | 266 | 0.000 | +| 2011 | 272 | 0.000 | +| 2011 | 279 | 0.000 | +| 2011 | 282 | 0.000 | +| 2011 | 289 | 0.000 | +| 2011 | 302 | 0.000 | +| 2011 | 320 | 0.000 | +| 2011 | 322 | 0.000 | +| 2011 | 330 | 0.000 | +| 2011 | 335 | 0.000 | +| 2011 | 359 | 0.000 | +| 2011 | 365 | 0.000 | +| 2011 | 400 | 0.000 | +| 2011 | 416 | 0.000 | +| 2011 | 505 | 0.000 | +| 2011 | 550 | 0.000 | +| 2011 | 570 | 0.000 | +| 2011 | 574 | 0.000 | +| 2011 | 715 | 0.000 | +| 2011 | 1370 | 0.000 | +| 2011 | 1500 | 0.000 | +| 2011 | 1600 | 0.000 | +| 2012 | 1 | 17.815 | +| 2012 | 2 | 9.981 | +| 2012 | 3 | 6.015 | +| 2012 | 4 | 4.083 | +| 2012 | 5 | 3.210 | +| 2012 | 6 | 2.147 | +| 2012 | 7 | 1.457 | +| 2012 | 8 | 1.123 | +| 2012 | 9 | 0.737 | +| 2012 | 10 | 0.728 | +| 2012 | 11 | 0.374 | +| 2012 | 12 | 0.329 | +| 2012 | 13 | 0.202 | +| 2012 | 14 | 0.171 | +| 2012 | 15 | 0.177 | +| 2012 | 16 | 0.104 | +| 2012 | 17 | 0.091 | +| 2012 | 18 | 0.090 | +| 2012 | 19 | 0.053 | +| 2012 | 20 | 0.120 | +| 2012 | 21 | 0.043 | +| 2012 | 22 | 0.051 | +| 2012 | 23 | 0.041 | +| 2012 | 24 | 0.031 | +| 2012 | 25 | 0.054 | +| 2012 | 26 | 0.038 | +| 2012 | 27 | 0.028 | +| 2012 | 28 | 0.026 | +| 2012 | 29 | 0.017 | +| 2012 | 30 | 0.053 | +| 2012 | 31 | 0.017 | +| 2012 | 32 | 0.023 | +| 2012 | 33 | 0.016 | +| 2012 | 34 | 0.013 | +| 2012 | 35 | 0.022 | +| 2012 | 36 | 0.011 | +| 2012 | 37 | 0.011 | +| 2012 | 38 | 0.014 | +| 2012 | 39 | 0.009 | +| 2012 | 40 | 0.025 | +| 2012 | 41 | 0.012 | +| 2012 | 42 | 0.009 | +| 2012 | 43 | 0.010 | +| 2012 | 44 | 0.009 | +| 2012 | 45 | 0.013 | +| 2012 | 46 | 0.009 | +| 2012 | 47 | 0.008 | +| 2012 | 48 | 0.008 | +| 2012 | 49 | 0.004 | +| 2012 | 50 | 0.023 | +| 2012 | 51 | 0.008 | +| 2012 | 52 | 0.008 | +| 2012 | 53 | 0.006 | +| 2012 | 54 | 0.007 | +| 2012 | 55 | 0.006 | +| 2012 | 56 | 0.005 | +| 2012 | 57 | 0.002 | +| 2012 | 58 | 0.005 | +| 2012 | 59 | 0.002 | +| 2012 | 60 | 0.010 | +| 2012 | 61 | 0.003 | +| 2012 | 62 | 0.002 | +| 2012 | 63 | 0.004 | +| 2012 | 64 | 0.003 | +| 2012 | 65 | 0.004 | +| 2012 | 66 | 0.003 | +| 2012 | 67 | 0.003 | +| 2012 | 68 | 0.003 | +| 2012 | 69 | 0.002 | +| 2012 | 70 | 0.009 | +| 2012 | 71 | 0.001 | +| 2012 | 72 | 0.003 | +| 2012 | 73 | 0.003 | +| 2012 | 74 | 0.001 | +| 2012 | 75 | 0.003 | +| 2012 | 76 | 0.002 | +| 2012 | 77 | 0.001 | +| 2012 | 78 | 0.002 | +| 2012 | 79 | 0.000 | +| 2012 | 80 | 0.006 | +| 2012 | 81 | 0.001 | +| 2012 | 82 | 0.001 | +| 2012 | 83 | 0.001 | +| 2012 | 84 | 0.002 | +| 2012 | 85 | 0.003 | +| 2012 | 86 | 0.000 | +| 2012 | 87 | 0.000 | +| 2012 | 88 | 0.002 | +| 2012 | 89 | 0.001 | +| 2012 | 90 | 0.003 | +| 2012 | 91 | 0.001 | +| 2012 | 92 | 0.000 | +| 2012 | 93 | 0.001 | +| 2012 | 94 | 0.000 | +| 2012 | 95 | 0.003 | +| 2012 | 96 | 0.001 | +| 2012 | 98 | 0.000 | +| 2012 | 99 | 0.001 | +| 2012 | 100 | 0.006 | +| 2012 | 101 | 0.001 | +| 2012 | 102 | 0.000 | +| 2012 | 103 | 0.001 | +| 2012 | 104 | 0.000 | +| 2012 | 105 | 0.001 | +| 2012 | 106 | 0.001 | +| 2012 | 107 | 0.000 | +| 2012 | 108 | 0.000 | +| 2012 | 109 | 0.000 | +| 2012 | 110 | 0.000 | +| 2012 | 111 | 0.000 | +| 2012 | 112 | 0.001 | +| 2012 | 113 | 0.000 | +| 2012 | 114 | 0.000 | +| 2012 | 115 | 0.002 | +| 2012 | 116 | 0.000 | +| 2012 | 117 | 0.000 | +| 2012 | 118 | 0.001 | +| 2012 | 119 | 0.000 | +| 2012 | 120 | 0.002 | +| 2012 | 121 | 0.000 | +| 2012 | 122 | 0.001 | +| 2012 | 123 | 0.000 | +| 2012 | 125 | 0.000 | +| 2012 | 126 | 0.000 | +| 2012 | 127 | 0.000 | +| 2012 | 128 | 0.000 | +| 2012 | 129 | 0.000 | +| 2012 | 130 | 0.001 | +| 2012 | 131 | 0.000 | +| 2012 | 132 | 0.000 | +| 2012 | 134 | 0.000 | +| 2012 | 135 | 0.000 | +| 2012 | 136 | 0.001 | +| 2012 | 138 | 0.000 | +| 2012 | 139 | 0.000 | +| 2012 | 140 | 0.001 | +| 2012 | 141 | 0.000 | +| 2012 | 142 | 0.001 | +| 2012 | 143 | 0.000 | +| 2012 | 144 | 0.001 | +| 2012 | 145 | 0.001 | +| 2012 | 148 | 0.000 | +| 2012 | 149 | 0.001 | +| 2012 | 150 | 0.000 | +| 2012 | 151 | 0.000 | +| 2012 | 152 | 0.000 | +| 2012 | 157 | 0.000 | +| 2012 | 159 | 0.000 | +| 2012 | 160 | 0.001 | +| 2012 | 161 | 0.001 | +| 2012 | 162 | 0.000 | +| 2012 | 166 | 0.000 | +| 2012 | 168 | 0.000 | +| 2012 | 169 | 0.000 | +| 2012 | 170 | 0.001 | +| 2012 | 172 | 0.000 | +| 2012 | 173 | 0.000 | +| 2012 | 175 | 0.000 | +| 2012 | 177 | 0.000 | +| 2012 | 178 | 0.000 | +| 2012 | 179 | 0.000 | +| 2012 | 180 | 0.000 | +| 2012 | 187 | 0.000 | +| 2012 | 196 | 0.000 | +| 2012 | 199 | 0.000 | +| 2012 | 200 | 0.001 | +| 2012 | 201 | 0.000 | +| 2012 | 205 | 0.000 | +| 2012 | 209 | 0.000 | +| 2012 | 214 | 0.000 | +| 2012 | 215 | 0.000 | +| 2012 | 220 | 0.000 | +| 2012 | 222 | 0.000 | +| 2012 | 224 | 0.000 | +| 2012 | 225 | 0.000 | +| 2012 | 232 | 0.000 | +| 2012 | 244 | 0.000 | +| 2012 | 247 | 0.000 | +| 2012 | 250 | 0.000 | +| 2012 | 256 | 0.000 | +| 2012 | 260 | 0.000 | +| 2012 | 264 | 0.000 | +| 2012 | 266 | 0.000 | +| 2012 | 268 | 0.000 | +| 2012 | 271 | 0.000 | +| 2012 | 278 | 0.000 | +| 2012 | 287 | 0.000 | +| 2012 | 295 | 0.000 | +| 2012 | 300 | 0.000 | +| 2012 | 302 | 0.000 | +| 2012 | 304 | 0.000 | +| 2012 | 305 | 0.000 | +| 2012 | 309 | 0.000 | +| 2012 | 310 | 0.000 | +| 2012 | 317 | 0.000 | +| 2012 | 322 | 0.000 | +| 2012 | 330 | 0.000 | +| 2012 | 332 | 0.000 | +| 2012 | 335 | 0.000 | +| 2012 | 338 | 0.000 | +| 2012 | 366 | 0.000 | +| 2012 | 385 | 0.000 | +| 2012 | 416 | 0.000 | +| 2012 | 500 | 0.000 | +| 2012 | 505 | 0.000 | +| 2012 | 550 | 0.000 | +| 2012 | 615 | 0.000 | +| 2012 | 645 | 0.000 | +| 2012 | 697 | 0.000 | +| 2012 | 1270 | 0.000 | +| 2012 | 1500 | 0.000 | +| 2012 | 1600 | 0.000 | +| 2012 | 1656 | 0.000 | +| 2012 | 2000 | 0.000 | +| 2013 | 1 | 17.247 | +| 2013 | 2 | 10.053 | +| 2013 | 3 | 6.083 | +| 2013 | 4 | 4.186 | +| 2013 | 5 | 3.151 | +| 2013 | 6 | 2.189 | +| 2013 | 7 | 1.531 | +| 2013 | 8 | 1.179 | +| 2013 | 9 | 0.787 | +| 2013 | 10 | 0.802 | +| 2013 | 11 | 0.438 | +| 2013 | 12 | 0.366 | +| 2013 | 13 | 0.240 | +| 2013 | 14 | 0.192 | +| 2013 | 15 | 0.207 | +| 2013 | 16 | 0.118 | +| 2013 | 17 | 0.088 | +| 2013 | 18 | 0.094 | +| 2013 | 19 | 0.069 | +| 2013 | 20 | 0.115 | +| 2013 | 21 | 0.052 | +| 2013 | 22 | 0.051 | +| 2013 | 23 | 0.048 | +| 2013 | 24 | 0.037 | +| 2013 | 25 | 0.043 | +| 2013 | 26 | 0.031 | +| 2013 | 27 | 0.023 | +| 2013 | 28 | 0.024 | +| 2013 | 29 | 0.016 | +| 2013 | 30 | 0.060 | +| 2013 | 31 | 0.019 | +| 2013 | 32 | 0.020 | +| 2013 | 33 | 0.013 | +| 2013 | 34 | 0.016 | +| 2013 | 35 | 0.020 | +| 2013 | 36 | 0.012 | +| 2013 | 37 | 0.010 | +| 2013 | 38 | 0.014 | +| 2013 | 39 | 0.008 | +| 2013 | 40 | 0.028 | +| 2013 | 41 | 0.007 | +| 2013 | 42 | 0.012 | +| 2013 | 43 | 0.005 | +| 2013 | 44 | 0.006 | +| 2013 | 45 | 0.016 | +| 2013 | 46 | 0.007 | +| 2013 | 47 | 0.006 | +| 2013 | 48 | 0.005 | +| 2013 | 49 | 0.003 | +| 2013 | 50 | 0.022 | +| 2013 | 51 | 0.007 | +| 2013 | 52 | 0.007 | +| 2013 | 53 | 0.005 | +| 2013 | 54 | 0.004 | +| 2013 | 55 | 0.006 | +| 2013 | 56 | 0.004 | +| 2013 | 57 | 0.005 | +| 2013 | 58 | 0.005 | +| 2013 | 59 | 0.004 | +| 2013 | 60 | 0.014 | +| 2013 | 61 | 0.004 | +| 2013 | 62 | 0.005 | +| 2013 | 63 | 0.004 | +| 2013 | 64 | 0.004 | +| 2013 | 65 | 0.002 | +| 2013 | 66 | 0.002 | +| 2013 | 67 | 0.002 | +| 2013 | 68 | 0.002 | +| 2013 | 69 | 0.003 | +| 2013 | 70 | 0.005 | +| 2013 | 71 | 0.003 | +| 2013 | 72 | 0.001 | +| 2013 | 73 | 0.002 | +| 2013 | 74 | 0.000 | +| 2013 | 75 | 0.004 | +| 2013 | 76 | 0.002 | +| 2013 | 77 | 0.002 | +| 2013 | 78 | 0.002 | +| 2013 | 80 | 0.008 | +| 2013 | 81 | 0.001 | +| 2013 | 82 | 0.001 | +| 2013 | 83 | 0.001 | +| 2013 | 84 | 0.001 | +| 2013 | 85 | 0.004 | +| 2013 | 86 | 0.001 | +| 2013 | 87 | 0.000 | +| 2013 | 88 | 0.002 | +| 2013 | 89 | 0.001 | +| 2013 | 90 | 0.004 | +| 2013 | 91 | 0.001 | +| 2013 | 92 | 0.001 | +| 2013 | 93 | 0.001 | +| 2013 | 94 | 0.001 | +| 2013 | 95 | 0.000 | +| 2013 | 96 | 0.000 | +| 2013 | 97 | 0.000 | +| 2013 | 98 | 0.001 | +| 2013 | 99 | 0.001 | +| 2013 | 100 | 0.006 | +| 2013 | 101 | 0.000 | +| 2013 | 102 | 0.001 | +| 2013 | 104 | 0.000 | +| 2013 | 105 | 0.001 | +| 2013 | 106 | 0.001 | +| 2013 | 107 | 0.000 | +| 2013 | 108 | 0.001 | +| 2013 | 109 | 0.001 | +| 2013 | 110 | 0.002 | +| 2013 | 111 | 0.001 | +| 2013 | 112 | 0.001 | +| 2013 | 114 | 0.000 | +| 2013 | 115 | 0.002 | +| 2013 | 116 | 0.000 | +| 2013 | 117 | 0.001 | +| 2013 | 118 | 0.000 | +| 2013 | 119 | 0.000 | +| 2013 | 120 | 0.004 | +| 2013 | 121 | 0.000 | +| 2013 | 122 | 0.001 | +| 2013 | 123 | 0.000 | +| 2013 | 125 | 0.001 | +| 2013 | 126 | 0.001 | +| 2013 | 127 | 0.000 | +| 2013 | 129 | 0.000 | +| 2013 | 130 | 0.001 | +| 2013 | 131 | 0.000 | +| 2013 | 132 | 0.001 | +| 2013 | 133 | 0.000 | +| 2013 | 134 | 0.000 | +| 2013 | 135 | 0.000 | +| 2013 | 136 | 0.001 | +| 2013 | 137 | 0.000 | +| 2013 | 138 | 0.000 | +| 2013 | 139 | 0.001 | +| 2013 | 140 | 0.000 | +| 2013 | 143 | 0.000 | +| 2013 | 145 | 0.000 | +| 2013 | 147 | 0.000 | +| 2013 | 149 | 0.000 | +| 2013 | 150 | 0.002 | +| 2013 | 152 | 0.000 | +| 2013 | 153 | 0.001 | +| 2013 | 154 | 0.000 | +| 2013 | 155 | 0.000 | +| 2013 | 158 | 0.000 | +| 2013 | 159 | 0.001 | +| 2013 | 160 | 0.001 | +| 2013 | 161 | 0.000 | +| 2013 | 162 | 0.000 | +| 2013 | 164 | 0.000 | +| 2013 | 166 | 0.000 | +| 2013 | 168 | 0.000 | +| 2013 | 170 | 0.001 | +| 2013 | 174 | 0.000 | +| 2013 | 175 | 0.000 | +| 2013 | 177 | 0.000 | +| 2013 | 179 | 0.000 | +| 2013 | 180 | 0.001 | +| 2013 | 181 | 0.000 | +| 2013 | 182 | 0.000 | +| 2013 | 183 | 0.000 | +| 2013 | 184 | 0.000 | +| 2013 | 190 | 0.001 | +| 2013 | 192 | 0.000 | +| 2013 | 193 | 0.000 | +| 2013 | 197 | 0.000 | +| 2013 | 199 | 0.000 | +| 2013 | 200 | 0.001 | +| 2013 | 201 | 0.000 | +| 2013 | 204 | 0.000 | +| 2013 | 205 | 0.000 | +| 2013 | 206 | 0.000 | +| 2013 | 209 | 0.001 | +| 2013 | 210 | 0.000 | +| 2013 | 212 | 0.000 | +| 2013 | 214 | 0.000 | +| 2013 | 215 | 0.000 | +| 2013 | 216 | 0.000 | +| 2013 | 218 | 0.000 | +| 2013 | 220 | 0.001 | +| 2013 | 222 | 0.000 | +| 2013 | 225 | 0.000 | +| 2013 | 226 | 0.000 | +| 2013 | 228 | 0.000 | +| 2013 | 237 | 0.000 | +| 2013 | 244 | 0.000 | +| 2013 | 247 | 0.000 | +| 2013 | 250 | 0.000 | +| 2013 | 254 | 0.000 | +| 2013 | 259 | 0.000 | +| 2013 | 260 | 0.000 | +| 2013 | 264 | 0.000 | +| 2013 | 266 | 0.000 | +| 2013 | 280 | 0.000 | +| 2013 | 295 | 0.000 | +| 2013 | 296 | 0.000 | +| 2013 | 300 | 0.000 | +| 2013 | 306 | 0.000 | +| 2013 | 309 | 0.000 | +| 2013 | 310 | 0.000 | +| 2013 | 313 | 0.000 | +| 2013 | 321 | 0.000 | +| 2013 | 330 | 0.000 | +| 2013 | 335 | 0.000 | +| 2013 | 338 | 0.000 | +| 2013 | 350 | 0.000 | +| 2013 | 385 | 0.000 | +| 2013 | 389 | 0.000 | +| 2013 | 390 | 0.000 | +| 2013 | 416 | 0.000 | +| 2013 | 496 | 0.000 | +| 2013 | 500 | 0.000 | +| 2013 | 505 | 0.000 | +| 2013 | 550 | 0.000 | +| 2013 | 559 | 0.000 | +| 2013 | 615 | 0.000 | +| 2013 | 645 | 0.000 | +| 2013 | 858 | 0.000 | +| 2013 | 2000 | 0.001 | +| 2013 | 2340 | 0.000 | +| 2014 | 0 | 0.002 | +| 2014 | 1 | 16.794 | +| 2014 | 2 | 10.240 | +| 2014 | 3 | 6.162 | +| 2014 | 4 | 4.188 | +| 2014 | 5 | 3.141 | +| 2014 | 6 | 2.152 | +| 2014 | 7 | 1.590 | +| 2014 | 8 | 1.229 | +| 2014 | 9 | 0.832 | +| 2014 | 10 | 0.900 | +| 2014 | 11 | 0.480 | +| 2014 | 12 | 0.420 | +| 2014 | 13 | 0.268 | +| 2014 | 14 | 0.205 | +| 2014 | 15 | 0.210 | +| 2014 | 16 | 0.132 | +| 2014 | 17 | 0.105 | +| 2014 | 18 | 0.110 | +| 2014 | 19 | 0.067 | +| 2014 | 20 | 0.121 | +| 2014 | 21 | 0.054 | +| 2014 | 22 | 0.053 | +| 2014 | 23 | 0.051 | +| 2014 | 24 | 0.039 | +| 2014 | 25 | 0.051 | +| 2014 | 26 | 0.029 | +| 2014 | 27 | 0.028 | +| 2014 | 28 | 0.031 | +| 2014 | 29 | 0.023 | +| 2014 | 30 | 0.056 | +| 2014 | 31 | 0.019 | +| 2014 | 32 | 0.024 | +| 2014 | 33 | 0.010 | +| 2014 | 34 | 0.015 | +| 2014 | 35 | 0.019 | +| 2014 | 36 | 0.017 | +| 2014 | 37 | 0.013 | +| 2014 | 38 | 0.018 | +| 2014 | 39 | 0.009 | +| 2014 | 40 | 0.033 | +| 2014 | 41 | 0.011 | +| 2014 | 42 | 0.012 | +| 2014 | 43 | 0.010 | +| 2014 | 44 | 0.011 | +| 2014 | 45 | 0.018 | +| 2014 | 46 | 0.009 | +| 2014 | 47 | 0.007 | +| 2014 | 48 | 0.010 | +| 2014 | 49 | 0.007 | +| 2014 | 50 | 0.029 | +| 2014 | 51 | 0.008 | +| 2014 | 52 | 0.007 | +| 2014 | 53 | 0.006 | +| 2014 | 54 | 0.005 | +| 2014 | 55 | 0.006 | +| 2014 | 56 | 0.004 | +| 2014 | 57 | 0.005 | +| 2014 | 58 | 0.005 | +| 2014 | 59 | 0.004 | +| 2014 | 60 | 0.019 | +| 2014 | 61 | 0.005 | +| 2014 | 62 | 0.005 | +| 2014 | 63 | 0.003 | +| 2014 | 64 | 0.005 | +| 2014 | 65 | 0.003 | +| 2014 | 66 | 0.003 | +| 2014 | 67 | 0.002 | +| 2014 | 68 | 0.002 | +| 2014 | 69 | 0.001 | +| 2014 | 70 | 0.008 | +| 2014 | 71 | 0.003 | +| 2014 | 72 | 0.002 | +| 2014 | 73 | 0.002 | +| 2014 | 74 | 0.002 | +| 2014 | 75 | 0.005 | +| 2014 | 76 | 0.003 | +| 2014 | 77 | 0.001 | +| 2014 | 78 | 0.002 | +| 2014 | 79 | 0.000 | +| 2014 | 80 | 0.009 | +| 2014 | 81 | 0.001 | +| 2014 | 82 | 0.003 | +| 2014 | 83 | 0.002 | +| 2014 | 84 | 0.002 | +| 2014 | 85 | 0.006 | +| 2014 | 86 | 0.001 | +| 2014 | 87 | 0.001 | +| 2014 | 88 | 0.002 | +| 2014 | 89 | 0.002 | +| 2014 | 90 | 0.006 | +| 2014 | 91 | 0.002 | +| 2014 | 92 | 0.002 | +| 2014 | 93 | 0.001 | +| 2014 | 94 | 0.001 | +| 2014 | 95 | 0.002 | +| 2014 | 96 | 0.001 | +| 2014 | 97 | 0.001 | +| 2014 | 98 | 0.001 | +| 2014 | 99 | 0.001 | +| 2014 | 100 | 0.007 | +| 2014 | 101 | 0.000 | +| 2014 | 102 | 0.002 | +| 2014 | 103 | 0.002 | +| 2014 | 104 | 0.002 | +| 2014 | 105 | 0.002 | +| 2014 | 106 | 0.001 | +| 2014 | 107 | 0.000 | +| 2014 | 108 | 0.002 | +| 2014 | 109 | 0.001 | +| 2014 | 110 | 0.001 | +| 2014 | 111 | 0.000 | +| 2014 | 112 | 0.001 | +| 2014 | 113 | 0.000 | +| 2014 | 114 | 0.001 | +| 2014 | 115 | 0.001 | +| 2014 | 116 | 0.001 | +| 2014 | 117 | 0.001 | +| 2014 | 118 | 0.001 | +| 2014 | 120 | 0.006 | +| 2014 | 121 | 0.002 | +| 2014 | 122 | 0.000 | +| 2014 | 123 | 0.001 | +| 2014 | 124 | 0.000 | +| 2014 | 125 | 0.001 | +| 2014 | 126 | 0.002 | +| 2014 | 127 | 0.001 | +| 2014 | 128 | 0.000 | +| 2014 | 129 | 0.000 | +| 2014 | 130 | 0.001 | +| 2014 | 131 | 0.000 | +| 2014 | 132 | 0.001 | +| 2014 | 133 | 0.000 | +| 2014 | 134 | 0.000 | +| 2014 | 135 | 0.001 | +| 2014 | 136 | 0.000 | +| 2014 | 137 | 0.000 | +| 2014 | 139 | 0.000 | +| 2014 | 140 | 0.002 | +| 2014 | 141 | 0.001 | +| 2014 | 143 | 0.001 | +| 2014 | 144 | 0.000 | +| 2014 | 145 | 0.000 | +| 2014 | 146 | 0.000 | +| 2014 | 148 | 0.000 | +| 2014 | 149 | 0.000 | +| 2014 | 150 | 0.002 | +| 2014 | 151 | 0.001 | +| 2014 | 152 | 0.000 | +| 2014 | 153 | 0.000 | +| 2014 | 154 | 0.000 | +| 2014 | 155 | 0.001 | +| 2014 | 157 | 0.000 | +| 2014 | 158 | 0.000 | +| 2014 | 159 | 0.000 | +| 2014 | 160 | 0.000 | +| 2014 | 161 | 0.001 | +| 2014 | 162 | 0.000 | +| 2014 | 164 | 0.000 | +| 2014 | 168 | 0.000 | +| 2014 | 170 | 0.001 | +| 2014 | 175 | 0.001 | +| 2014 | 177 | 0.000 | +| 2014 | 179 | 0.000 | +| 2014 | 180 | 0.000 | +| 2014 | 181 | 0.000 | +| 2014 | 182 | 0.000 | +| 2014 | 183 | 0.000 | +| 2014 | 187 | 0.001 | +| 2014 | 190 | 0.000 | +| 2014 | 192 | 0.001 | +| 2014 | 195 | 0.000 | +| 2014 | 197 | 0.000 | +| 2014 | 200 | 0.004 | +| 2014 | 205 | 0.000 | +| 2014 | 206 | 0.000 | +| 2014 | 210 | 0.001 | +| 2014 | 212 | 0.000 | +| 2014 | 213 | 0.000 | +| 2014 | 215 | 0.000 | +| 2014 | 219 | 0.000 | +| 2014 | 220 | 0.001 | +| 2014 | 222 | 0.000 | +| 2014 | 223 | 0.000 | +| 2014 | 225 | 0.000 | +| 2014 | 232 | 0.000 | +| 2014 | 235 | 0.000 | +| 2014 | 238 | 0.000 | +| 2014 | 239 | 0.000 | +| 2014 | 241 | 0.000 | +| 2014 | 245 | 0.000 | +| 2014 | 247 | 0.000 | +| 2014 | 250 | 0.000 | +| 2014 | 251 | 0.000 | +| 2014 | 256 | 0.000 | +| 2014 | 258 | 0.000 | +| 2014 | 260 | 0.000 | +| 2014 | 262 | 0.000 | +| 2014 | 264 | 0.000 | +| 2014 | 265 | 0.000 | +| 2014 | 266 | 0.000 | +| 2014 | 270 | 0.000 | +| 2014 | 271 | 0.000 | +| 2014 | 272 | 0.000 | +| 2014 | 274 | 0.000 | +| 2014 | 280 | 0.000 | +| 2014 | 281 | 0.000 | +| 2014 | 289 | 0.000 | +| 2014 | 295 | 0.000 | +| 2014 | 296 | 0.000 | +| 2014 | 297 | 0.000 | +| 2014 | 299 | 0.000 | +| 2014 | 300 | 0.003 | +| 2014 | 306 | 0.000 | +| 2014 | 309 | 0.000 | +| 2014 | 313 | 0.000 | +| 2014 | 326 | 0.000 | +| 2014 | 330 | 0.000 | +| 2014 | 335 | 0.001 | +| 2014 | 338 | 0.000 | +| 2014 | 344 | 0.000 | +| 2014 | 349 | 0.000 | +| 2014 | 358 | 0.000 | +| 2014 | 380 | 0.000 | +| 2014 | 385 | 0.000 | +| 2014 | 386 | 0.000 | +| 2014 | 389 | 0.000 | +| 2014 | 390 | 0.000 | +| 2014 | 397 | 0.000 | +| 2014 | 400 | 0.000 | +| 2014 | 403 | 0.000 | +| 2014 | 450 | 0.000 | +| 2014 | 496 | 0.000 | +| 2014 | 500 | 0.000 | +| 2014 | 505 | 0.000 | +| 2014 | 543 | 0.000 | +| 2014 | 590 | 0.000 | +| 2014 | 615 | 0.000 | +| 2014 | 631 | 0.000 | +| 2014 | 645 | 0.000 | +| 2014 | 650 | 0.001 | +| 2014 | 660 | 0.000 | +| 2014 | 725 | 0.000 | +| 2014 | 1277 | 0.000 | +| 2014 | 1500 | 0.000 | +| 2014 | 2000 | 0.000 | +| 2014 | 2340 | 0.000 | +| 2015 | 0 | 23.892 | +| 2015 | 1 | 12.885 | +| 2015 | 2 | 9.260 | +| 2015 | 3 | 5.879 | +| 2015 | 4 | 4.088 | +| 2015 | 5 | 3.160 | +| 2015 | 6 | 2.177 | +| 2015 | 7 | 1.539 | +| 2015 | 8 | 1.249 | +| 2015 | 9 | 0.852 | +| 2015 | 10 | 0.951 | +| 2015 | 11 | 0.488 | +| 2015 | 12 | 0.413 | +| 2015 | 13 | 0.269 | +| 2015 | 14 | 0.203 | +| 2015 | 15 | 0.222 | +| 2015 | 16 | 0.132 | +| 2015 | 17 | 0.093 | +| 2015 | 18 | 0.098 | +| 2015 | 19 | 0.067 | +| 2015 | 20 | 0.145 | +| 2015 | 21 | 0.051 | +| 2015 | 22 | 0.057 | +| 2015 | 23 | 0.039 | +| 2015 | 24 | 0.036 | +| 2015 | 25 | 0.058 | +| 2015 | 26 | 0.031 | +| 2015 | 27 | 0.028 | +| 2015 | 28 | 0.027 | +| 2015 | 29 | 0.016 | +| 2015 | 30 | 0.068 | +| 2015 | 31 | 0.018 | +| 2015 | 32 | 0.023 | +| 2015 | 33 | 0.016 | +| 2015 | 34 | 0.012 | +| 2015 | 35 | 0.028 | +| 2015 | 36 | 0.012 | +| 2015 | 37 | 0.012 | +| 2015 | 38 | 0.016 | +| 2015 | 39 | 0.012 | +| 2015 | 40 | 0.045 | +| 2015 | 41 | 0.010 | +| 2015 | 42 | 0.011 | +| 2015 | 43 | 0.009 | +| 2015 | 44 | 0.011 | +| 2015 | 45 | 0.016 | +| 2015 | 46 | 0.011 | +| 2015 | 47 | 0.005 | +| 2015 | 48 | 0.006 | +| 2015 | 49 | 0.008 | +| 2015 | 50 | 0.030 | +| 2015 | 51 | 0.009 | +| 2015 | 52 | 0.007 | +| 2015 | 53 | 0.010 | +| 2015 | 54 | 0.007 | +| 2015 | 55 | 0.008 | +| 2015 | 56 | 0.006 | +| 2015 | 57 | 0.005 | +| 2015 | 58 | 0.005 | +| 2015 | 59 | 0.003 | +| 2015 | 60 | 0.012 | +| 2015 | 61 | 0.001 | +| 2015 | 62 | 0.004 | +| 2015 | 63 | 0.004 | +| 2015 | 64 | 0.005 | +| 2015 | 65 | 0.006 | +| 2015 | 66 | 0.004 | +| 2015 | 67 | 0.003 | +| 2015 | 68 | 0.001 | +| 2015 | 69 | 0.004 | +| 2015 | 70 | 0.007 | +| 2015 | 71 | 0.002 | +| 2015 | 72 | 0.001 | +| 2015 | 73 | 0.002 | +| 2015 | 74 | 0.004 | +| 2015 | 75 | 0.002 | +| 2015 | 76 | 0.002 | +| 2015 | 77 | 0.002 | +| 2015 | 78 | 0.003 | +| 2015 | 79 | 0.001 | +| 2015 | 80 | 0.010 | +| 2015 | 81 | 0.001 | +| 2015 | 82 | 0.001 | +| 2015 | 83 | 0.001 | +| 2015 | 84 | 0.001 | +| 2015 | 85 | 0.003 | +| 2015 | 86 | 0.002 | +| 2015 | 87 | 0.003 | +| 2015 | 88 | 0.001 | +| 2015 | 89 | 0.002 | +| 2015 | 90 | 0.006 | +| 2015 | 91 | 0.000 | +| 2015 | 92 | 0.001 | +| 2015 | 93 | 0.000 | +| 2015 | 94 | 0.001 | +| 2015 | 95 | 0.002 | +| 2015 | 96 | 0.000 | +| 2015 | 97 | 0.001 | +| 2015 | 98 | 0.001 | +| 2015 | 99 | 0.001 | +| 2015 | 100 | 0.009 | +| 2015 | 101 | 0.000 | +| 2015 | 102 | 0.000 | +| 2015 | 103 | 0.001 | +| 2015 | 104 | 0.002 | +| 2015 | 106 | 0.001 | +| 2015 | 107 | 0.001 | +| 2015 | 108 | 0.000 | +| 2015 | 109 | 0.000 | +| 2015 | 110 | 0.001 | +| 2015 | 111 | 0.000 | +| 2015 | 112 | 0.001 | +| 2015 | 113 | 0.001 | +| 2015 | 114 | 0.001 | +| 2015 | 115 | 0.001 | +| 2015 | 117 | 0.000 | +| 2015 | 118 | 0.000 | +| 2015 | 119 | 0.000 | +| 2015 | 120 | 0.002 | +| 2015 | 121 | 0.001 | +| 2015 | 122 | 0.000 | +| 2015 | 123 | 0.001 | +| 2015 | 124 | 0.000 | +| 2015 | 125 | 0.001 | +| 2015 | 127 | 0.000 | +| 2015 | 128 | 0.000 | +| 2015 | 130 | 0.001 | +| 2015 | 131 | 0.001 | +| 2015 | 132 | 0.000 | +| 2015 | 133 | 0.000 | +| 2015 | 134 | 0.001 | +| 2015 | 135 | 0.000 | +| 2015 | 136 | 0.001 | +| 2015 | 137 | 0.001 | +| 2015 | 140 | 0.003 | +| 2015 | 141 | 0.000 | +| 2015 | 143 | 0.000 | +| 2015 | 145 | 0.000 | +| 2015 | 146 | 0.000 | +| 2015 | 147 | 0.000 | +| 2015 | 148 | 0.000 | +| 2015 | 149 | 0.000 | +| 2015 | 150 | 0.004 | +| 2015 | 152 | 0.000 | +| 2015 | 153 | 0.000 | +| 2015 | 155 | 0.001 | +| 2015 | 156 | 0.000 | +| 2015 | 157 | 0.000 | +| 2015 | 158 | 0.000 | +| 2015 | 159 | 0.001 | +| 2015 | 160 | 0.000 | +| 2015 | 161 | 0.000 | +| 2015 | 162 | 0.000 | +| 2015 | 163 | 0.000 | +| 2015 | 164 | 0.001 | +| 2015 | 166 | 0.001 | +| 2015 | 167 | 0.000 | +| 2015 | 174 | 0.000 | +| 2015 | 175 | 0.000 | +| 2015 | 176 | 0.000 | +| 2015 | 177 | 0.000 | +| 2015 | 178 | 0.000 | +| 2015 | 180 | 0.002 | +| 2015 | 182 | 0.000 | +| 2015 | 183 | 0.000 | +| 2015 | 184 | 0.001 | +| 2015 | 185 | 0.000 | +| 2015 | 186 | 0.000 | +| 2015 | 192 | 0.000 | +| 2015 | 194 | 0.000 | +| 2015 | 195 | 0.000 | +| 2015 | 196 | 0.000 | +| 2015 | 197 | 0.000 | +| 2015 | 200 | 0.005 | +| 2015 | 201 | 0.000 | +| 2015 | 206 | 0.000 | +| 2015 | 211 | 0.000 | +| 2015 | 212 | 0.000 | +| 2015 | 213 | 0.000 | +| 2015 | 221 | 0.000 | +| 2015 | 222 | 0.000 | +| 2015 | 226 | 0.000 | +| 2015 | 229 | 0.000 | +| 2015 | 231 | 0.000 | +| 2015 | 232 | 0.000 | +| 2015 | 233 | 0.000 | +| 2015 | 239 | 0.000 | +| 2015 | 243 | 0.000 | +| 2015 | 250 | 0.001 | +| 2015 | 251 | 0.000 | +| 2015 | 255 | 0.000 | +| 2015 | 259 | 0.000 | +| 2015 | 262 | 0.000 | +| 2015 | 265 | 0.000 | +| 2015 | 270 | 0.000 | +| 2015 | 275 | 0.000 | +| 2015 | 276 | 0.000 | +| 2015 | 280 | 0.000 | +| 2015 | 281 | 0.000 | +| 2015 | 285 | 0.000 | +| 2015 | 286 | 0.000 | +| 2015 | 289 | 0.000 | +| 2015 | 291 | 0.000 | +| 2015 | 295 | 0.000 | +| 2015 | 297 | 0.000 | +| 2015 | 300 | 0.003 | +| 2015 | 302 | 0.000 | +| 2015 | 309 | 0.000 | +| 2015 | 319 | 0.000 | +| 2015 | 320 | 0.000 | +| 2015 | 329 | 0.000 | +| 2015 | 332 | 0.000 | +| 2015 | 344 | 0.000 | +| 2015 | 354 | 0.000 | +| 2015 | 376 | 0.000 | +| 2015 | 381 | 0.000 | +| 2015 | 390 | 0.000 | +| 2015 | 397 | 0.000 | +| 2015 | 422 | 0.000 | +| 2015 | 437 | 0.000 | +| 2015 | 462 | 0.000 | +| 2015 | 468 | 0.000 | +| 2015 | 490 | 0.000 | +| 2015 | 504 | 0.000 | +| 2015 | 537 | 0.000 | +| 2015 | 554 | 0.000 | +| 2015 | 596 | 0.000 | +| 2015 | 660 | 0.000 | +| 2015 | 700 | 0.000 | +| 2015 | 808 | 0.000 | +| 2015 | 1000 | 0.000 | +| 2015 | 1500 | 0.000 | +| 2015 | 1507 | 0.000 | +| 2016 | 0 | 19.117 | +| 2016 | 1 | 14.336 | +| 2016 | 2 | 9.847 | +| 2016 | 3 | 6.204 | +| 2016 | 4 | 4.239 | +| 2016 | 5 | 3.321 | +| 2016 | 6 | 2.246 | +| 2016 | 7 | 1.592 | +| 2016 | 8 | 1.302 | +| 2016 | 9 | 0.886 | +| 2016 | 10 | 0.966 | +| 2016 | 11 | 0.463 | +| 2016 | 12 | 0.433 | +| 2016 | 13 | 0.260 | +| 2016 | 14 | 0.214 | +| 2016 | 15 | 0.245 | +| 2016 | 16 | 0.135 | +| 2016 | 17 | 0.102 | +| 2016 | 18 | 0.093 | +| 2016 | 19 | 0.068 | +| 2016 | 20 | 0.146 | +| 2016 | 21 | 0.046 | +| 2016 | 22 | 0.054 | +| 2016 | 23 | 0.036 | +| 2016 | 24 | 0.046 | +| 2016 | 25 | 0.060 | +| 2016 | 26 | 0.034 | +| 2016 | 27 | 0.028 | +| 2016 | 28 | 0.034 | +| 2016 | 29 | 0.020 | +| 2016 | 30 | 0.064 | +| 2016 | 31 | 0.015 | +| 2016 | 32 | 0.021 | +| 2016 | 33 | 0.021 | +| 2016 | 34 | 0.013 | +| 2016 | 35 | 0.022 | +| 2016 | 36 | 0.015 | +| 2016 | 37 | 0.009 | +| 2016 | 38 | 0.014 | +| 2016 | 39 | 0.013 | +| 2016 | 40 | 0.047 | +| 2016 | 41 | 0.008 | +| 2016 | 42 | 0.016 | +| 2016 | 43 | 0.011 | +| 2016 | 44 | 0.010 | +| 2016 | 45 | 0.017 | +| 2016 | 46 | 0.007 | +| 2016 | 47 | 0.009 | +| 2016 | 48 | 0.005 | +| 2016 | 49 | 0.006 | +| 2016 | 50 | 0.022 | +| 2016 | 51 | 0.008 | +| 2016 | 52 | 0.005 | +| 2016 | 53 | 0.006 | +| 2016 | 54 | 0.005 | +| 2016 | 55 | 0.014 | +| 2016 | 56 | 0.008 | +| 2016 | 57 | 0.005 | +| 2016 | 58 | 0.007 | +| 2016 | 59 | 0.002 | +| 2016 | 60 | 0.014 | +| 2016 | 61 | 0.006 | +| 2016 | 62 | 0.003 | +| 2016 | 63 | 0.003 | +| 2016 | 64 | 0.004 | +| 2016 | 65 | 0.004 | +| 2016 | 66 | 0.002 | +| 2016 | 67 | 0.002 | +| 2016 | 68 | 0.003 | +| 2016 | 69 | 0.005 | +| 2016 | 70 | 0.009 | +| 2016 | 71 | 0.002 | +| 2016 | 72 | 0.001 | +| 2016 | 73 | 0.001 | +| 2016 | 74 | 0.003 | +| 2016 | 75 | 0.005 | +| 2016 | 76 | 0.002 | +| 2016 | 77 | 0.002 | +| 2016 | 78 | 0.002 | +| 2016 | 79 | 0.002 | +| 2016 | 80 | 0.013 | +| 2016 | 81 | 0.001 | +| 2016 | 82 | 0.001 | +| 2016 | 83 | 0.001 | +| 2016 | 84 | 0.002 | +| 2016 | 85 | 0.003 | +| 2016 | 86 | 0.002 | +| 2016 | 87 | 0.002 | +| 2016 | 88 | 0.001 | +| 2016 | 89 | 0.002 | +| 2016 | 90 | 0.005 | +| 2016 | 91 | 0.001 | +| 2016 | 92 | 0.000 | +| 2016 | 93 | 0.000 | +| 2016 | 94 | 0.001 | +| 2016 | 95 | 0.001 | +| 2016 | 96 | 0.000 | +| 2016 | 97 | 0.001 | +| 2016 | 98 | 0.001 | +| 2016 | 99 | 0.000 | +| 2016 | 100 | 0.007 | +| 2016 | 101 | 0.001 | +| 2016 | 102 | 0.001 | +| 2016 | 103 | 0.001 | +| 2016 | 104 | 0.001 | +| 2016 | 105 | 0.000 | +| 2016 | 106 | 0.000 | +| 2016 | 107 | 0.002 | +| 2016 | 108 | 0.000 | +| 2016 | 109 | 0.000 | +| 2016 | 110 | 0.001 | +| 2016 | 111 | 0.000 | +| 2016 | 112 | 0.002 | +| 2016 | 113 | 0.001 | +| 2016 | 114 | 0.002 | +| 2016 | 115 | 0.001 | +| 2016 | 116 | 0.000 | +| 2016 | 118 | 0.000 | +| 2016 | 119 | 0.000 | +| 2016 | 120 | 0.002 | +| 2016 | 121 | 0.001 | +| 2016 | 122 | 0.000 | +| 2016 | 123 | 0.000 | +| 2016 | 124 | 0.000 | +| 2016 | 125 | 0.002 | +| 2016 | 126 | 0.001 | +| 2016 | 127 | 0.001 | +| 2016 | 128 | 0.001 | +| 2016 | 129 | 0.000 | +| 2016 | 130 | 0.001 | +| 2016 | 131 | 0.000 | +| 2016 | 132 | 0.000 | +| 2016 | 133 | 0.000 | +| 2016 | 134 | 0.001 | +| 2016 | 135 | 0.000 | +| 2016 | 136 | 0.001 | +| 2016 | 137 | 0.000 | +| 2016 | 138 | 0.000 | +| 2016 | 140 | 0.001 | +| 2016 | 141 | 0.000 | +| 2016 | 142 | 0.000 | +| 2016 | 143 | 0.000 | +| 2016 | 147 | 0.000 | +| 2016 | 148 | 0.000 | +| 2016 | 149 | 0.000 | +| 2016 | 150 | 0.001 | +| 2016 | 151 | 0.000 | +| 2016 | 152 | 0.000 | +| 2016 | 153 | 0.000 | +| 2016 | 155 | 0.001 | +| 2016 | 156 | 0.000 | +| 2016 | 158 | 0.000 | +| 2016 | 159 | 0.001 | +| 2016 | 160 | 0.000 | +| 2016 | 162 | 0.000 | +| 2016 | 164 | 0.000 | +| 2016 | 166 | 0.000 | +| 2016 | 168 | 0.000 | +| 2016 | 169 | 0.000 | +| 2016 | 170 | 0.000 | +| 2016 | 172 | 0.000 | +| 2016 | 173 | 0.000 | +| 2016 | 175 | 0.000 | +| 2016 | 176 | 0.000 | +| 2016 | 180 | 0.000 | +| 2016 | 181 | 0.000 | +| 2016 | 183 | 0.000 | +| 2016 | 184 | 0.001 | +| 2016 | 185 | 0.000 | +| 2016 | 186 | 0.000 | +| 2016 | 187 | 0.000 | +| 2016 | 189 | 0.000 | +| 2016 | 191 | 0.000 | +| 2016 | 192 | 0.000 | +| 2016 | 194 | 0.000 | +| 2016 | 196 | 0.000 | +| 2016 | 197 | 0.000 | +| 2016 | 199 | 0.000 | +| 2016 | 200 | 0.001 | +| 2016 | 201 | 0.000 | +| 2016 | 204 | 0.000 | +| 2016 | 205 | 0.000 | +| 2016 | 206 | 0.000 | +| 2016 | 208 | 0.000 | +| 2016 | 210 | 0.000 | +| 2016 | 211 | 0.000 | +| 2016 | 212 | 0.000 | +| 2016 | 213 | 0.000 | +| 2016 | 215 | 0.001 | +| 2016 | 228 | 0.000 | +| 2016 | 229 | 0.000 | +| 2016 | 230 | 0.000 | +| 2016 | 240 | 0.000 | +| 2016 | 243 | 0.000 | +| 2016 | 245 | 0.000 | +| 2016 | 250 | 0.001 | +| 2016 | 260 | 0.000 | +| 2016 | 267 | 0.000 | +| 2016 | 280 | 0.000 | +| 2016 | 281 | 0.000 | +| 2016 | 282 | 0.000 | +| 2016 | 285 | 0.000 | +| 2016 | 286 | 0.000 | +| 2016 | 287 | 0.000 | +| 2016 | 289 | 0.000 | +| 2016 | 292 | 0.000 | +| 2016 | 300 | 0.002 | +| 2016 | 307 | 0.000 | +| 2016 | 308 | 0.000 | +| 2016 | 320 | 0.000 | +| 2016 | 329 | 0.000 | +| 2016 | 335 | 0.000 | +| 2016 | 350 | 0.000 | +| 2016 | 365 | 0.000 | +| 2016 | 374 | 0.000 | +| 2016 | 410 | 0.000 | +| 2016 | 422 | 0.000 | +| 2016 | 450 | 0.000 | +| 2016 | 462 | 0.000 | +| 2016 | 528 | 0.000 | +| 2016 | 537 | 0.000 | +| 2016 | 554 | 0.000 | +| 2016 | 642 | 0.000 | +| 2016 | 800 | 0.000 | +| 2016 | 1000 | 0.000 | +| 2016 | 1200 | 0.000 | +| 2016 | 1404 | 0.000 | +| 2017 | 0 | 16.351 | +| 2017 | 1 | 17.431 | +| 2017 | 2 | 9.716 | +| 2017 | 3 | 5.969 | +| 2017 | 4 | 4.002 | +| 2017 | 5 | 3.088 | +| 2017 | 6 | 2.090 | +| 2017 | 7 | 1.439 | +| 2017 | 8 | 1.142 | +| 2017 | 9 | 0.791 | +| 2017 | 10 | 0.855 | +| 2017 | 11 | 0.443 | +| 2017 | 12 | 0.382 | +| 2017 | 13 | 0.256 | +| 2017 | 14 | 0.202 | +| 2017 | 15 | 0.226 | +| 2017 | 16 | 0.137 | +| 2017 | 17 | 0.091 | +| 2017 | 18 | 0.092 | +| 2017 | 19 | 0.067 | +| 2017 | 20 | 0.146 | +| 2017 | 21 | 0.041 | +| 2017 | 22 | 0.048 | +| 2017 | 23 | 0.033 | +| 2017 | 24 | 0.036 | +| 2017 | 25 | 0.055 | +| 2017 | 26 | 0.030 | +| 2017 | 27 | 0.026 | +| 2017 | 28 | 0.028 | +| 2017 | 29 | 0.019 | +| 2017 | 30 | 0.063 | +| 2017 | 31 | 0.017 | +| 2017 | 32 | 0.018 | +| 2017 | 33 | 0.018 | +| 2017 | 34 | 0.016 | +| 2017 | 35 | 0.026 | +| 2017 | 36 | 0.012 | +| 2017 | 37 | 0.012 | +| 2017 | 38 | 0.012 | +| 2017 | 39 | 0.009 | +| 2017 | 40 | 0.046 | +| 2017 | 41 | 0.008 | +| 2017 | 42 | 0.013 | +| 2017 | 43 | 0.009 | +| 2017 | 44 | 0.008 | +| 2017 | 45 | 0.011 | +| 2017 | 46 | 0.006 | +| 2017 | 47 | 0.007 | +| 2017 | 48 | 0.008 | +| 2017 | 49 | 0.004 | +| 2017 | 50 | 0.018 | +| 2017 | 51 | 0.007 | +| 2017 | 52 | 0.004 | +| 2017 | 53 | 0.004 | +| 2017 | 54 | 0.004 | +| 2017 | 55 | 0.007 | +| 2017 | 56 | 0.005 | +| 2017 | 57 | 0.004 | +| 2017 | 58 | 0.007 | +| 2017 | 59 | 0.005 | +| 2017 | 60 | 0.011 | +| 2017 | 61 | 0.003 | +| 2017 | 62 | 0.003 | +| 2017 | 63 | 0.002 | +| 2017 | 64 | 0.004 | +| 2017 | 65 | 0.006 | +| 2017 | 66 | 0.003 | +| 2017 | 67 | 0.002 | +| 2017 | 68 | 0.001 | +| 2017 | 69 | 0.002 | +| 2017 | 70 | 0.007 | +| 2017 | 71 | 0.002 | +| 2017 | 72 | 0.002 | +| 2017 | 73 | 0.000 | +| 2017 | 74 | 0.002 | +| 2017 | 75 | 0.004 | +| 2017 | 76 | 0.001 | +| 2017 | 77 | 0.001 | +| 2017 | 78 | 0.004 | +| 2017 | 79 | 0.001 | +| 2017 | 80 | 0.008 | +| 2017 | 81 | 0.002 | +| 2017 | 82 | 0.001 | +| 2017 | 83 | 0.002 | +| 2017 | 84 | 0.001 | +| 2017 | 85 | 0.001 | +| 2017 | 86 | 0.001 | +| 2017 | 88 | 0.000 | +| 2017 | 89 | 0.002 | +| 2017 | 90 | 0.002 | +| 2017 | 91 | 0.000 | +| 2017 | 93 | 0.001 | +| 2017 | 94 | 0.000 | +| 2017 | 95 | 0.002 | +| 2017 | 96 | 0.000 | +| 2017 | 97 | 0.002 | +| 2017 | 98 | 0.001 | +| 2017 | 99 | 0.001 | +| 2017 | 100 | 0.004 | +| 2017 | 101 | 0.001 | +| 2017 | 102 | 0.001 | +| 2017 | 103 | 0.000 | +| 2017 | 104 | 0.001 | +| 2017 | 105 | 0.000 | +| 2017 | 106 | 0.001 | +| 2017 | 107 | 0.001 | +| 2017 | 108 | 0.000 | +| 2017 | 109 | 0.001 | +| 2017 | 110 | 0.001 | +| 2017 | 112 | 0.001 | +| 2017 | 113 | 0.000 | +| 2017 | 114 | 0.002 | +| 2017 | 115 | 0.000 | +| 2017 | 118 | 0.001 | +| 2017 | 119 | 0.000 | +| 2017 | 120 | 0.002 | +| 2017 | 121 | 0.001 | +| 2017 | 122 | 0.000 | +| 2017 | 123 | 0.000 | +| 2017 | 124 | 0.000 | +| 2017 | 125 | 0.001 | +| 2017 | 126 | 0.000 | +| 2017 | 127 | 0.000 | +| 2017 | 128 | 0.000 | +| 2017 | 130 | 0.001 | +| 2017 | 131 | 0.001 | +| 2017 | 132 | 0.001 | +| 2017 | 134 | 0.000 | +| 2017 | 135 | 0.000 | +| 2017 | 136 | 0.001 | +| 2017 | 137 | 0.001 | +| 2017 | 138 | 0.000 | +| 2017 | 139 | 0.000 | +| 2017 | 140 | 0.001 | +| 2017 | 141 | 0.000 | +| 2017 | 142 | 0.000 | +| 2017 | 144 | 0.000 | +| 2017 | 146 | 0.000 | +| 2017 | 147 | 0.000 | +| 2017 | 148 | 0.000 | +| 2017 | 150 | 0.002 | +| 2017 | 151 | 0.000 | +| 2017 | 152 | 0.000 | +| 2017 | 154 | 0.000 | +| 2017 | 155 | 0.000 | +| 2017 | 159 | 0.000 | +| 2017 | 160 | 0.001 | +| 2017 | 161 | 0.000 | +| 2017 | 162 | 0.000 | +| 2017 | 164 | 0.001 | +| 2017 | 166 | 0.000 | +| 2017 | 168 | 0.000 | +| 2017 | 169 | 0.000 | +| 2017 | 170 | 0.001 | +| 2017 | 173 | 0.000 | +| 2017 | 174 | 0.000 | +| 2017 | 175 | 0.001 | +| 2017 | 176 | 0.000 | +| 2017 | 177 | 0.000 | +| 2017 | 180 | 0.000 | +| 2017 | 181 | 0.000 | +| 2017 | 184 | 0.000 | +| 2017 | 185 | 0.000 | +| 2017 | 186 | 0.001 | +| 2017 | 187 | 0.000 | +| 2017 | 190 | 0.000 | +| 2017 | 191 | 0.000 | +| 2017 | 194 | 0.001 | +| 2017 | 196 | 0.000 | +| 2017 | 197 | 0.000 | +| 2017 | 198 | 0.000 | +| 2017 | 200 | 0.001 | +| 2017 | 201 | 0.000 | +| 2017 | 204 | 0.000 | +| 2017 | 207 | 0.000 | +| 2017 | 210 | 0.000 | +| 2017 | 211 | 0.000 | +| 2017 | 215 | 0.000 | +| 2017 | 218 | 0.000 | +| 2017 | 220 | 0.000 | +| 2017 | 221 | 0.000 | +| 2017 | 228 | 0.000 | +| 2017 | 229 | 0.000 | +| 2017 | 230 | 0.000 | +| 2017 | 231 | 0.000 | +| 2017 | 233 | 0.000 | +| 2017 | 240 | 0.000 | +| 2017 | 243 | 0.000 | +| 2017 | 250 | 0.000 | +| 2017 | 260 | 0.001 | +| 2017 | 267 | 0.000 | +| 2017 | 270 | 0.000 | +| 2017 | 271 | 0.000 | +| 2017 | 274 | 0.000 | +| 2017 | 280 | 0.000 | +| 2017 | 282 | 0.000 | +| 2017 | 286 | 0.000 | +| 2017 | 287 | 0.000 | +| 2017 | 289 | 0.000 | +| 2017 | 297 | 0.000 | +| 2017 | 300 | 0.002 | +| 2017 | 301 | 0.000 | +| 2017 | 309 | 0.000 | +| 2017 | 335 | 0.000 | +| 2017 | 350 | 0.000 | +| 2017 | 359 | 0.000 | +| 2017 | 388 | 0.000 | +| 2017 | 390 | 0.000 | +| 2017 | 400 | 0.000 | +| 2017 | 413 | 0.000 | +| 2017 | 422 | 0.000 | +| 2017 | 432 | 0.000 | +| 2017 | 462 | 0.000 | +| 2017 | 513 | 0.000 | +| 2017 | 537 | 0.000 | +| 2017 | 554 | 0.000 | +| 2017 | 600 | 0.000 | +| 2017 | 670 | 0.000 | +| 2017 | 956 | 0.000 | +| 2017 | 981 | 0.000 | +| 2017 | 1000 | 0.000 | +| 2017 | 1200 | 0.000 | diff --git a/dados/colunas/.ipynb_checkpoints/num_computador_adm-checkpoint.out b/dados/colunas/.ipynb_checkpoints/num_computador_adm-checkpoint.out new file mode 100644 index 0000000000000000000000000000000000000000..3a365b1f8079638a51be3b6edaf154657a350255 --- /dev/null +++ b/dados/colunas/.ipynb_checkpoints/num_computador_adm-checkpoint.out @@ -0,0 +1,2228 @@ ++-----------+--------------------+-----------------------------+ +| ano_censo | num_computador_adm | percentage | ++===========+====================+=============================+ +| 2007 | 0 | 0.046 | +| 2007 | 1 | 14.853 | +| 2007 | 2 | 7.510 | +| 2007 | 3 | 4.120 | +| 2007 | 4 | 2.350 | +| 2007 | 5 | 1.476 | +| 2007 | 6 | 0.880 | +| 2007 | 7 | 0.582 | +| 2007 | 8 | 0.416 | +| 2007 | 9 | 0.255 | +| 2007 | 10 | 0.275 | +| 2007 | 11 | 0.132 | +| 2007 | 12 | 0.150 | +| 2007 | 13 | 0.100 | +| 2007 | 14 | 0.075 | +| 2007 | 15 | 0.077 | +| 2007 | 16 | 0.053 | +| 2007 | 17 | 0.042 | +| 2007 | 18 | 0.040 | +| 2007 | 19 | 0.028 | +| 2007 | 20 | 0.055 | +| 2007 | 21 | 0.020 | +| 2007 | 22 | 0.026 | +| 2007 | 23 | 0.013 | +| 2007 | 24 | 0.015 | +| 2007 | 25 | 0.025 | +| 2007 | 26 | 0.016 | +| 2007 | 27 | 0.013 | +| 2007 | 28 | 0.016 | +| 2007 | 29 | 0.007 | +| 2007 | 30 | 0.023 | +| 2007 | 31 | 0.013 | +| 2007 | 32 | 0.008 | +| 2007 | 33 | 0.005 | +| 2007 | 34 | 0.002 | +| 2007 | 35 | 0.013 | +| 2007 | 36 | 0.005 | +| 2007 | 37 | 0.005 | +| 2007 | 38 | 0.007 | +| 2007 | 39 | 0.005 | +| 2007 | 40 | 0.013 | +| 2007 | 41 | 0.005 | +| 2007 | 42 | 0.001 | +| 2007 | 43 | 0.003 | +| 2007 | 44 | 0.005 | +| 2007 | 45 | 0.005 | +| 2007 | 46 | 0.005 | +| 2007 | 47 | 0.002 | +| 2007 | 48 | 0.003 | +| 2007 | 49 | 0.002 | +| 2007 | 50 | 0.005 | +| 2007 | 51 | 0.001 | +| 2007 | 52 | 0.004 | +| 2007 | 53 | 0.002 | +| 2007 | 54 | 0.003 | +| 2007 | 55 | 0.004 | +| 2007 | 56 | 0.001 | +| 2007 | 57 | 0.002 | +| 2007 | 58 | 0.002 | +| 2007 | 59 | 0.002 | +| 2007 | 60 | 0.003 | +| 2007 | 61 | 0.000 | +| 2007 | 62 | 0.000 | +| 2007 | 63 | 0.002 | +| 2007 | 64 | 0.002 | +| 2007 | 65 | 0.002 | +| 2007 | 66 | 0.000 | +| 2007 | 68 | 0.001 | +| 2007 | 69 | 0.001 | +| 2007 | 70 | 0.003 | +| 2007 | 71 | 0.001 | +| 2007 | 72 | 0.001 | +| 2007 | 73 | 0.001 | +| 2007 | 75 | 0.000 | +| 2007 | 77 | 0.001 | +| 2007 | 78 | 0.001 | +| 2007 | 79 | 0.000 | +| 2007 | 80 | 0.003 | +| 2007 | 81 | 0.000 | +| 2007 | 82 | 0.000 | +| 2007 | 84 | 0.000 | +| 2007 | 85 | 0.000 | +| 2007 | 88 | 0.000 | +| 2007 | 89 | 0.000 | +| 2007 | 90 | 0.001 | +| 2007 | 91 | 0.000 | +| 2007 | 92 | 0.000 | +| 2007 | 93 | 0.000 | +| 2007 | 94 | 0.000 | +| 2007 | 95 | 0.001 | +| 2007 | 96 | 0.000 | +| 2007 | 97 | 0.001 | +| 2007 | 98 | 0.000 | +| 2007 | 100 | 0.001 | +| 2007 | 103 | 0.000 | +| 2007 | 104 | 0.000 | +| 2007 | 105 | 0.002 | +| 2007 | 108 | 0.000 | +| 2007 | 110 | 0.001 | +| 2007 | 114 | 0.000 | +| 2007 | 115 | 0.000 | +| 2007 | 117 | 0.000 | +| 2007 | 120 | 0.001 | +| 2007 | 122 | 0.000 | +| 2007 | 125 | 0.000 | +| 2007 | 127 | 0.000 | +| 2007 | 130 | 0.000 | +| 2007 | 133 | 0.000 | +| 2007 | 134 | 0.000 | +| 2007 | 135 | 0.000 | +| 2007 | 139 | 0.000 | +| 2007 | 140 | 0.000 | +| 2007 | 141 | 0.000 | +| 2007 | 142 | 0.000 | +| 2007 | 149 | 0.001 | +| 2007 | 150 | 0.000 | +| 2007 | 178 | 0.000 | +| 2007 | 180 | 0.000 | +| 2007 | 188 | 0.000 | +| 2007 | 189 | 0.000 | +| 2007 | 200 | 0.000 | +| 2007 | 215 | 0.000 | +| 2007 | 222 | 0.000 | +| 2007 | 229 | 0.000 | +| 2007 | 232 | 0.000 | +| 2007 | 244 | 0.000 | +| 2007 | 250 | 0.000 | +| 2007 | 253 | 0.000 | +| 2007 | 294 | 0.000 | +| 2007 | 300 | 0.000 | +| 2007 | 346 | 0.000 | +| 2007 | 549 | 0.000 | +| 2007 | 574 | 0.000 | +| 2007 | 647 | 0.000 | +| 2007 | 999 | 0.000 | +| 2007 | 1370 | 0.000 | +| 2007 | 4000 | 0.000 | +| 2008 | 1 | 17.185 | +| 2008 | 2 | 8.744 | +| 2008 | 3 | 4.787 | +| 2008 | 4 | 2.942 | +| 2008 | 5 | 1.954 | +| 2008 | 6 | 1.230 | +| 2008 | 7 | 0.768 | +| 2008 | 8 | 0.536 | +| 2008 | 9 | 0.360 | +| 2008 | 10 | 0.361 | +| 2008 | 11 | 0.182 | +| 2008 | 12 | 0.180 | +| 2008 | 13 | 0.121 | +| 2008 | 14 | 0.102 | +| 2008 | 15 | 0.117 | +| 2008 | 16 | 0.066 | +| 2008 | 17 | 0.055 | +| 2008 | 18 | 0.048 | +| 2008 | 19 | 0.035 | +| 2008 | 20 | 0.066 | +| 2008 | 21 | 0.021 | +| 2008 | 22 | 0.033 | +| 2008 | 23 | 0.020 | +| 2008 | 24 | 0.017 | +| 2008 | 25 | 0.033 | +| 2008 | 26 | 0.019 | +| 2008 | 27 | 0.011 | +| 2008 | 28 | 0.019 | +| 2008 | 29 | 0.012 | +| 2008 | 30 | 0.030 | +| 2008 | 31 | 0.012 | +| 2008 | 32 | 0.008 | +| 2008 | 33 | 0.008 | +| 2008 | 34 | 0.008 | +| 2008 | 35 | 0.013 | +| 2008 | 36 | 0.008 | +| 2008 | 37 | 0.010 | +| 2008 | 38 | 0.006 | +| 2008 | 39 | 0.005 | +| 2008 | 40 | 0.012 | +| 2008 | 41 | 0.006 | +| 2008 | 42 | 0.004 | +| 2008 | 43 | 0.007 | +| 2008 | 44 | 0.003 | +| 2008 | 45 | 0.009 | +| 2008 | 46 | 0.005 | +| 2008 | 47 | 0.003 | +| 2008 | 48 | 0.003 | +| 2008 | 49 | 0.003 | +| 2008 | 50 | 0.009 | +| 2008 | 51 | 0.001 | +| 2008 | 52 | 0.003 | +| 2008 | 53 | 0.003 | +| 2008 | 54 | 0.003 | +| 2008 | 55 | 0.003 | +| 2008 | 56 | 0.004 | +| 2008 | 57 | 0.002 | +| 2008 | 58 | 0.001 | +| 2008 | 59 | 0.002 | +| 2008 | 60 | 0.007 | +| 2008 | 61 | 0.002 | +| 2008 | 62 | 0.001 | +| 2008 | 63 | 0.003 | +| 2008 | 64 | 0.001 | +| 2008 | 65 | 0.003 | +| 2008 | 66 | 0.000 | +| 2008 | 67 | 0.001 | +| 2008 | 68 | 0.002 | +| 2008 | 69 | 0.002 | +| 2008 | 70 | 0.004 | +| 2008 | 71 | 0.001 | +| 2008 | 72 | 0.000 | +| 2008 | 73 | 0.002 | +| 2008 | 74 | 0.001 | +| 2008 | 75 | 0.002 | +| 2008 | 76 | 0.001 | +| 2008 | 77 | 0.001 | +| 2008 | 78 | 0.001 | +| 2008 | 79 | 0.001 | +| 2008 | 80 | 0.003 | +| 2008 | 81 | 0.000 | +| 2008 | 82 | 0.000 | +| 2008 | 83 | 0.001 | +| 2008 | 85 | 0.001 | +| 2008 | 86 | 0.000 | +| 2008 | 88 | 0.000 | +| 2008 | 89 | 0.000 | +| 2008 | 90 | 0.001 | +| 2008 | 91 | 0.001 | +| 2008 | 93 | 0.000 | +| 2008 | 94 | 0.001 | +| 2008 | 95 | 0.001 | +| 2008 | 97 | 0.000 | +| 2008 | 98 | 0.000 | +| 2008 | 99 | 0.000 | +| 2008 | 100 | 0.001 | +| 2008 | 103 | 0.000 | +| 2008 | 104 | 0.000 | +| 2008 | 105 | 0.001 | +| 2008 | 106 | 0.000 | +| 2008 | 108 | 0.002 | +| 2008 | 110 | 0.001 | +| 2008 | 112 | 0.000 | +| 2008 | 113 | 0.000 | +| 2008 | 114 | 0.000 | +| 2008 | 115 | 0.000 | +| 2008 | 116 | 0.000 | +| 2008 | 117 | 0.000 | +| 2008 | 118 | 0.000 | +| 2008 | 119 | 0.000 | +| 2008 | 120 | 0.002 | +| 2008 | 121 | 0.000 | +| 2008 | 122 | 0.000 | +| 2008 | 123 | 0.000 | +| 2008 | 126 | 0.000 | +| 2008 | 130 | 0.001 | +| 2008 | 132 | 0.000 | +| 2008 | 133 | 0.000 | +| 2008 | 137 | 0.000 | +| 2008 | 139 | 0.000 | +| 2008 | 140 | 0.000 | +| 2008 | 141 | 0.000 | +| 2008 | 142 | 0.001 | +| 2008 | 145 | 0.002 | +| 2008 | 146 | 0.000 | +| 2008 | 149 | 0.000 | +| 2008 | 150 | 0.000 | +| 2008 | 155 | 0.000 | +| 2008 | 163 | 0.000 | +| 2008 | 165 | 0.000 | +| 2008 | 171 | 0.000 | +| 2008 | 179 | 0.000 | +| 2008 | 180 | 0.000 | +| 2008 | 182 | 0.000 | +| 2008 | 189 | 0.000 | +| 2008 | 191 | 0.000 | +| 2008 | 200 | 0.000 | +| 2008 | 205 | 0.000 | +| 2008 | 215 | 0.000 | +| 2008 | 220 | 0.000 | +| 2008 | 222 | 0.000 | +| 2008 | 227 | 0.000 | +| 2008 | 232 | 0.000 | +| 2008 | 234 | 0.000 | +| 2008 | 235 | 0.000 | +| 2008 | 240 | 0.000 | +| 2008 | 250 | 0.000 | +| 2008 | 253 | 0.000 | +| 2008 | 264 | 0.000 | +| 2008 | 314 | 0.000 | +| 2008 | 320 | 0.000 | +| 2008 | 330 | 0.000 | +| 2008 | 350 | 0.001 | +| 2008 | 387 | 0.000 | +| 2008 | 416 | 0.000 | +| 2008 | 549 | 0.000 | +| 2008 | 574 | 0.000 | +| 2008 | 595 | 0.000 | +| 2008 | 600 | 0.000 | +| 2008 | 954 | 0.000 | +| 2008 | 1370 | 0.000 | +| 2009 | 1 | 17.715 | +| 2009 | 2 | 9.232 | +| 2009 | 3 | 5.167 | +| 2009 | 4 | 3.304 | +| 2009 | 5 | 2.423 | +| 2009 | 6 | 1.489 | +| 2009 | 7 | 0.936 | +| 2009 | 8 | 0.687 | +| 2009 | 9 | 0.419 | +| 2009 | 10 | 0.416 | +| 2009 | 11 | 0.205 | +| 2009 | 12 | 0.216 | +| 2009 | 13 | 0.139 | +| 2009 | 14 | 0.112 | +| 2009 | 15 | 0.124 | +| 2009 | 16 | 0.077 | +| 2009 | 17 | 0.070 | +| 2009 | 18 | 0.054 | +| 2009 | 19 | 0.040 | +| 2009 | 20 | 0.079 | +| 2009 | 21 | 0.032 | +| 2009 | 22 | 0.032 | +| 2009 | 23 | 0.028 | +| 2009 | 24 | 0.030 | +| 2009 | 25 | 0.043 | +| 2009 | 26 | 0.031 | +| 2009 | 27 | 0.021 | +| 2009 | 28 | 0.021 | +| 2009 | 29 | 0.011 | +| 2009 | 30 | 0.036 | +| 2009 | 31 | 0.014 | +| 2009 | 32 | 0.015 | +| 2009 | 33 | 0.012 | +| 2009 | 34 | 0.012 | +| 2009 | 35 | 0.016 | +| 2009 | 36 | 0.011 | +| 2009 | 37 | 0.009 | +| 2009 | 38 | 0.011 | +| 2009 | 39 | 0.009 | +| 2009 | 40 | 0.012 | +| 2009 | 41 | 0.007 | +| 2009 | 42 | 0.004 | +| 2009 | 43 | 0.007 | +| 2009 | 44 | 0.004 | +| 2009 | 45 | 0.011 | +| 2009 | 46 | 0.007 | +| 2009 | 47 | 0.005 | +| 2009 | 48 | 0.004 | +| 2009 | 49 | 0.003 | +| 2009 | 50 | 0.013 | +| 2009 | 51 | 0.002 | +| 2009 | 52 | 0.004 | +| 2009 | 53 | 0.000 | +| 2009 | 54 | 0.006 | +| 2009 | 55 | 0.005 | +| 2009 | 56 | 0.004 | +| 2009 | 57 | 0.002 | +| 2009 | 58 | 0.001 | +| 2009 | 59 | 0.002 | +| 2009 | 60 | 0.003 | +| 2009 | 61 | 0.002 | +| 2009 | 62 | 0.001 | +| 2009 | 63 | 0.003 | +| 2009 | 64 | 0.001 | +| 2009 | 65 | 0.003 | +| 2009 | 66 | 0.001 | +| 2009 | 67 | 0.001 | +| 2009 | 68 | 0.002 | +| 2009 | 69 | 0.000 | +| 2009 | 70 | 0.006 | +| 2009 | 71 | 0.000 | +| 2009 | 72 | 0.000 | +| 2009 | 73 | 0.001 | +| 2009 | 74 | 0.002 | +| 2009 | 75 | 0.003 | +| 2009 | 76 | 0.002 | +| 2009 | 77 | 0.000 | +| 2009 | 78 | 0.002 | +| 2009 | 79 | 0.001 | +| 2009 | 80 | 0.001 | +| 2009 | 81 | 0.001 | +| 2009 | 82 | 0.000 | +| 2009 | 83 | 0.001 | +| 2009 | 84 | 0.000 | +| 2009 | 85 | 0.000 | +| 2009 | 86 | 0.000 | +| 2009 | 87 | 0.001 | +| 2009 | 88 | 0.001 | +| 2009 | 89 | 0.000 | +| 2009 | 90 | 0.001 | +| 2009 | 91 | 0.001 | +| 2009 | 92 | 0.000 | +| 2009 | 93 | 0.000 | +| 2009 | 94 | 0.001 | +| 2009 | 95 | 0.002 | +| 2009 | 96 | 0.000 | +| 2009 | 98 | 0.000 | +| 2009 | 99 | 0.000 | +| 2009 | 100 | 0.002 | +| 2009 | 101 | 0.000 | +| 2009 | 103 | 0.000 | +| 2009 | 104 | 0.001 | +| 2009 | 105 | 0.001 | +| 2009 | 107 | 0.000 | +| 2009 | 108 | 0.000 | +| 2009 | 109 | 0.000 | +| 2009 | 110 | 0.001 | +| 2009 | 112 | 0.000 | +| 2009 | 113 | 0.000 | +| 2009 | 114 | 0.000 | +| 2009 | 115 | 0.001 | +| 2009 | 116 | 0.000 | +| 2009 | 117 | 0.000 | +| 2009 | 118 | 0.000 | +| 2009 | 119 | 0.000 | +| 2009 | 120 | 0.002 | +| 2009 | 121 | 0.000 | +| 2009 | 122 | 0.000 | +| 2009 | 123 | 0.000 | +| 2009 | 124 | 0.000 | +| 2009 | 126 | 0.000 | +| 2009 | 128 | 0.000 | +| 2009 | 129 | 0.000 | +| 2009 | 130 | 0.001 | +| 2009 | 133 | 0.000 | +| 2009 | 134 | 0.000 | +| 2009 | 135 | 0.000 | +| 2009 | 139 | 0.000 | +| 2009 | 141 | 0.000 | +| 2009 | 142 | 0.001 | +| 2009 | 143 | 0.000 | +| 2009 | 145 | 0.000 | +| 2009 | 149 | 0.000 | +| 2009 | 150 | 0.001 | +| 2009 | 152 | 0.000 | +| 2009 | 153 | 0.000 | +| 2009 | 155 | 0.000 | +| 2009 | 160 | 0.000 | +| 2009 | 162 | 0.000 | +| 2009 | 163 | 0.000 | +| 2009 | 165 | 0.000 | +| 2009 | 170 | 0.000 | +| 2009 | 171 | 0.000 | +| 2009 | 172 | 0.000 | +| 2009 | 175 | 0.000 | +| 2009 | 179 | 0.000 | +| 2009 | 180 | 0.000 | +| 2009 | 189 | 0.000 | +| 2009 | 191 | 0.000 | +| 2009 | 205 | 0.000 | +| 2009 | 210 | 0.000 | +| 2009 | 214 | 0.000 | +| 2009 | 215 | 0.000 | +| 2009 | 220 | 0.000 | +| 2009 | 221 | 0.000 | +| 2009 | 224 | 0.000 | +| 2009 | 225 | 0.000 | +| 2009 | 227 | 0.000 | +| 2009 | 232 | 0.000 | +| 2009 | 234 | 0.000 | +| 2009 | 239 | 0.000 | +| 2009 | 240 | 0.000 | +| 2009 | 249 | 0.000 | +| 2009 | 250 | 0.000 | +| 2009 | 253 | 0.000 | +| 2009 | 264 | 0.000 | +| 2009 | 279 | 0.000 | +| 2009 | 281 | 0.000 | +| 2009 | 330 | 0.000 | +| 2009 | 335 | 0.000 | +| 2009 | 345 | 0.000 | +| 2009 | 350 | 0.000 | +| 2009 | 387 | 0.000 | +| 2009 | 416 | 0.000 | +| 2009 | 440 | 0.000 | +| 2009 | 550 | 0.000 | +| 2009 | 574 | 0.000 | +| 2009 | 715 | 0.000 | +| 2009 | 954 | 0.000 | +| 2009 | 1370 | 0.000 | +| 2010 | 0 | 0.001 | +| 2010 | 1 | 17.744 | +| 2010 | 2 | 9.537 | +| 2010 | 3 | 5.388 | +| 2010 | 4 | 3.702 | +| 2010 | 5 | 2.763 | +| 2010 | 6 | 1.739 | +| 2010 | 7 | 1.100 | +| 2010 | 8 | 0.816 | +| 2010 | 9 | 0.504 | +| 2010 | 10 | 0.496 | +| 2010 | 11 | 0.245 | +| 2010 | 12 | 0.242 | +| 2010 | 13 | 0.158 | +| 2010 | 14 | 0.126 | +| 2010 | 15 | 0.155 | +| 2010 | 16 | 0.085 | +| 2010 | 17 | 0.071 | +| 2010 | 18 | 0.069 | +| 2010 | 19 | 0.045 | +| 2010 | 20 | 0.093 | +| 2010 | 21 | 0.033 | +| 2010 | 22 | 0.036 | +| 2010 | 23 | 0.026 | +| 2010 | 24 | 0.030 | +| 2010 | 25 | 0.048 | +| 2010 | 26 | 0.033 | +| 2010 | 27 | 0.020 | +| 2010 | 28 | 0.029 | +| 2010 | 29 | 0.015 | +| 2010 | 30 | 0.038 | +| 2010 | 31 | 0.013 | +| 2010 | 32 | 0.017 | +| 2010 | 33 | 0.011 | +| 2010 | 34 | 0.011 | +| 2010 | 35 | 0.020 | +| 2010 | 36 | 0.012 | +| 2010 | 37 | 0.011 | +| 2010 | 38 | 0.013 | +| 2010 | 39 | 0.009 | +| 2010 | 40 | 0.015 | +| 2010 | 41 | 0.010 | +| 2010 | 42 | 0.007 | +| 2010 | 43 | 0.008 | +| 2010 | 44 | 0.006 | +| 2010 | 45 | 0.008 | +| 2010 | 46 | 0.006 | +| 2010 | 47 | 0.005 | +| 2010 | 48 | 0.005 | +| 2010 | 49 | 0.003 | +| 2010 | 50 | 0.015 | +| 2010 | 51 | 0.004 | +| 2010 | 52 | 0.004 | +| 2010 | 53 | 0.005 | +| 2010 | 54 | 0.006 | +| 2010 | 55 | 0.005 | +| 2010 | 56 | 0.003 | +| 2010 | 57 | 0.002 | +| 2010 | 58 | 0.002 | +| 2010 | 59 | 0.001 | +| 2010 | 60 | 0.007 | +| 2010 | 61 | 0.003 | +| 2010 | 62 | 0.003 | +| 2010 | 63 | 0.002 | +| 2010 | 64 | 0.001 | +| 2010 | 65 | 0.004 | +| 2010 | 66 | 0.001 | +| 2010 | 67 | 0.001 | +| 2010 | 68 | 0.002 | +| 2010 | 69 | 0.001 | +| 2010 | 70 | 0.006 | +| 2010 | 71 | 0.000 | +| 2010 | 72 | 0.001 | +| 2010 | 73 | 0.000 | +| 2010 | 74 | 0.004 | +| 2010 | 75 | 0.003 | +| 2010 | 76 | 0.001 | +| 2010 | 78 | 0.003 | +| 2010 | 79 | 0.002 | +| 2010 | 80 | 0.005 | +| 2010 | 82 | 0.000 | +| 2010 | 83 | 0.002 | +| 2010 | 84 | 0.000 | +| 2010 | 85 | 0.002 | +| 2010 | 86 | 0.000 | +| 2010 | 87 | 0.001 | +| 2010 | 88 | 0.001 | +| 2010 | 89 | 0.000 | +| 2010 | 90 | 0.002 | +| 2010 | 91 | 0.001 | +| 2010 | 92 | 0.000 | +| 2010 | 93 | 0.001 | +| 2010 | 94 | 0.000 | +| 2010 | 95 | 0.001 | +| 2010 | 96 | 0.001 | +| 2010 | 97 | 0.000 | +| 2010 | 98 | 0.000 | +| 2010 | 99 | 0.001 | +| 2010 | 100 | 0.002 | +| 2010 | 103 | 0.000 | +| 2010 | 104 | 0.001 | +| 2010 | 105 | 0.001 | +| 2010 | 106 | 0.000 | +| 2010 | 107 | 0.000 | +| 2010 | 108 | 0.000 | +| 2010 | 109 | 0.000 | +| 2010 | 110 | 0.001 | +| 2010 | 111 | 0.000 | +| 2010 | 112 | 0.000 | +| 2010 | 113 | 0.000 | +| 2010 | 114 | 0.000 | +| 2010 | 115 | 0.001 | +| 2010 | 116 | 0.000 | +| 2010 | 118 | 0.001 | +| 2010 | 119 | 0.000 | +| 2010 | 120 | 0.005 | +| 2010 | 121 | 0.000 | +| 2010 | 123 | 0.000 | +| 2010 | 124 | 0.000 | +| 2010 | 125 | 0.000 | +| 2010 | 126 | 0.000 | +| 2010 | 127 | 0.000 | +| 2010 | 128 | 0.000 | +| 2010 | 129 | 0.000 | +| 2010 | 131 | 0.000 | +| 2010 | 132 | 0.000 | +| 2010 | 134 | 0.000 | +| 2010 | 135 | 0.000 | +| 2010 | 139 | 0.000 | +| 2010 | 140 | 0.002 | +| 2010 | 141 | 0.000 | +| 2010 | 142 | 0.001 | +| 2010 | 143 | 0.000 | +| 2010 | 149 | 0.000 | +| 2010 | 150 | 0.002 | +| 2010 | 151 | 0.000 | +| 2010 | 154 | 0.000 | +| 2010 | 155 | 0.000 | +| 2010 | 157 | 0.000 | +| 2010 | 158 | 0.000 | +| 2010 | 161 | 0.000 | +| 2010 | 162 | 0.000 | +| 2010 | 165 | 0.000 | +| 2010 | 172 | 0.000 | +| 2010 | 174 | 0.000 | +| 2010 | 175 | 0.000 | +| 2010 | 176 | 0.000 | +| 2010 | 178 | 0.000 | +| 2010 | 180 | 0.000 | +| 2010 | 187 | 0.000 | +| 2010 | 189 | 0.000 | +| 2010 | 190 | 0.000 | +| 2010 | 191 | 0.000 | +| 2010 | 193 | 0.000 | +| 2010 | 200 | 0.000 | +| 2010 | 201 | 0.000 | +| 2010 | 205 | 0.000 | +| 2010 | 215 | 0.000 | +| 2010 | 217 | 0.000 | +| 2010 | 220 | 0.000 | +| 2010 | 221 | 0.000 | +| 2010 | 225 | 0.000 | +| 2010 | 240 | 0.000 | +| 2010 | 244 | 0.000 | +| 2010 | 250 | 0.000 | +| 2010 | 252 | 0.000 | +| 2010 | 253 | 0.000 | +| 2010 | 255 | 0.000 | +| 2010 | 256 | 0.000 | +| 2010 | 260 | 0.000 | +| 2010 | 264 | 0.000 | +| 2010 | 266 | 0.000 | +| 2010 | 269 | 0.000 | +| 2010 | 279 | 0.000 | +| 2010 | 290 | 0.000 | +| 2010 | 300 | 0.000 | +| 2010 | 302 | 0.000 | +| 2010 | 328 | 0.000 | +| 2010 | 330 | 0.000 | +| 2010 | 335 | 0.000 | +| 2010 | 387 | 0.000 | +| 2010 | 416 | 0.000 | +| 2010 | 550 | 0.000 | +| 2010 | 574 | 0.000 | +| 2010 | 594 | 0.000 | +| 2010 | 715 | 0.000 | +| 2010 | 1370 | 0.000 | +| 2011 | 1 | 17.907 | +| 2011 | 2 | 9.950 | +| 2011 | 3 | 5.836 | +| 2011 | 4 | 4.065 | +| 2011 | 5 | 3.044 | +| 2011 | 6 | 1.940 | +| 2011 | 7 | 1.284 | +| 2011 | 8 | 0.958 | +| 2011 | 9 | 0.634 | +| 2011 | 10 | 0.622 | +| 2011 | 11 | 0.322 | +| 2011 | 12 | 0.307 | +| 2011 | 13 | 0.186 | +| 2011 | 14 | 0.169 | +| 2011 | 15 | 0.175 | +| 2011 | 16 | 0.108 | +| 2011 | 17 | 0.089 | +| 2011 | 18 | 0.088 | +| 2011 | 19 | 0.056 | +| 2011 | 20 | 0.097 | +| 2011 | 21 | 0.035 | +| 2011 | 22 | 0.050 | +| 2011 | 23 | 0.038 | +| 2011 | 24 | 0.029 | +| 2011 | 25 | 0.044 | +| 2011 | 26 | 0.034 | +| 2011 | 27 | 0.021 | +| 2011 | 28 | 0.027 | +| 2011 | 29 | 0.014 | +| 2011 | 30 | 0.046 | +| 2011 | 31 | 0.013 | +| 2011 | 32 | 0.019 | +| 2011 | 33 | 0.011 | +| 2011 | 34 | 0.010 | +| 2011 | 35 | 0.024 | +| 2011 | 36 | 0.012 | +| 2011 | 37 | 0.010 | +| 2011 | 38 | 0.016 | +| 2011 | 39 | 0.009 | +| 2011 | 40 | 0.023 | +| 2011 | 41 | 0.009 | +| 2011 | 42 | 0.008 | +| 2011 | 43 | 0.006 | +| 2011 | 44 | 0.007 | +| 2011 | 45 | 0.009 | +| 2011 | 46 | 0.006 | +| 2011 | 47 | 0.007 | +| 2011 | 48 | 0.008 | +| 2011 | 49 | 0.003 | +| 2011 | 50 | 0.022 | +| 2011 | 51 | 0.004 | +| 2011 | 52 | 0.005 | +| 2011 | 53 | 0.005 | +| 2011 | 54 | 0.005 | +| 2011 | 55 | 0.006 | +| 2011 | 56 | 0.004 | +| 2011 | 57 | 0.000 | +| 2011 | 58 | 0.004 | +| 2011 | 59 | 0.001 | +| 2011 | 60 | 0.006 | +| 2011 | 61 | 0.004 | +| 2011 | 62 | 0.003 | +| 2011 | 63 | 0.005 | +| 2011 | 64 | 0.001 | +| 2011 | 65 | 0.003 | +| 2011 | 66 | 0.001 | +| 2011 | 67 | 0.003 | +| 2011 | 68 | 0.002 | +| 2011 | 69 | 0.002 | +| 2011 | 70 | 0.008 | +| 2011 | 71 | 0.001 | +| 2011 | 72 | 0.002 | +| 2011 | 73 | 0.002 | +| 2011 | 74 | 0.002 | +| 2011 | 75 | 0.004 | +| 2011 | 76 | 0.000 | +| 2011 | 77 | 0.000 | +| 2011 | 78 | 0.002 | +| 2011 | 79 | 0.002 | +| 2011 | 80 | 0.005 | +| 2011 | 81 | 0.000 | +| 2011 | 82 | 0.001 | +| 2011 | 83 | 0.001 | +| 2011 | 84 | 0.001 | +| 2011 | 85 | 0.004 | +| 2011 | 86 | 0.001 | +| 2011 | 87 | 0.000 | +| 2011 | 88 | 0.001 | +| 2011 | 89 | 0.001 | +| 2011 | 90 | 0.002 | +| 2011 | 91 | 0.002 | +| 2011 | 92 | 0.001 | +| 2011 | 93 | 0.001 | +| 2011 | 94 | 0.001 | +| 2011 | 95 | 0.002 | +| 2011 | 96 | 0.000 | +| 2011 | 97 | 0.000 | +| 2011 | 98 | 0.000 | +| 2011 | 99 | 0.000 | +| 2011 | 100 | 0.003 | +| 2011 | 101 | 0.000 | +| 2011 | 102 | 0.000 | +| 2011 | 103 | 0.000 | +| 2011 | 104 | 0.000 | +| 2011 | 105 | 0.003 | +| 2011 | 106 | 0.001 | +| 2011 | 107 | 0.001 | +| 2011 | 108 | 0.000 | +| 2011 | 109 | 0.000 | +| 2011 | 110 | 0.002 | +| 2011 | 111 | 0.001 | +| 2011 | 113 | 0.000 | +| 2011 | 114 | 0.000 | +| 2011 | 115 | 0.002 | +| 2011 | 116 | 0.000 | +| 2011 | 118 | 0.000 | +| 2011 | 119 | 0.000 | +| 2011 | 120 | 0.002 | +| 2011 | 121 | 0.000 | +| 2011 | 122 | 0.000 | +| 2011 | 123 | 0.000 | +| 2011 | 124 | 0.000 | +| 2011 | 125 | 0.000 | +| 2011 | 126 | 0.000 | +| 2011 | 127 | 0.000 | +| 2011 | 129 | 0.000 | +| 2011 | 130 | 0.000 | +| 2011 | 132 | 0.000 | +| 2011 | 134 | 0.000 | +| 2011 | 136 | 0.001 | +| 2011 | 138 | 0.000 | +| 2011 | 139 | 0.000 | +| 2011 | 140 | 0.002 | +| 2011 | 141 | 0.000 | +| 2011 | 142 | 0.000 | +| 2011 | 143 | 0.000 | +| 2011 | 144 | 0.000 | +| 2011 | 145 | 0.000 | +| 2011 | 147 | 0.000 | +| 2011 | 149 | 0.000 | +| 2011 | 150 | 0.002 | +| 2011 | 151 | 0.000 | +| 2011 | 155 | 0.000 | +| 2011 | 157 | 0.000 | +| 2011 | 158 | 0.000 | +| 2011 | 159 | 0.000 | +| 2011 | 160 | 0.001 | +| 2011 | 161 | 0.000 | +| 2011 | 162 | 0.000 | +| 2011 | 165 | 0.000 | +| 2011 | 167 | 0.000 | +| 2011 | 170 | 0.000 | +| 2011 | 172 | 0.000 | +| 2011 | 173 | 0.000 | +| 2011 | 177 | 0.000 | +| 2011 | 178 | 0.000 | +| 2011 | 180 | 0.000 | +| 2011 | 185 | 0.000 | +| 2011 | 199 | 0.000 | +| 2011 | 200 | 0.001 | +| 2011 | 201 | 0.000 | +| 2011 | 211 | 0.000 | +| 2011 | 214 | 0.000 | +| 2011 | 215 | 0.000 | +| 2011 | 220 | 0.000 | +| 2011 | 224 | 0.000 | +| 2011 | 225 | 0.000 | +| 2011 | 240 | 0.000 | +| 2011 | 244 | 0.000 | +| 2011 | 250 | 0.000 | +| 2011 | 252 | 0.000 | +| 2011 | 256 | 0.000 | +| 2011 | 264 | 0.000 | +| 2011 | 266 | 0.000 | +| 2011 | 272 | 0.000 | +| 2011 | 279 | 0.000 | +| 2011 | 282 | 0.000 | +| 2011 | 289 | 0.000 | +| 2011 | 302 | 0.000 | +| 2011 | 320 | 0.000 | +| 2011 | 322 | 0.000 | +| 2011 | 330 | 0.000 | +| 2011 | 335 | 0.000 | +| 2011 | 359 | 0.000 | +| 2011 | 365 | 0.000 | +| 2011 | 400 | 0.000 | +| 2011 | 416 | 0.000 | +| 2011 | 505 | 0.000 | +| 2011 | 550 | 0.000 | +| 2011 | 570 | 0.000 | +| 2011 | 574 | 0.000 | +| 2011 | 715 | 0.000 | +| 2011 | 1370 | 0.000 | +| 2011 | 1500 | 0.000 | +| 2011 | 1600 | 0.000 | +| 2012 | 1 | 17.815 | +| 2012 | 2 | 9.981 | +| 2012 | 3 | 6.015 | +| 2012 | 4 | 4.083 | +| 2012 | 5 | 3.210 | +| 2012 | 6 | 2.147 | +| 2012 | 7 | 1.457 | +| 2012 | 8 | 1.123 | +| 2012 | 9 | 0.737 | +| 2012 | 10 | 0.728 | +| 2012 | 11 | 0.374 | +| 2012 | 12 | 0.329 | +| 2012 | 13 | 0.202 | +| 2012 | 14 | 0.171 | +| 2012 | 15 | 0.177 | +| 2012 | 16 | 0.104 | +| 2012 | 17 | 0.091 | +| 2012 | 18 | 0.090 | +| 2012 | 19 | 0.053 | +| 2012 | 20 | 0.120 | +| 2012 | 21 | 0.043 | +| 2012 | 22 | 0.051 | +| 2012 | 23 | 0.041 | +| 2012 | 24 | 0.031 | +| 2012 | 25 | 0.054 | +| 2012 | 26 | 0.038 | +| 2012 | 27 | 0.028 | +| 2012 | 28 | 0.026 | +| 2012 | 29 | 0.017 | +| 2012 | 30 | 0.053 | +| 2012 | 31 | 0.017 | +| 2012 | 32 | 0.023 | +| 2012 | 33 | 0.016 | +| 2012 | 34 | 0.013 | +| 2012 | 35 | 0.022 | +| 2012 | 36 | 0.011 | +| 2012 | 37 | 0.011 | +| 2012 | 38 | 0.014 | +| 2012 | 39 | 0.009 | +| 2012 | 40 | 0.025 | +| 2012 | 41 | 0.012 | +| 2012 | 42 | 0.009 | +| 2012 | 43 | 0.010 | +| 2012 | 44 | 0.009 | +| 2012 | 45 | 0.013 | +| 2012 | 46 | 0.009 | +| 2012 | 47 | 0.008 | +| 2012 | 48 | 0.008 | +| 2012 | 49 | 0.004 | +| 2012 | 50 | 0.023 | +| 2012 | 51 | 0.008 | +| 2012 | 52 | 0.008 | +| 2012 | 53 | 0.006 | +| 2012 | 54 | 0.007 | +| 2012 | 55 | 0.006 | +| 2012 | 56 | 0.005 | +| 2012 | 57 | 0.002 | +| 2012 | 58 | 0.005 | +| 2012 | 59 | 0.002 | +| 2012 | 60 | 0.010 | +| 2012 | 61 | 0.003 | +| 2012 | 62 | 0.002 | +| 2012 | 63 | 0.004 | +| 2012 | 64 | 0.003 | +| 2012 | 65 | 0.004 | +| 2012 | 66 | 0.003 | +| 2012 | 67 | 0.003 | +| 2012 | 68 | 0.003 | +| 2012 | 69 | 0.002 | +| 2012 | 70 | 0.009 | +| 2012 | 71 | 0.001 | +| 2012 | 72 | 0.003 | +| 2012 | 73 | 0.003 | +| 2012 | 74 | 0.001 | +| 2012 | 75 | 0.003 | +| 2012 | 76 | 0.002 | +| 2012 | 77 | 0.001 | +| 2012 | 78 | 0.002 | +| 2012 | 79 | 0.000 | +| 2012 | 80 | 0.006 | +| 2012 | 81 | 0.001 | +| 2012 | 82 | 0.001 | +| 2012 | 83 | 0.001 | +| 2012 | 84 | 0.002 | +| 2012 | 85 | 0.003 | +| 2012 | 86 | 0.000 | +| 2012 | 87 | 0.000 | +| 2012 | 88 | 0.002 | +| 2012 | 89 | 0.001 | +| 2012 | 90 | 0.003 | +| 2012 | 91 | 0.001 | +| 2012 | 92 | 0.000 | +| 2012 | 93 | 0.001 | +| 2012 | 94 | 0.000 | +| 2012 | 95 | 0.003 | +| 2012 | 96 | 0.001 | +| 2012 | 98 | 0.000 | +| 2012 | 99 | 0.001 | +| 2012 | 100 | 0.006 | +| 2012 | 101 | 0.001 | +| 2012 | 102 | 0.000 | +| 2012 | 103 | 0.001 | +| 2012 | 104 | 0.000 | +| 2012 | 105 | 0.001 | +| 2012 | 106 | 0.001 | +| 2012 | 107 | 0.000 | +| 2012 | 108 | 0.000 | +| 2012 | 109 | 0.000 | +| 2012 | 110 | 0.000 | +| 2012 | 111 | 0.000 | +| 2012 | 112 | 0.001 | +| 2012 | 113 | 0.000 | +| 2012 | 114 | 0.000 | +| 2012 | 115 | 0.002 | +| 2012 | 116 | 0.000 | +| 2012 | 117 | 0.000 | +| 2012 | 118 | 0.001 | +| 2012 | 119 | 0.000 | +| 2012 | 120 | 0.002 | +| 2012 | 121 | 0.000 | +| 2012 | 122 | 0.001 | +| 2012 | 123 | 0.000 | +| 2012 | 125 | 0.000 | +| 2012 | 126 | 0.000 | +| 2012 | 127 | 0.000 | +| 2012 | 128 | 0.000 | +| 2012 | 129 | 0.000 | +| 2012 | 130 | 0.001 | +| 2012 | 131 | 0.000 | +| 2012 | 132 | 0.000 | +| 2012 | 134 | 0.000 | +| 2012 | 135 | 0.000 | +| 2012 | 136 | 0.001 | +| 2012 | 138 | 0.000 | +| 2012 | 139 | 0.000 | +| 2012 | 140 | 0.001 | +| 2012 | 141 | 0.000 | +| 2012 | 142 | 0.001 | +| 2012 | 143 | 0.000 | +| 2012 | 144 | 0.001 | +| 2012 | 145 | 0.001 | +| 2012 | 148 | 0.000 | +| 2012 | 149 | 0.001 | +| 2012 | 150 | 0.000 | +| 2012 | 151 | 0.000 | +| 2012 | 152 | 0.000 | +| 2012 | 157 | 0.000 | +| 2012 | 159 | 0.000 | +| 2012 | 160 | 0.001 | +| 2012 | 161 | 0.001 | +| 2012 | 162 | 0.000 | +| 2012 | 166 | 0.000 | +| 2012 | 168 | 0.000 | +| 2012 | 169 | 0.000 | +| 2012 | 170 | 0.001 | +| 2012 | 172 | 0.000 | +| 2012 | 173 | 0.000 | +| 2012 | 175 | 0.000 | +| 2012 | 177 | 0.000 | +| 2012 | 178 | 0.000 | +| 2012 | 179 | 0.000 | +| 2012 | 180 | 0.000 | +| 2012 | 187 | 0.000 | +| 2012 | 196 | 0.000 | +| 2012 | 199 | 0.000 | +| 2012 | 200 | 0.001 | +| 2012 | 201 | 0.000 | +| 2012 | 205 | 0.000 | +| 2012 | 209 | 0.000 | +| 2012 | 214 | 0.000 | +| 2012 | 215 | 0.000 | +| 2012 | 220 | 0.000 | +| 2012 | 222 | 0.000 | +| 2012 | 224 | 0.000 | +| 2012 | 225 | 0.000 | +| 2012 | 232 | 0.000 | +| 2012 | 244 | 0.000 | +| 2012 | 247 | 0.000 | +| 2012 | 250 | 0.000 | +| 2012 | 256 | 0.000 | +| 2012 | 260 | 0.000 | +| 2012 | 264 | 0.000 | +| 2012 | 266 | 0.000 | +| 2012 | 268 | 0.000 | +| 2012 | 271 | 0.000 | +| 2012 | 278 | 0.000 | +| 2012 | 287 | 0.000 | +| 2012 | 295 | 0.000 | +| 2012 | 300 | 0.000 | +| 2012 | 302 | 0.000 | +| 2012 | 304 | 0.000 | +| 2012 | 305 | 0.000 | +| 2012 | 309 | 0.000 | +| 2012 | 310 | 0.000 | +| 2012 | 317 | 0.000 | +| 2012 | 322 | 0.000 | +| 2012 | 330 | 0.000 | +| 2012 | 332 | 0.000 | +| 2012 | 335 | 0.000 | +| 2012 | 338 | 0.000 | +| 2012 | 366 | 0.000 | +| 2012 | 385 | 0.000 | +| 2012 | 416 | 0.000 | +| 2012 | 500 | 0.000 | +| 2012 | 505 | 0.000 | +| 2012 | 550 | 0.000 | +| 2012 | 615 | 0.000 | +| 2012 | 645 | 0.000 | +| 2012 | 697 | 0.000 | +| 2012 | 1270 | 0.000 | +| 2012 | 1500 | 0.000 | +| 2012 | 1600 | 0.000 | +| 2012 | 1656 | 0.000 | +| 2012 | 2000 | 0.000 | +| 2013 | 1 | 17.247 | +| 2013 | 2 | 10.053 | +| 2013 | 3 | 6.083 | +| 2013 | 4 | 4.186 | +| 2013 | 5 | 3.151 | +| 2013 | 6 | 2.189 | +| 2013 | 7 | 1.531 | +| 2013 | 8 | 1.179 | +| 2013 | 9 | 0.787 | +| 2013 | 10 | 0.802 | +| 2013 | 11 | 0.438 | +| 2013 | 12 | 0.366 | +| 2013 | 13 | 0.240 | +| 2013 | 14 | 0.192 | +| 2013 | 15 | 0.207 | +| 2013 | 16 | 0.118 | +| 2013 | 17 | 0.088 | +| 2013 | 18 | 0.094 | +| 2013 | 19 | 0.069 | +| 2013 | 20 | 0.115 | +| 2013 | 21 | 0.052 | +| 2013 | 22 | 0.051 | +| 2013 | 23 | 0.048 | +| 2013 | 24 | 0.037 | +| 2013 | 25 | 0.043 | +| 2013 | 26 | 0.031 | +| 2013 | 27 | 0.023 | +| 2013 | 28 | 0.024 | +| 2013 | 29 | 0.016 | +| 2013 | 30 | 0.060 | +| 2013 | 31 | 0.019 | +| 2013 | 32 | 0.020 | +| 2013 | 33 | 0.013 | +| 2013 | 34 | 0.016 | +| 2013 | 35 | 0.020 | +| 2013 | 36 | 0.012 | +| 2013 | 37 | 0.010 | +| 2013 | 38 | 0.014 | +| 2013 | 39 | 0.008 | +| 2013 | 40 | 0.028 | +| 2013 | 41 | 0.007 | +| 2013 | 42 | 0.012 | +| 2013 | 43 | 0.005 | +| 2013 | 44 | 0.006 | +| 2013 | 45 | 0.016 | +| 2013 | 46 | 0.007 | +| 2013 | 47 | 0.006 | +| 2013 | 48 | 0.005 | +| 2013 | 49 | 0.003 | +| 2013 | 50 | 0.022 | +| 2013 | 51 | 0.007 | +| 2013 | 52 | 0.007 | +| 2013 | 53 | 0.005 | +| 2013 | 54 | 0.004 | +| 2013 | 55 | 0.006 | +| 2013 | 56 | 0.004 | +| 2013 | 57 | 0.005 | +| 2013 | 58 | 0.005 | +| 2013 | 59 | 0.004 | +| 2013 | 60 | 0.014 | +| 2013 | 61 | 0.004 | +| 2013 | 62 | 0.005 | +| 2013 | 63 | 0.004 | +| 2013 | 64 | 0.004 | +| 2013 | 65 | 0.002 | +| 2013 | 66 | 0.002 | +| 2013 | 67 | 0.002 | +| 2013 | 68 | 0.002 | +| 2013 | 69 | 0.003 | +| 2013 | 70 | 0.005 | +| 2013 | 71 | 0.003 | +| 2013 | 72 | 0.001 | +| 2013 | 73 | 0.002 | +| 2013 | 74 | 0.000 | +| 2013 | 75 | 0.004 | +| 2013 | 76 | 0.002 | +| 2013 | 77 | 0.002 | +| 2013 | 78 | 0.002 | +| 2013 | 80 | 0.008 | +| 2013 | 81 | 0.001 | +| 2013 | 82 | 0.001 | +| 2013 | 83 | 0.001 | +| 2013 | 84 | 0.001 | +| 2013 | 85 | 0.004 | +| 2013 | 86 | 0.001 | +| 2013 | 87 | 0.000 | +| 2013 | 88 | 0.002 | +| 2013 | 89 | 0.001 | +| 2013 | 90 | 0.004 | +| 2013 | 91 | 0.001 | +| 2013 | 92 | 0.001 | +| 2013 | 93 | 0.001 | +| 2013 | 94 | 0.001 | +| 2013 | 95 | 0.000 | +| 2013 | 96 | 0.000 | +| 2013 | 97 | 0.000 | +| 2013 | 98 | 0.001 | +| 2013 | 99 | 0.001 | +| 2013 | 100 | 0.006 | +| 2013 | 101 | 0.000 | +| 2013 | 102 | 0.001 | +| 2013 | 104 | 0.000 | +| 2013 | 105 | 0.001 | +| 2013 | 106 | 0.001 | +| 2013 | 107 | 0.000 | +| 2013 | 108 | 0.001 | +| 2013 | 109 | 0.001 | +| 2013 | 110 | 0.002 | +| 2013 | 111 | 0.001 | +| 2013 | 112 | 0.001 | +| 2013 | 114 | 0.000 | +| 2013 | 115 | 0.002 | +| 2013 | 116 | 0.000 | +| 2013 | 117 | 0.001 | +| 2013 | 118 | 0.000 | +| 2013 | 119 | 0.000 | +| 2013 | 120 | 0.004 | +| 2013 | 121 | 0.000 | +| 2013 | 122 | 0.001 | +| 2013 | 123 | 0.000 | +| 2013 | 125 | 0.001 | +| 2013 | 126 | 0.001 | +| 2013 | 127 | 0.000 | +| 2013 | 129 | 0.000 | +| 2013 | 130 | 0.001 | +| 2013 | 131 | 0.000 | +| 2013 | 132 | 0.001 | +| 2013 | 133 | 0.000 | +| 2013 | 134 | 0.000 | +| 2013 | 135 | 0.000 | +| 2013 | 136 | 0.001 | +| 2013 | 137 | 0.000 | +| 2013 | 138 | 0.000 | +| 2013 | 139 | 0.001 | +| 2013 | 140 | 0.000 | +| 2013 | 143 | 0.000 | +| 2013 | 145 | 0.000 | +| 2013 | 147 | 0.000 | +| 2013 | 149 | 0.000 | +| 2013 | 150 | 0.002 | +| 2013 | 152 | 0.000 | +| 2013 | 153 | 0.001 | +| 2013 | 154 | 0.000 | +| 2013 | 155 | 0.000 | +| 2013 | 158 | 0.000 | +| 2013 | 159 | 0.001 | +| 2013 | 160 | 0.001 | +| 2013 | 161 | 0.000 | +| 2013 | 162 | 0.000 | +| 2013 | 164 | 0.000 | +| 2013 | 166 | 0.000 | +| 2013 | 168 | 0.000 | +| 2013 | 170 | 0.001 | +| 2013 | 174 | 0.000 | +| 2013 | 175 | 0.000 | +| 2013 | 177 | 0.000 | +| 2013 | 179 | 0.000 | +| 2013 | 180 | 0.001 | +| 2013 | 181 | 0.000 | +| 2013 | 182 | 0.000 | +| 2013 | 183 | 0.000 | +| 2013 | 184 | 0.000 | +| 2013 | 190 | 0.001 | +| 2013 | 192 | 0.000 | +| 2013 | 193 | 0.000 | +| 2013 | 197 | 0.000 | +| 2013 | 199 | 0.000 | +| 2013 | 200 | 0.001 | +| 2013 | 201 | 0.000 | +| 2013 | 204 | 0.000 | +| 2013 | 205 | 0.000 | +| 2013 | 206 | 0.000 | +| 2013 | 209 | 0.001 | +| 2013 | 210 | 0.000 | +| 2013 | 212 | 0.000 | +| 2013 | 214 | 0.000 | +| 2013 | 215 | 0.000 | +| 2013 | 216 | 0.000 | +| 2013 | 218 | 0.000 | +| 2013 | 220 | 0.001 | +| 2013 | 222 | 0.000 | +| 2013 | 225 | 0.000 | +| 2013 | 226 | 0.000 | +| 2013 | 228 | 0.000 | +| 2013 | 237 | 0.000 | +| 2013 | 244 | 0.000 | +| 2013 | 247 | 0.000 | +| 2013 | 250 | 0.000 | +| 2013 | 254 | 0.000 | +| 2013 | 259 | 0.000 | +| 2013 | 260 | 0.000 | +| 2013 | 264 | 0.000 | +| 2013 | 266 | 0.000 | +| 2013 | 280 | 0.000 | +| 2013 | 295 | 0.000 | +| 2013 | 296 | 0.000 | +| 2013 | 300 | 0.000 | +| 2013 | 306 | 0.000 | +| 2013 | 309 | 0.000 | +| 2013 | 310 | 0.000 | +| 2013 | 313 | 0.000 | +| 2013 | 321 | 0.000 | +| 2013 | 330 | 0.000 | +| 2013 | 335 | 0.000 | +| 2013 | 338 | 0.000 | +| 2013 | 350 | 0.000 | +| 2013 | 385 | 0.000 | +| 2013 | 389 | 0.000 | +| 2013 | 390 | 0.000 | +| 2013 | 416 | 0.000 | +| 2013 | 496 | 0.000 | +| 2013 | 500 | 0.000 | +| 2013 | 505 | 0.000 | +| 2013 | 550 | 0.000 | +| 2013 | 559 | 0.000 | +| 2013 | 615 | 0.000 | +| 2013 | 645 | 0.000 | +| 2013 | 858 | 0.000 | +| 2013 | 2000 | 0.001 | +| 2013 | 2340 | 0.000 | +| 2014 | 0 | 0.002 | +| 2014 | 1 | 16.794 | +| 2014 | 2 | 10.240 | +| 2014 | 3 | 6.162 | +| 2014 | 4 | 4.188 | +| 2014 | 5 | 3.141 | +| 2014 | 6 | 2.152 | +| 2014 | 7 | 1.590 | +| 2014 | 8 | 1.229 | +| 2014 | 9 | 0.832 | +| 2014 | 10 | 0.900 | +| 2014 | 11 | 0.480 | +| 2014 | 12 | 0.420 | +| 2014 | 13 | 0.268 | +| 2014 | 14 | 0.205 | +| 2014 | 15 | 0.210 | +| 2014 | 16 | 0.132 | +| 2014 | 17 | 0.105 | +| 2014 | 18 | 0.110 | +| 2014 | 19 | 0.067 | +| 2014 | 20 | 0.121 | +| 2014 | 21 | 0.054 | +| 2014 | 22 | 0.053 | +| 2014 | 23 | 0.051 | +| 2014 | 24 | 0.039 | +| 2014 | 25 | 0.051 | +| 2014 | 26 | 0.029 | +| 2014 | 27 | 0.028 | +| 2014 | 28 | 0.031 | +| 2014 | 29 | 0.023 | +| 2014 | 30 | 0.056 | +| 2014 | 31 | 0.019 | +| 2014 | 32 | 0.024 | +| 2014 | 33 | 0.010 | +| 2014 | 34 | 0.015 | +| 2014 | 35 | 0.019 | +| 2014 | 36 | 0.017 | +| 2014 | 37 | 0.013 | +| 2014 | 38 | 0.018 | +| 2014 | 39 | 0.009 | +| 2014 | 40 | 0.033 | +| 2014 | 41 | 0.011 | +| 2014 | 42 | 0.012 | +| 2014 | 43 | 0.010 | +| 2014 | 44 | 0.011 | +| 2014 | 45 | 0.018 | +| 2014 | 46 | 0.009 | +| 2014 | 47 | 0.007 | +| 2014 | 48 | 0.010 | +| 2014 | 49 | 0.007 | +| 2014 | 50 | 0.029 | +| 2014 | 51 | 0.008 | +| 2014 | 52 | 0.007 | +| 2014 | 53 | 0.006 | +| 2014 | 54 | 0.005 | +| 2014 | 55 | 0.006 | +| 2014 | 56 | 0.004 | +| 2014 | 57 | 0.005 | +| 2014 | 58 | 0.005 | +| 2014 | 59 | 0.004 | +| 2014 | 60 | 0.019 | +| 2014 | 61 | 0.005 | +| 2014 | 62 | 0.005 | +| 2014 | 63 | 0.003 | +| 2014 | 64 | 0.005 | +| 2014 | 65 | 0.003 | +| 2014 | 66 | 0.003 | +| 2014 | 67 | 0.002 | +| 2014 | 68 | 0.002 | +| 2014 | 69 | 0.001 | +| 2014 | 70 | 0.008 | +| 2014 | 71 | 0.003 | +| 2014 | 72 | 0.002 | +| 2014 | 73 | 0.002 | +| 2014 | 74 | 0.002 | +| 2014 | 75 | 0.005 | +| 2014 | 76 | 0.003 | +| 2014 | 77 | 0.001 | +| 2014 | 78 | 0.002 | +| 2014 | 79 | 0.000 | +| 2014 | 80 | 0.009 | +| 2014 | 81 | 0.001 | +| 2014 | 82 | 0.003 | +| 2014 | 83 | 0.002 | +| 2014 | 84 | 0.002 | +| 2014 | 85 | 0.006 | +| 2014 | 86 | 0.001 | +| 2014 | 87 | 0.001 | +| 2014 | 88 | 0.002 | +| 2014 | 89 | 0.002 | +| 2014 | 90 | 0.006 | +| 2014 | 91 | 0.002 | +| 2014 | 92 | 0.002 | +| 2014 | 93 | 0.001 | +| 2014 | 94 | 0.001 | +| 2014 | 95 | 0.002 | +| 2014 | 96 | 0.001 | +| 2014 | 97 | 0.001 | +| 2014 | 98 | 0.001 | +| 2014 | 99 | 0.001 | +| 2014 | 100 | 0.007 | +| 2014 | 101 | 0.000 | +| 2014 | 102 | 0.002 | +| 2014 | 103 | 0.002 | +| 2014 | 104 | 0.002 | +| 2014 | 105 | 0.002 | +| 2014 | 106 | 0.001 | +| 2014 | 107 | 0.000 | +| 2014 | 108 | 0.002 | +| 2014 | 109 | 0.001 | +| 2014 | 110 | 0.001 | +| 2014 | 111 | 0.000 | +| 2014 | 112 | 0.001 | +| 2014 | 113 | 0.000 | +| 2014 | 114 | 0.001 | +| 2014 | 115 | 0.001 | +| 2014 | 116 | 0.001 | +| 2014 | 117 | 0.001 | +| 2014 | 118 | 0.001 | +| 2014 | 120 | 0.006 | +| 2014 | 121 | 0.002 | +| 2014 | 122 | 0.000 | +| 2014 | 123 | 0.001 | +| 2014 | 124 | 0.000 | +| 2014 | 125 | 0.001 | +| 2014 | 126 | 0.002 | +| 2014 | 127 | 0.001 | +| 2014 | 128 | 0.000 | +| 2014 | 129 | 0.000 | +| 2014 | 130 | 0.001 | +| 2014 | 131 | 0.000 | +| 2014 | 132 | 0.001 | +| 2014 | 133 | 0.000 | +| 2014 | 134 | 0.000 | +| 2014 | 135 | 0.001 | +| 2014 | 136 | 0.000 | +| 2014 | 137 | 0.000 | +| 2014 | 139 | 0.000 | +| 2014 | 140 | 0.002 | +| 2014 | 141 | 0.001 | +| 2014 | 143 | 0.001 | +| 2014 | 144 | 0.000 | +| 2014 | 145 | 0.000 | +| 2014 | 146 | 0.000 | +| 2014 | 148 | 0.000 | +| 2014 | 149 | 0.000 | +| 2014 | 150 | 0.002 | +| 2014 | 151 | 0.001 | +| 2014 | 152 | 0.000 | +| 2014 | 153 | 0.000 | +| 2014 | 154 | 0.000 | +| 2014 | 155 | 0.001 | +| 2014 | 157 | 0.000 | +| 2014 | 158 | 0.000 | +| 2014 | 159 | 0.000 | +| 2014 | 160 | 0.000 | +| 2014 | 161 | 0.001 | +| 2014 | 162 | 0.000 | +| 2014 | 164 | 0.000 | +| 2014 | 168 | 0.000 | +| 2014 | 170 | 0.001 | +| 2014 | 175 | 0.001 | +| 2014 | 177 | 0.000 | +| 2014 | 179 | 0.000 | +| 2014 | 180 | 0.000 | +| 2014 | 181 | 0.000 | +| 2014 | 182 | 0.000 | +| 2014 | 183 | 0.000 | +| 2014 | 187 | 0.001 | +| 2014 | 190 | 0.000 | +| 2014 | 192 | 0.001 | +| 2014 | 195 | 0.000 | +| 2014 | 197 | 0.000 | +| 2014 | 200 | 0.004 | +| 2014 | 205 | 0.000 | +| 2014 | 206 | 0.000 | +| 2014 | 210 | 0.001 | +| 2014 | 212 | 0.000 | +| 2014 | 213 | 0.000 | +| 2014 | 215 | 0.000 | +| 2014 | 219 | 0.000 | +| 2014 | 220 | 0.001 | +| 2014 | 222 | 0.000 | +| 2014 | 223 | 0.000 | +| 2014 | 225 | 0.000 | +| 2014 | 232 | 0.000 | +| 2014 | 235 | 0.000 | +| 2014 | 238 | 0.000 | +| 2014 | 239 | 0.000 | +| 2014 | 241 | 0.000 | +| 2014 | 245 | 0.000 | +| 2014 | 247 | 0.000 | +| 2014 | 250 | 0.000 | +| 2014 | 251 | 0.000 | +| 2014 | 256 | 0.000 | +| 2014 | 258 | 0.000 | +| 2014 | 260 | 0.000 | +| 2014 | 262 | 0.000 | +| 2014 | 264 | 0.000 | +| 2014 | 265 | 0.000 | +| 2014 | 266 | 0.000 | +| 2014 | 270 | 0.000 | +| 2014 | 271 | 0.000 | +| 2014 | 272 | 0.000 | +| 2014 | 274 | 0.000 | +| 2014 | 280 | 0.000 | +| 2014 | 281 | 0.000 | +| 2014 | 289 | 0.000 | +| 2014 | 295 | 0.000 | +| 2014 | 296 | 0.000 | +| 2014 | 297 | 0.000 | +| 2014 | 299 | 0.000 | +| 2014 | 300 | 0.003 | +| 2014 | 306 | 0.000 | +| 2014 | 309 | 0.000 | +| 2014 | 313 | 0.000 | +| 2014 | 326 | 0.000 | +| 2014 | 330 | 0.000 | +| 2014 | 335 | 0.001 | +| 2014 | 338 | 0.000 | +| 2014 | 344 | 0.000 | +| 2014 | 349 | 0.000 | +| 2014 | 358 | 0.000 | +| 2014 | 380 | 0.000 | +| 2014 | 385 | 0.000 | +| 2014 | 386 | 0.000 | +| 2014 | 389 | 0.000 | +| 2014 | 390 | 0.000 | +| 2014 | 397 | 0.000 | +| 2014 | 400 | 0.000 | +| 2014 | 403 | 0.000 | +| 2014 | 450 | 0.000 | +| 2014 | 496 | 0.000 | +| 2014 | 500 | 0.000 | +| 2014 | 505 | 0.000 | +| 2014 | 543 | 0.000 | +| 2014 | 590 | 0.000 | +| 2014 | 615 | 0.000 | +| 2014 | 631 | 0.000 | +| 2014 | 645 | 0.000 | +| 2014 | 650 | 0.001 | +| 2014 | 660 | 0.000 | +| 2014 | 725 | 0.000 | +| 2014 | 1277 | 0.000 | +| 2014 | 1500 | 0.000 | +| 2014 | 2000 | 0.000 | +| 2014 | 2340 | 0.000 | +| 2015 | 0 | 23.892 | +| 2015 | 1 | 12.885 | +| 2015 | 2 | 9.260 | +| 2015 | 3 | 5.879 | +| 2015 | 4 | 4.088 | +| 2015 | 5 | 3.160 | +| 2015 | 6 | 2.177 | +| 2015 | 7 | 1.539 | +| 2015 | 8 | 1.249 | +| 2015 | 9 | 0.852 | +| 2015 | 10 | 0.951 | +| 2015 | 11 | 0.488 | +| 2015 | 12 | 0.413 | +| 2015 | 13 | 0.269 | +| 2015 | 14 | 0.203 | +| 2015 | 15 | 0.222 | +| 2015 | 16 | 0.132 | +| 2015 | 17 | 0.093 | +| 2015 | 18 | 0.098 | +| 2015 | 19 | 0.067 | +| 2015 | 20 | 0.145 | +| 2015 | 21 | 0.051 | +| 2015 | 22 | 0.057 | +| 2015 | 23 | 0.039 | +| 2015 | 24 | 0.036 | +| 2015 | 25 | 0.058 | +| 2015 | 26 | 0.031 | +| 2015 | 27 | 0.028 | +| 2015 | 28 | 0.027 | +| 2015 | 29 | 0.016 | +| 2015 | 30 | 0.068 | +| 2015 | 31 | 0.018 | +| 2015 | 32 | 0.023 | +| 2015 | 33 | 0.016 | +| 2015 | 34 | 0.012 | +| 2015 | 35 | 0.028 | +| 2015 | 36 | 0.012 | +| 2015 | 37 | 0.012 | +| 2015 | 38 | 0.016 | +| 2015 | 39 | 0.012 | +| 2015 | 40 | 0.045 | +| 2015 | 41 | 0.010 | +| 2015 | 42 | 0.011 | +| 2015 | 43 | 0.009 | +| 2015 | 44 | 0.011 | +| 2015 | 45 | 0.016 | +| 2015 | 46 | 0.011 | +| 2015 | 47 | 0.005 | +| 2015 | 48 | 0.006 | +| 2015 | 49 | 0.008 | +| 2015 | 50 | 0.030 | +| 2015 | 51 | 0.009 | +| 2015 | 52 | 0.007 | +| 2015 | 53 | 0.010 | +| 2015 | 54 | 0.007 | +| 2015 | 55 | 0.008 | +| 2015 | 56 | 0.006 | +| 2015 | 57 | 0.005 | +| 2015 | 58 | 0.005 | +| 2015 | 59 | 0.003 | +| 2015 | 60 | 0.012 | +| 2015 | 61 | 0.001 | +| 2015 | 62 | 0.004 | +| 2015 | 63 | 0.004 | +| 2015 | 64 | 0.005 | +| 2015 | 65 | 0.006 | +| 2015 | 66 | 0.004 | +| 2015 | 67 | 0.003 | +| 2015 | 68 | 0.001 | +| 2015 | 69 | 0.004 | +| 2015 | 70 | 0.007 | +| 2015 | 71 | 0.002 | +| 2015 | 72 | 0.001 | +| 2015 | 73 | 0.002 | +| 2015 | 74 | 0.004 | +| 2015 | 75 | 0.002 | +| 2015 | 76 | 0.002 | +| 2015 | 77 | 0.002 | +| 2015 | 78 | 0.003 | +| 2015 | 79 | 0.001 | +| 2015 | 80 | 0.010 | +| 2015 | 81 | 0.001 | +| 2015 | 82 | 0.001 | +| 2015 | 83 | 0.001 | +| 2015 | 84 | 0.001 | +| 2015 | 85 | 0.003 | +| 2015 | 86 | 0.002 | +| 2015 | 87 | 0.003 | +| 2015 | 88 | 0.001 | +| 2015 | 89 | 0.002 | +| 2015 | 90 | 0.006 | +| 2015 | 91 | 0.000 | +| 2015 | 92 | 0.001 | +| 2015 | 93 | 0.000 | +| 2015 | 94 | 0.001 | +| 2015 | 95 | 0.002 | +| 2015 | 96 | 0.000 | +| 2015 | 97 | 0.001 | +| 2015 | 98 | 0.001 | +| 2015 | 99 | 0.001 | +| 2015 | 100 | 0.009 | +| 2015 | 101 | 0.000 | +| 2015 | 102 | 0.000 | +| 2015 | 103 | 0.001 | +| 2015 | 104 | 0.002 | +| 2015 | 106 | 0.001 | +| 2015 | 107 | 0.001 | +| 2015 | 108 | 0.000 | +| 2015 | 109 | 0.000 | +| 2015 | 110 | 0.001 | +| 2015 | 111 | 0.000 | +| 2015 | 112 | 0.001 | +| 2015 | 113 | 0.001 | +| 2015 | 114 | 0.001 | +| 2015 | 115 | 0.001 | +| 2015 | 117 | 0.000 | +| 2015 | 118 | 0.000 | +| 2015 | 119 | 0.000 | +| 2015 | 120 | 0.002 | +| 2015 | 121 | 0.001 | +| 2015 | 122 | 0.000 | +| 2015 | 123 | 0.001 | +| 2015 | 124 | 0.000 | +| 2015 | 125 | 0.001 | +| 2015 | 127 | 0.000 | +| 2015 | 128 | 0.000 | +| 2015 | 130 | 0.001 | +| 2015 | 131 | 0.001 | +| 2015 | 132 | 0.000 | +| 2015 | 133 | 0.000 | +| 2015 | 134 | 0.001 | +| 2015 | 135 | 0.000 | +| 2015 | 136 | 0.001 | +| 2015 | 137 | 0.001 | +| 2015 | 140 | 0.003 | +| 2015 | 141 | 0.000 | +| 2015 | 143 | 0.000 | +| 2015 | 145 | 0.000 | +| 2015 | 146 | 0.000 | +| 2015 | 147 | 0.000 | +| 2015 | 148 | 0.000 | +| 2015 | 149 | 0.000 | +| 2015 | 150 | 0.004 | +| 2015 | 152 | 0.000 | +| 2015 | 153 | 0.000 | +| 2015 | 155 | 0.001 | +| 2015 | 156 | 0.000 | +| 2015 | 157 | 0.000 | +| 2015 | 158 | 0.000 | +| 2015 | 159 | 0.001 | +| 2015 | 160 | 0.000 | +| 2015 | 161 | 0.000 | +| 2015 | 162 | 0.000 | +| 2015 | 163 | 0.000 | +| 2015 | 164 | 0.001 | +| 2015 | 166 | 0.001 | +| 2015 | 167 | 0.000 | +| 2015 | 174 | 0.000 | +| 2015 | 175 | 0.000 | +| 2015 | 176 | 0.000 | +| 2015 | 177 | 0.000 | +| 2015 | 178 | 0.000 | +| 2015 | 180 | 0.002 | +| 2015 | 182 | 0.000 | +| 2015 | 183 | 0.000 | +| 2015 | 184 | 0.001 | +| 2015 | 185 | 0.000 | +| 2015 | 186 | 0.000 | +| 2015 | 192 | 0.000 | +| 2015 | 194 | 0.000 | +| 2015 | 195 | 0.000 | +| 2015 | 196 | 0.000 | +| 2015 | 197 | 0.000 | +| 2015 | 200 | 0.005 | +| 2015 | 201 | 0.000 | +| 2015 | 206 | 0.000 | +| 2015 | 211 | 0.000 | +| 2015 | 212 | 0.000 | +| 2015 | 213 | 0.000 | +| 2015 | 221 | 0.000 | +| 2015 | 222 | 0.000 | +| 2015 | 226 | 0.000 | +| 2015 | 229 | 0.000 | +| 2015 | 231 | 0.000 | +| 2015 | 232 | 0.000 | +| 2015 | 233 | 0.000 | +| 2015 | 239 | 0.000 | +| 2015 | 243 | 0.000 | +| 2015 | 250 | 0.001 | +| 2015 | 251 | 0.000 | +| 2015 | 255 | 0.000 | +| 2015 | 259 | 0.000 | +| 2015 | 262 | 0.000 | +| 2015 | 265 | 0.000 | +| 2015 | 270 | 0.000 | +| 2015 | 275 | 0.000 | +| 2015 | 276 | 0.000 | +| 2015 | 280 | 0.000 | +| 2015 | 281 | 0.000 | +| 2015 | 285 | 0.000 | +| 2015 | 286 | 0.000 | +| 2015 | 289 | 0.000 | +| 2015 | 291 | 0.000 | +| 2015 | 295 | 0.000 | +| 2015 | 297 | 0.000 | +| 2015 | 300 | 0.003 | +| 2015 | 302 | 0.000 | +| 2015 | 309 | 0.000 | +| 2015 | 319 | 0.000 | +| 2015 | 320 | 0.000 | +| 2015 | 329 | 0.000 | +| 2015 | 332 | 0.000 | +| 2015 | 344 | 0.000 | +| 2015 | 354 | 0.000 | +| 2015 | 376 | 0.000 | +| 2015 | 381 | 0.000 | +| 2015 | 390 | 0.000 | +| 2015 | 397 | 0.000 | +| 2015 | 422 | 0.000 | +| 2015 | 437 | 0.000 | +| 2015 | 462 | 0.000 | +| 2015 | 468 | 0.000 | +| 2015 | 490 | 0.000 | +| 2015 | 504 | 0.000 | +| 2015 | 537 | 0.000 | +| 2015 | 554 | 0.000 | +| 2015 | 596 | 0.000 | +| 2015 | 660 | 0.000 | +| 2015 | 700 | 0.000 | +| 2015 | 808 | 0.000 | +| 2015 | 1000 | 0.000 | +| 2015 | 1500 | 0.000 | +| 2015 | 1507 | 0.000 | +| 2016 | 0 | 19.117 | +| 2016 | 1 | 14.336 | +| 2016 | 2 | 9.847 | +| 2016 | 3 | 6.204 | +| 2016 | 4 | 4.239 | +| 2016 | 5 | 3.321 | +| 2016 | 6 | 2.246 | +| 2016 | 7 | 1.592 | +| 2016 | 8 | 1.302 | +| 2016 | 9 | 0.886 | +| 2016 | 10 | 0.966 | +| 2016 | 11 | 0.463 | +| 2016 | 12 | 0.433 | +| 2016 | 13 | 0.260 | +| 2016 | 14 | 0.214 | +| 2016 | 15 | 0.245 | +| 2016 | 16 | 0.135 | +| 2016 | 17 | 0.102 | +| 2016 | 18 | 0.093 | +| 2016 | 19 | 0.068 | +| 2016 | 20 | 0.146 | +| 2016 | 21 | 0.046 | +| 2016 | 22 | 0.054 | +| 2016 | 23 | 0.036 | +| 2016 | 24 | 0.046 | +| 2016 | 25 | 0.060 | +| 2016 | 26 | 0.034 | +| 2016 | 27 | 0.028 | +| 2016 | 28 | 0.034 | +| 2016 | 29 | 0.020 | +| 2016 | 30 | 0.064 | +| 2016 | 31 | 0.015 | +| 2016 | 32 | 0.021 | +| 2016 | 33 | 0.021 | +| 2016 | 34 | 0.013 | +| 2016 | 35 | 0.022 | +| 2016 | 36 | 0.015 | +| 2016 | 37 | 0.009 | +| 2016 | 38 | 0.014 | +| 2016 | 39 | 0.013 | +| 2016 | 40 | 0.047 | +| 2016 | 41 | 0.008 | +| 2016 | 42 | 0.016 | +| 2016 | 43 | 0.011 | +| 2016 | 44 | 0.010 | +| 2016 | 45 | 0.017 | +| 2016 | 46 | 0.007 | +| 2016 | 47 | 0.009 | +| 2016 | 48 | 0.005 | +| 2016 | 49 | 0.006 | +| 2016 | 50 | 0.022 | +| 2016 | 51 | 0.008 | +| 2016 | 52 | 0.005 | +| 2016 | 53 | 0.006 | +| 2016 | 54 | 0.005 | +| 2016 | 55 | 0.014 | +| 2016 | 56 | 0.008 | +| 2016 | 57 | 0.005 | +| 2016 | 58 | 0.007 | +| 2016 | 59 | 0.002 | +| 2016 | 60 | 0.014 | +| 2016 | 61 | 0.006 | +| 2016 | 62 | 0.003 | +| 2016 | 63 | 0.003 | +| 2016 | 64 | 0.004 | +| 2016 | 65 | 0.004 | +| 2016 | 66 | 0.002 | +| 2016 | 67 | 0.002 | +| 2016 | 68 | 0.003 | +| 2016 | 69 | 0.005 | +| 2016 | 70 | 0.009 | +| 2016 | 71 | 0.002 | +| 2016 | 72 | 0.001 | +| 2016 | 73 | 0.001 | +| 2016 | 74 | 0.003 | +| 2016 | 75 | 0.005 | +| 2016 | 76 | 0.002 | +| 2016 | 77 | 0.002 | +| 2016 | 78 | 0.002 | +| 2016 | 79 | 0.002 | +| 2016 | 80 | 0.013 | +| 2016 | 81 | 0.001 | +| 2016 | 82 | 0.001 | +| 2016 | 83 | 0.001 | +| 2016 | 84 | 0.002 | +| 2016 | 85 | 0.003 | +| 2016 | 86 | 0.002 | +| 2016 | 87 | 0.002 | +| 2016 | 88 | 0.001 | +| 2016 | 89 | 0.002 | +| 2016 | 90 | 0.005 | +| 2016 | 91 | 0.001 | +| 2016 | 92 | 0.000 | +| 2016 | 93 | 0.000 | +| 2016 | 94 | 0.001 | +| 2016 | 95 | 0.001 | +| 2016 | 96 | 0.000 | +| 2016 | 97 | 0.001 | +| 2016 | 98 | 0.001 | +| 2016 | 99 | 0.000 | +| 2016 | 100 | 0.007 | +| 2016 | 101 | 0.001 | +| 2016 | 102 | 0.001 | +| 2016 | 103 | 0.001 | +| 2016 | 104 | 0.001 | +| 2016 | 105 | 0.000 | +| 2016 | 106 | 0.000 | +| 2016 | 107 | 0.002 | +| 2016 | 108 | 0.000 | +| 2016 | 109 | 0.000 | +| 2016 | 110 | 0.001 | +| 2016 | 111 | 0.000 | +| 2016 | 112 | 0.002 | +| 2016 | 113 | 0.001 | +| 2016 | 114 | 0.002 | +| 2016 | 115 | 0.001 | +| 2016 | 116 | 0.000 | +| 2016 | 118 | 0.000 | +| 2016 | 119 | 0.000 | +| 2016 | 120 | 0.002 | +| 2016 | 121 | 0.001 | +| 2016 | 122 | 0.000 | +| 2016 | 123 | 0.000 | +| 2016 | 124 | 0.000 | +| 2016 | 125 | 0.002 | +| 2016 | 126 | 0.001 | +| 2016 | 127 | 0.001 | +| 2016 | 128 | 0.001 | +| 2016 | 129 | 0.000 | +| 2016 | 130 | 0.001 | +| 2016 | 131 | 0.000 | +| 2016 | 132 | 0.000 | +| 2016 | 133 | 0.000 | +| 2016 | 134 | 0.001 | +| 2016 | 135 | 0.000 | +| 2016 | 136 | 0.001 | +| 2016 | 137 | 0.000 | +| 2016 | 138 | 0.000 | +| 2016 | 140 | 0.001 | +| 2016 | 141 | 0.000 | +| 2016 | 142 | 0.000 | +| 2016 | 143 | 0.000 | +| 2016 | 147 | 0.000 | +| 2016 | 148 | 0.000 | +| 2016 | 149 | 0.000 | +| 2016 | 150 | 0.001 | +| 2016 | 151 | 0.000 | +| 2016 | 152 | 0.000 | +| 2016 | 153 | 0.000 | +| 2016 | 155 | 0.001 | +| 2016 | 156 | 0.000 | +| 2016 | 158 | 0.000 | +| 2016 | 159 | 0.001 | +| 2016 | 160 | 0.000 | +| 2016 | 162 | 0.000 | +| 2016 | 164 | 0.000 | +| 2016 | 166 | 0.000 | +| 2016 | 168 | 0.000 | +| 2016 | 169 | 0.000 | +| 2016 | 170 | 0.000 | +| 2016 | 172 | 0.000 | +| 2016 | 173 | 0.000 | +| 2016 | 175 | 0.000 | +| 2016 | 176 | 0.000 | +| 2016 | 180 | 0.000 | +| 2016 | 181 | 0.000 | +| 2016 | 183 | 0.000 | +| 2016 | 184 | 0.001 | +| 2016 | 185 | 0.000 | +| 2016 | 186 | 0.000 | +| 2016 | 187 | 0.000 | +| 2016 | 189 | 0.000 | +| 2016 | 191 | 0.000 | +| 2016 | 192 | 0.000 | +| 2016 | 194 | 0.000 | +| 2016 | 196 | 0.000 | +| 2016 | 197 | 0.000 | +| 2016 | 199 | 0.000 | +| 2016 | 200 | 0.001 | +| 2016 | 201 | 0.000 | +| 2016 | 204 | 0.000 | +| 2016 | 205 | 0.000 | +| 2016 | 206 | 0.000 | +| 2016 | 208 | 0.000 | +| 2016 | 210 | 0.000 | +| 2016 | 211 | 0.000 | +| 2016 | 212 | 0.000 | +| 2016 | 213 | 0.000 | +| 2016 | 215 | 0.001 | +| 2016 | 228 | 0.000 | +| 2016 | 229 | 0.000 | +| 2016 | 230 | 0.000 | +| 2016 | 240 | 0.000 | +| 2016 | 243 | 0.000 | +| 2016 | 245 | 0.000 | +| 2016 | 250 | 0.001 | +| 2016 | 260 | 0.000 | +| 2016 | 267 | 0.000 | +| 2016 | 280 | 0.000 | +| 2016 | 281 | 0.000 | +| 2016 | 282 | 0.000 | +| 2016 | 285 | 0.000 | +| 2016 | 286 | 0.000 | +| 2016 | 287 | 0.000 | +| 2016 | 289 | 0.000 | +| 2016 | 292 | 0.000 | +| 2016 | 300 | 0.002 | +| 2016 | 307 | 0.000 | +| 2016 | 308 | 0.000 | +| 2016 | 320 | 0.000 | +| 2016 | 329 | 0.000 | +| 2016 | 335 | 0.000 | +| 2016 | 350 | 0.000 | +| 2016 | 365 | 0.000 | +| 2016 | 374 | 0.000 | +| 2016 | 410 | 0.000 | +| 2016 | 422 | 0.000 | +| 2016 | 450 | 0.000 | +| 2016 | 462 | 0.000 | +| 2016 | 528 | 0.000 | +| 2016 | 537 | 0.000 | +| 2016 | 554 | 0.000 | +| 2016 | 642 | 0.000 | +| 2016 | 800 | 0.000 | +| 2016 | 1000 | 0.000 | +| 2016 | 1200 | 0.000 | +| 2016 | 1404 | 0.000 | +| 2017 | 0 | 16.351 | +| 2017 | 1 | 17.431 | +| 2017 | 2 | 9.716 | +| 2017 | 3 | 5.969 | +| 2017 | 4 | 4.002 | +| 2017 | 5 | 3.088 | +| 2017 | 6 | 2.090 | +| 2017 | 7 | 1.439 | +| 2017 | 8 | 1.142 | +| 2017 | 9 | 0.791 | +| 2017 | 10 | 0.855 | +| 2017 | 11 | 0.443 | +| 2017 | 12 | 0.382 | +| 2017 | 13 | 0.256 | +| 2017 | 14 | 0.202 | +| 2017 | 15 | 0.226 | +| 2017 | 16 | 0.137 | +| 2017 | 17 | 0.091 | +| 2017 | 18 | 0.092 | +| 2017 | 19 | 0.067 | +| 2017 | 20 | 0.146 | +| 2017 | 21 | 0.041 | +| 2017 | 22 | 0.048 | +| 2017 | 23 | 0.033 | +| 2017 | 24 | 0.036 | +| 2017 | 25 | 0.055 | +| 2017 | 26 | 0.030 | +| 2017 | 27 | 0.026 | +| 2017 | 28 | 0.028 | +| 2017 | 29 | 0.019 | +| 2017 | 30 | 0.063 | +| 2017 | 31 | 0.017 | +| 2017 | 32 | 0.018 | +| 2017 | 33 | 0.018 | +| 2017 | 34 | 0.016 | +| 2017 | 35 | 0.026 | +| 2017 | 36 | 0.012 | +| 2017 | 37 | 0.012 | +| 2017 | 38 | 0.012 | +| 2017 | 39 | 0.009 | +| 2017 | 40 | 0.046 | +| 2017 | 41 | 0.008 | +| 2017 | 42 | 0.013 | +| 2017 | 43 | 0.009 | +| 2017 | 44 | 0.008 | +| 2017 | 45 | 0.011 | +| 2017 | 46 | 0.006 | +| 2017 | 47 | 0.007 | +| 2017 | 48 | 0.008 | +| 2017 | 49 | 0.004 | +| 2017 | 50 | 0.018 | +| 2017 | 51 | 0.007 | +| 2017 | 52 | 0.004 | +| 2017 | 53 | 0.004 | +| 2017 | 54 | 0.004 | +| 2017 | 55 | 0.007 | +| 2017 | 56 | 0.005 | +| 2017 | 57 | 0.004 | +| 2017 | 58 | 0.007 | +| 2017 | 59 | 0.005 | +| 2017 | 60 | 0.011 | +| 2017 | 61 | 0.003 | +| 2017 | 62 | 0.003 | +| 2017 | 63 | 0.002 | +| 2017 | 64 | 0.004 | +| 2017 | 65 | 0.006 | +| 2017 | 66 | 0.003 | +| 2017 | 67 | 0.002 | +| 2017 | 68 | 0.001 | +| 2017 | 69 | 0.002 | +| 2017 | 70 | 0.007 | +| 2017 | 71 | 0.002 | +| 2017 | 72 | 0.002 | +| 2017 | 73 | 0.000 | +| 2017 | 74 | 0.002 | +| 2017 | 75 | 0.004 | +| 2017 | 76 | 0.001 | +| 2017 | 77 | 0.001 | +| 2017 | 78 | 0.004 | +| 2017 | 79 | 0.001 | +| 2017 | 80 | 0.008 | +| 2017 | 81 | 0.002 | +| 2017 | 82 | 0.001 | +| 2017 | 83 | 0.002 | +| 2017 | 84 | 0.001 | +| 2017 | 85 | 0.001 | +| 2017 | 86 | 0.001 | +| 2017 | 88 | 0.000 | +| 2017 | 89 | 0.002 | +| 2017 | 90 | 0.002 | +| 2017 | 91 | 0.000 | +| 2017 | 93 | 0.001 | +| 2017 | 94 | 0.000 | +| 2017 | 95 | 0.002 | +| 2017 | 96 | 0.000 | +| 2017 | 97 | 0.002 | +| 2017 | 98 | 0.001 | +| 2017 | 99 | 0.001 | +| 2017 | 100 | 0.004 | +| 2017 | 101 | 0.001 | +| 2017 | 102 | 0.001 | +| 2017 | 103 | 0.000 | +| 2017 | 104 | 0.001 | +| 2017 | 105 | 0.000 | +| 2017 | 106 | 0.001 | +| 2017 | 107 | 0.001 | +| 2017 | 108 | 0.000 | +| 2017 | 109 | 0.001 | +| 2017 | 110 | 0.001 | +| 2017 | 112 | 0.001 | +| 2017 | 113 | 0.000 | +| 2017 | 114 | 0.002 | +| 2017 | 115 | 0.000 | +| 2017 | 118 | 0.001 | +| 2017 | 119 | 0.000 | +| 2017 | 120 | 0.002 | +| 2017 | 121 | 0.001 | +| 2017 | 122 | 0.000 | +| 2017 | 123 | 0.000 | +| 2017 | 124 | 0.000 | +| 2017 | 125 | 0.001 | +| 2017 | 126 | 0.000 | +| 2017 | 127 | 0.000 | +| 2017 | 128 | 0.000 | +| 2017 | 130 | 0.001 | +| 2017 | 131 | 0.001 | +| 2017 | 132 | 0.001 | +| 2017 | 134 | 0.000 | +| 2017 | 135 | 0.000 | +| 2017 | 136 | 0.001 | +| 2017 | 137 | 0.001 | +| 2017 | 138 | 0.000 | +| 2017 | 139 | 0.000 | +| 2017 | 140 | 0.001 | +| 2017 | 141 | 0.000 | +| 2017 | 142 | 0.000 | +| 2017 | 144 | 0.000 | +| 2017 | 146 | 0.000 | +| 2017 | 147 | 0.000 | +| 2017 | 148 | 0.000 | +| 2017 | 150 | 0.002 | +| 2017 | 151 | 0.000 | +| 2017 | 152 | 0.000 | +| 2017 | 154 | 0.000 | +| 2017 | 155 | 0.000 | +| 2017 | 159 | 0.000 | +| 2017 | 160 | 0.001 | +| 2017 | 161 | 0.000 | +| 2017 | 162 | 0.000 | +| 2017 | 164 | 0.001 | +| 2017 | 166 | 0.000 | +| 2017 | 168 | 0.000 | +| 2017 | 169 | 0.000 | +| 2017 | 170 | 0.001 | +| 2017 | 173 | 0.000 | +| 2017 | 174 | 0.000 | +| 2017 | 175 | 0.001 | +| 2017 | 176 | 0.000 | +| 2017 | 177 | 0.000 | +| 2017 | 180 | 0.000 | +| 2017 | 181 | 0.000 | +| 2017 | 184 | 0.000 | +| 2017 | 185 | 0.000 | +| 2017 | 186 | 0.001 | +| 2017 | 187 | 0.000 | +| 2017 | 190 | 0.000 | +| 2017 | 191 | 0.000 | +| 2017 | 194 | 0.001 | +| 2017 | 196 | 0.000 | +| 2017 | 197 | 0.000 | +| 2017 | 198 | 0.000 | +| 2017 | 200 | 0.001 | +| 2017 | 201 | 0.000 | +| 2017 | 204 | 0.000 | +| 2017 | 207 | 0.000 | +| 2017 | 210 | 0.000 | +| 2017 | 211 | 0.000 | +| 2017 | 215 | 0.000 | +| 2017 | 218 | 0.000 | +| 2017 | 220 | 0.000 | +| 2017 | 221 | 0.000 | +| 2017 | 228 | 0.000 | +| 2017 | 229 | 0.000 | +| 2017 | 230 | 0.000 | +| 2017 | 231 | 0.000 | +| 2017 | 233 | 0.000 | +| 2017 | 240 | 0.000 | +| 2017 | 243 | 0.000 | +| 2017 | 250 | 0.000 | +| 2017 | 260 | 0.001 | +| 2017 | 267 | 0.000 | +| 2017 | 270 | 0.000 | +| 2017 | 271 | 0.000 | +| 2017 | 274 | 0.000 | +| 2017 | 280 | 0.000 | +| 2017 | 282 | 0.000 | +| 2017 | 286 | 0.000 | +| 2017 | 287 | 0.000 | +| 2017 | 289 | 0.000 | +| 2017 | 297 | 0.000 | +| 2017 | 300 | 0.002 | +| 2017 | 301 | 0.000 | +| 2017 | 309 | 0.000 | +| 2017 | 335 | 0.000 | +| 2017 | 350 | 0.000 | +| 2017 | 359 | 0.000 | +| 2017 | 388 | 0.000 | +| 2017 | 390 | 0.000 | +| 2017 | 400 | 0.000 | +| 2017 | 413 | 0.000 | +| 2017 | 422 | 0.000 | +| 2017 | 432 | 0.000 | +| 2017 | 462 | 0.000 | +| 2017 | 513 | 0.000 | +| 2017 | 537 | 0.000 | +| 2017 | 554 | 0.000 | +| 2017 | 600 | 0.000 | +| 2017 | 670 | 0.000 | +| 2017 | 956 | 0.000 | +| 2017 | 981 | 0.000 | +| 2017 | 1000 | 0.000 | +| 2017 | 1200 | 0.000 | ++-----------+--------------------+-----------------------------+ +2238 tuples diff --git a/dados/estatisticas_null/.ipynb_checkpoints/adh_idh_null_statistics-checkpoint.csv b/dados/estatisticas_null/.ipynb_checkpoints/adh_idh_null_statistics-checkpoint.csv new file mode 100644 index 0000000000000000000000000000000000000000..367c8fe411d272a3c103d5fa32e862e8af6b0d6c --- /dev/null +++ b/dados/estatisticas_null/.ipynb_checkpoints/adh_idh_null_statistics-checkpoint.csv @@ -0,0 +1,10 @@ +colName;total;1991;2000;2010 +ano_censo;0.000000000000000000000000;0.00000000000000000000;0.00000000000000000000;0.00000000000000000000 +estado_id;0.000000000000000000000000;0.00000000000000000000;0.00000000000000000000;0.00000000000000000000 +idhm;0.000000000000000000000000;0.00000000000000000000;0.00000000000000000000;0.00000000000000000000 +idhm_e;0.000000000000000000000000;0.00000000000000000000;0.00000000000000000000;0.00000000000000000000 +idhm_l;0.000000000000000000000000;0.00000000000000000000;0.00000000000000000000;0.00000000000000000000 +idhm_nivel;0.000000000000000000000000;0.00000000000000000000;0.00000000000000000000;0.00000000000000000000 +idhm_r;0.000000000000000000000000;0.00000000000000000000;0.00000000000000000000;0.00000000000000000000 +municipio_id;0.000000000000000000000000;0.00000000000000000000;0.00000000000000000000;0.00000000000000000000 +regiao_id;0.000000000000000000000000;0.00000000000000000000;0.00000000000000000000;0.00000000000000000000 diff --git a/distCalc.ipynb b/distCalc.ipynb index 1eed85cf7a6e705bc3df70089d678a80f4fabca1..28137071cbd3ebcc8aad0d6c64f143dea288a37d 100644 --- a/distCalc.ipynb +++ b/distCalc.ipynb @@ -20,7 +20,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "2c81bc78-04e0-4bad-83ef-380cf3be1610", "metadata": { "tags": [] @@ -33,7 +33,7 @@ }, { "cell_type": "code", - "execution_count": 134, + "execution_count": 3, "id": "af419e44-d6ef-41f7-970c-78c316aeb712", "metadata": { "tags": [] @@ -350,7 +350,7 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 4, "id": "26287a6f-5537-4509-a09d-52dd59b3a76d", "metadata": { "tags": [] @@ -358,28 +358,28 @@ "outputs": [], "source": [ "# Import F results\n", - "df_f = pd.read_csv('Testes_hist/Result_F/F_subsequente.csv', sep=',')\n", + "df_f = pd.read_csv('R_resultados/Histograma_10/F_subsequente.csv', sep=',')\n", "stat_column = 'p_valor'\n", "df_f[stat_column] = df_f[stat_column].abs()\n", "df_f = df_f.sort_values(by=['ano_coluna1', stat_column], ascending=[True, False])\n", "df_f = df_f[~df_f['coluna1'].str.contains('ANO_CENSO') & ~df_f['coluna2'].str.contains('ANO_CENSO')]\n", "\n", "# Import T results\n", - "df_t = pd.read_csv('Testes_hist/Result_T/T_subsequente.csv', sep=',')\n", + "df_t = pd.read_csv('R_resultados/Histograma_10/T_subsequente.csv', sep=',')\n", "stat_column = 'p_valor'\n", "df_t[stat_column] = df_t[stat_column].abs()\n", "df_t = df_t.sort_values(by=['ano_coluna1', stat_column], ascending=[True, False])\n", "df_t = df_t[~df_t['coluna1'].str.contains('ANO_CENSO') & ~df_t['coluna2'].str.contains('ANO_CENSO')]\n", "\n", "# Import COHEND results\n", - "df_c = pd.read_csv('Testes_hist/Result_COHEND/COHEND_subsequente.csv', sep=',')\n", + "df_c = pd.read_csv('R_resultados/Histograma_10/COHEND_subsequente.csv', sep=',')\n", "stat_column = 'estatistica_cohend'\n", "df_c[stat_column] = df_c[stat_column].abs()\n", "df_c = df_c.sort_values(by=['ano_coluna1', stat_column])\n", "df_c = df_c[~df_c['coluna1'].str.contains('ANO_CENSO') & ~df_c['coluna2'].str.contains('ANO_CENSO')]\n", "\n", "# Import KS results\n", - "df_ks = pd.read_csv('Testes_hist/Result_KS/KS_subsequente.csv', sep=',')\n", + "df_ks = pd.read_csv('R_resultados/Histograma_10/KS_subsequente.csv', sep=',')\n", "stat_column = 'p_valor'\n", "df_ks[stat_column] = (df_ks[stat_column]).abs()\n", "df_ks = df_ks.sort_values(by=['ano_coluna1', stat_column], ascending=[True, False])\n", @@ -396,7 +396,7 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 5, "id": "f9541a11-c1bf-4318-847a-100917e13204", "metadata": { "tags": [] @@ -425,7 +425,7 @@ }, { "cell_type": "code", - "execution_count": 137, + "execution_count": 6, "id": "527ff27d-f321-4749-a94d-dd7d824ef682", "metadata": { "tags": [] @@ -507,7 +507,7 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 7, "id": "4cb4afc8-6149-40a7-8f77-af06183d4d23", "metadata": { "tags": [] @@ -544,7 +544,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.12.3" } }, "nbformat": 4, diff --git a/resultTop3_cohend.csv b/resultTop3_cohend.csv deleted file mode 100644 index ac5e0a7cf7daf22296c6fa4d21be18596fc8804b..0000000000000000000000000000000000000000 --- a/resultTop3_cohend.csv +++ /dev/null @@ -1,17 +0,0 @@ -ano_base,match,new,empty,total -2007.0,1.0,0.0,0.0,0.833 -2008.0,1.0,1.0,0.0,0.833 -2009.0,1.0,1.0,1.0,1.0 -2010.0,1.0,1.0,1.0,1.0 -2011.0,1.0,1.0,1.0,1.0 -2012.0,1.0,0.286,1.0,0.615 -2013.0,0.846,1.0,1.0,0.846 -2014.0,0.846,1.0,1.0,0.846 -2015.0,0.846,1.0,1.0,0.846 -2016.0,0.846,1.0,1.0,0.846 -2017.0,0.6,1.0,0.8,0.846 -2018.0,0.333,0.857,0.0,0.765 -2019.0,0.867,0.125,1.0,0.636 -2020.0,0.818,1.0,1.0,0.818 -2013.5,0.857,0.805,0.771,0.838 -4.031,0.182,0.355,0.406,0.112 diff --git a/resultTop3_f.csv b/resultTop3_f.csv deleted file mode 100644 index 6ed42214e687a43c802c6df4710cc37618c3cd67..0000000000000000000000000000000000000000 --- a/resultTop3_f.csv +++ /dev/null @@ -1,17 +0,0 @@ -ano_base,match,new,empty,total -2007.0,1.0,1.0,1.0,1.0 -2008.0,1.0,1.0,1.0,1.0 -2009.0,1.0,1.0,1.0,1.0 -2010.0,1.0,1.0,1.0,1.0 -2011.0,1.0,1.0,1.0,1.0 -2012.0,0.833,0.125,1.0,0.462 -2013.0,0.692,1.0,1.0,0.692 -2014.0,0.846,1.0,1.0,0.846 -2015.0,0.692,1.0,1.0,0.692 -2016.0,0.769,1.0,1.0,0.769 -2017.0,0.333,1.0,0.4,0.538 -2018.0,0.333,0.643,0.0,0.588 -2019.0,0.867,0.125,1.0,0.636 -2020.0,0.909,1.0,1.0,0.909 -2013.5,0.805,0.849,0.886,0.795 -4.031,0.22,0.31,0.29,0.188 diff --git a/resultTop3_ks.csv b/resultTop3_ks.csv deleted file mode 100644 index 8617b49726351fcd2172e0b85db05837543d6e25..0000000000000000000000000000000000000000 --- a/resultTop3_ks.csv +++ /dev/null @@ -1,17 +0,0 @@ -ano_base,match,new,empty,total -2007.0,1.0,1.0,1.0,1.0 -2008.0,1.0,1.0,1.0,1.0 -2009.0,1.0,1.0,1.0,1.0 -2010.0,1.0,1.0,1.0,1.0 -2011.0,1.0,1.0,1.0,1.0 -2012.0,1.0,0.714,1.0,0.846 -2013.0,0.846,0.0,1.0,0.846 -2014.0,0.923,0.0,1.0,0.923 -2015.0,0.923,0.0,1.0,0.923 -2016.0,0.769,0.0,1.0,0.769 -2017.0,0.333,1.0,0.4,0.538 -2018.0,0.333,0.857,0.0,0.765 -2019.0,0.8,0.667,1.0,0.818 -2020.0,0.864,0.0,1.0,0.864 -2013.5,0.842,0.588,0.886,0.878 -4.031,0.222,0.451,0.29,0.127 diff --git a/resultTop3_t.csv b/resultTop3_t.csv deleted file mode 100644 index 75e39ead8da2d8667ae0eced71641e14e1c623e2..0000000000000000000000000000000000000000 --- a/resultTop3_t.csv +++ /dev/null @@ -1,17 +0,0 @@ -ano_base,match,new,empty,total -2007.0,1.0,1.0,1.0,1.0 -2008.0,1.0,1.0,1.0,1.0 -2009.0,1.0,1.0,1.0,1.0 -2010.0,1.0,1.0,1.0,1.0 -2011.0,1.0,1.0,1.0,1.0 -2012.0,1.0,0.286,1.0,0.615 -2013.0,0.846,1.0,1.0,0.846 -2014.0,0.846,1.0,1.0,0.846 -2015.0,0.846,1.0,1.0,0.846 -2016.0,0.769,1.0,1.0,0.769 -2017.0,0.231,1.0,0.0,0.231 -2018.0,0.333,0.857,0.0,0.765 -2019.0,0.867,0.125,1.0,0.636 -2020.0,0.818,1.0,1.0,0.818 -2013.5,0.825,0.876,0.857,0.812 -4.031,0.237,0.278,0.35,0.206 diff --git a/result_cohend.csv b/result_cohend.csv deleted file mode 100644 index 21c32e59a93515a79b18f6200ff0a203bc96832c..0000000000000000000000000000000000000000 --- a/result_cohend.csv +++ /dev/null @@ -1,17 +0,0 @@ -ano_base,match,new,empty,total -2007.0,1.0,0.0,0.0,0.833 -2008.0,0.6,0.0,0.0,0.5 -2009.0,0.667,1.0,1.0,0.667 -2010.0,0.667,1.0,1.0,0.667 -2011.0,1.0,1.0,1.0,1.0 -2012.0,0.5,0.75,1.0,0.692 -2013.0,0.5,0.0,0.0,0.462 -2014.0,0.538,1.0,1.0,0.538 -2015.0,0.462,1.0,1.0,0.462 -2016.0,0.583,0.0,0.0,0.538 -2017.0,0.333,1.0,0.818,0.769 -2018.0,0.0,0.857,0.0,0.706 -2019.0,0.733,0.4,1.0,0.682 -2020.0,0.45,0.0,0.0,0.409 -2013.5,0.574,0.572,0.558,0.637 -4.031,0.244,0.453,0.486,0.158 diff --git a/result_f.csv b/result_f.csv deleted file mode 100644 index 835c4f769af554fb7baad9caba652c2587420196..0000000000000000000000000000000000000000 --- a/result_f.csv +++ /dev/null @@ -1,17 +0,0 @@ -ano_base,match,new,empty,total -2007.0,0.667,1.0,1.0,0.667 -2008.0,0.667,1.0,1.0,0.667 -2009.0,0.667,1.0,1.0,0.667 -2010.0,0.667,1.0,1.0,0.667 -2011.0,0.667,1.0,1.0,0.667 -2012.0,0.5,0.556,1.0,0.615 -2013.0,0.231,1.0,1.0,0.231 -2014.0,0.462,1.0,1.0,0.462 -2015.0,0.615,1.0,1.0,0.615 -2016.0,0.333,0.0,0.0,0.308 -2017.0,0.333,1.0,0.818,0.769 -2018.0,0.333,0.857,0.0,0.765 -2019.0,0.533,0.75,1.0,0.636 -2020.0,0.381,0.0,0.0,0.364 -2013.5,0.504,0.797,0.773,0.578 -4.031,0.152,0.349,0.406,0.163 diff --git a/result_ks.csv b/result_ks.csv deleted file mode 100644 index af1360f15c471bf1f80a6b8e6b289e006df8758e..0000000000000000000000000000000000000000 --- a/result_ks.csv +++ /dev/null @@ -1,17 +0,0 @@ -ano_base,match,new,empty,total -2007.0,0.667,1.0,1.0,0.667 -2008.0,1.0,1.0,1.0,1.0 -2009.0,1.0,1.0,1.0,1.0 -2010.0,0.333,1.0,1.0,0.333 -2011.0,1.0,1.0,1.0,1.0 -2012.0,0.667,1.0,1.0,0.846 -2013.0,1.0,1.0,1.0,1.0 -2014.0,1.0,1.0,1.0,1.0 -2015.0,1.0,1.0,1.0,1.0 -2016.0,0.615,1.0,1.0,0.615 -2017.0,1.0,1.0,1.0,1.0 -2018.0,0.0,0.857,0.0,0.706 -2019.0,1.0,1.0,1.0,1.0 -2020.0,0.909,1.0,1.0,0.909 -2013.5,0.799,0.99,0.929,0.863 -4.031,0.3,0.037,0.258,0.2 diff --git a/result_t.csv b/result_t.csv deleted file mode 100644 index af54dbdc67fe69e6b6b048867c37121de6812c78..0000000000000000000000000000000000000000 --- a/result_t.csv +++ /dev/null @@ -1,17 +0,0 @@ -ano_base,match,new,empty,total -2007.0,1.0,1.0,1.0,1.0 -2008.0,0.333,1.0,1.0,0.333 -2009.0,0.667,1.0,1.0,0.667 -2010.0,0.667,1.0,1.0,0.667 -2011.0,1.0,1.0,1.0,1.0 -2012.0,0.5,0.75,1.0,0.692 -2013.0,0.462,1.0,1.0,0.462 -2014.0,0.538,1.0,1.0,0.538 -2015.0,0.462,1.0,1.0,0.462 -2016.0,0.538,1.0,1.0,0.538 -2017.0,0.0,1.0,0.818,0.692 -2018.0,0.0,0.857,0.0,0.706 -2019.0,0.733,0.4,1.0,0.682 -2020.0,0.409,1.0,1.0,0.409 -2013.5,0.522,0.929,0.916,0.632 -4.031,0.286,0.163,0.258,0.19