diff --git a/distCalc.ipynb b/distCalc.ipynb index e5eeb87d5ea5ae1841e55407a499858901cdcff4..67cac9e6667f08eefb024c93b7d041f1dd2d4bdc 100644 --- a/distCalc.ipynb +++ b/distCalc.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 7, + "execution_count": 1, "id": "2c81bc78-04e0-4bad-83ef-380cf3be1610", "metadata": { "tags": [] @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 23, "id": "af419e44-d6ef-41f7-970c-78c316aeb712", "metadata": { "tags": [] @@ -28,10 +28,36 @@ " self.stat_ks = []\n", " self.stat_t = []\n", " self.stat_cohend = []\n", + " self.stat_f_matches = []\n", + " self.stat_ks_matches = []\n", + " self.stat_t_matches = []\n", + " self.stat_cohend_matches = []\n", + " self.stat_f_new = []\n", + " self.stat_ks_new = []\n", + " self.stat_t_new = []\n", + " self.stat_cohend_new = []\n", + " self.stat_f_empty = []\n", + " self.stat_ks_empty = []\n", + " self.stat_t_empty = []\n", + " self.stat_cohend_empty = []\n", + " \n", " self.stat_f_top3 = []\n", " self.stat_ks_top3 = []\n", " self.stat_t_top3 = []\n", " self.stat_cohend_top3 = []\n", + " self.stat_f_matches_top3 = []\n", + " self.stat_ks_matches_top3 = []\n", + " self.stat_t_matches_top3 = []\n", + " self.stat_cohend_matches_top3 = []\n", + " self.stat_f_new_top3 = []\n", + " self.stat_ks_new_top3 = []\n", + " self.stat_t_new_top3 = []\n", + " self.stat_cohend_new_top3 = []\n", + " self.stat_f_empty_top3 = []\n", + " self.stat_ks_empty_top3 = []\n", + " self.stat_t_empty_top3 = []\n", + " self.stat_cohend_empty_top3 = []\n", + " \n", " self.years = []\n", " \n", " @property\n", @@ -104,35 +130,61 @@ "\n", " all_match_columns = np.union1d(prev_col, next_col)\n", " not_match_columns = np.setdiff1d(all_columns, all_match_columns)\n", + " found_new_columns = np.setdiff1d(new_columns, next_col) # Colunas novas encontradas pelo algoritmo\n", + " no_data_columns = np.setdiff1d(base_columns, prev_col) # Colunas que não receram dados encontradas pelo algoritmo\n", "\n", " # Calcula resultados ========================\n", - " acertos = 0\n", - " acuracia = 0\n", - " # Passeia pelos matches\n", + " acertos_p = 0\n", " for i in range(len(prev_col)):\n", " if prev_col[i] == next_col[i]: \n", - " acertos += 1\n", - "\n", - " for col in not_match_columns:\n", + " acertos_p += 1\n", + " acuracia_matches = acertos_p / len(prev_col)\n", + " \n", + " acertos_p = 0\n", + " unionNewColumns = np.union1d(found_new_columns, true_new_columns)\n", + " for col in unionNewColumns:\n", " if col in true_new_columns:\n", - " acertos += 1\n", + " acertos_p += 1\n", + " if(len(unionNewColumns) > 0):\n", + " acuracia_new_columns = acertos_p / len(unionNewColumns)\n", + " else:\n", + " acuracia_new_columns = 1.0\n", + " \n", + " \n", + " acertos_p = 0\n", + " unionEmptyColumns = np.union1d(no_data_columns, base_empty_columns)\n", + " for col in unionEmptyColumns:\n", " if col in base_empty_columns:\n", - " acertos += 1\n", - "\n", - " if len(all_columns) == 0:\n", - " acuracia = 0\n", + " acertos_p += 1\n", + " if(len(unionEmptyColumns) > 0):\n", + " acuracia_empty_columns = acertos_p / len(unionEmptyColumns)\n", " else:\n", - " acuracia = acertos / len(all_columns)\n", + " acuracia_empty_columns = 1.0\n", + " \n", + " soma_acuracia = acuracia_matches * len(prev_col) + acuracia_new_columns * len(unionNewColumns) + acuracia_empty_columns * len(unionEmptyColumns)\n", + " acuracia_total = soma_acuracia / (len(prev_col) + len(unionNewColumns) + len(unionEmptyColumns))\n", " \n", " # Adiciona acuracia\n", " if(stat_column == 'estatistica_f'):\n", - " self.stat_f.append([ano, acuracia])\n", + " self.stat_f.append([ano, acuracia_total])\n", + " self.stat_f_matches.append([ano, acuracia_matches])\n", + " self.stat_f_new.append([ano, acuracia_new_columns])\n", + " self.stat_f_empty.append([ano, acuracia_empty_columns])\n", " elif(stat_column == 'estatistica_t'):\n", - " self.stat_t.append([ano, acuracia])\n", + " self.stat_t.append([ano, acuracia_total])\n", + " self.stat_t_matches.append([ano, acuracia_matches])\n", + " self.stat_t_new.append([ano, acuracia_new_columns])\n", + " self.stat_t_empty.append([ano, acuracia_empty_columns])\n", " elif(stat_column == 'estatistica_ks'):\n", - " self.stat_ks.append([ano, acuracia])\n", + " self.stat_ks.append([ano, acuracia_total])\n", + " self.stat_ks_matches.append([ano, acuracia_matches])\n", + " self.stat_ks_new.append([ano, acuracia_new_columns])\n", + " self.stat_ks_empty.append([ano, acuracia_empty_columns])\n", " elif(stat_column == 'estatistica_cohend'):\n", - " self.stat_cohend.append([ano, acuracia])\n", + " self.stat_cohend.append([ano, acuracia_total])\n", + " self.stat_cohend_matches.append([ano, acuracia_matches])\n", + " self.stat_cohend_new.append([ano, acuracia_new_columns])\n", + " self.stat_cohend_empty.append([ano, acuracia_empty_columns])\n", "\n", " \n", " def calcTop3(self, df, stat_column, threshold):\n", @@ -175,6 +227,7 @@ " acuracia_matches = 0\n", " acuracia_novas_colunas = 0\n", " acuracia_colunas_vazias = 0\n", + " \n", "\n", " # Acurácia matches\n", " acertos = 0\n", @@ -182,43 +235,96 @@ " if(len(res) == 0):\n", " continue\n", " for i in res:\n", - " if i[0] == i[2]:\n", + " if i[0] == i[2] and i[0] not in no_data_columns and i[0] not in found_new_columns and i[2] not in no_data_columns and i[2] not in found_new_columns:\n", " acertos += 1\n", " break\n", - " acuracia_matches = acertos / len(intersection_columns)\n", - "\n", + " \n", " # Acurácia novas colunas\n", - " acertos = 0\n", " for new in found_new_columns:\n", - " if new in true_new_columns:\n", + " if new in true_new_columns and new not in no_data_columns and new not in all_match_columns:\n", " acertos += 1\n", - " if(len(true_new_columns) == 0 and len(found_new_columns) == 0):\n", - " acuracia_novas_colunas = 1.0\n", - " else:\n", - " acuracia_novas_colunas = acertos / len(found_new_columns)\n", "\n", " # Acurácia colunas vazias\n", - " acertos = 0\n", " for no_data in no_data_columns:\n", - " if no_data in true_empty_columns:\n", + " if no_data in true_empty_columns and no_data not in found_new_columns and no_data not in all_match_columns:\n", " acertos += 1\n", - " if(len(true_empty_columns) == 0 and len(no_data_columns) == 0):\n", - " acuracia_colunas_vazias = 1.0\n", - " else:\n", - " acuracia_colunas_vazias = acertos / len(no_data_columns)\n", "\n", " # Acurácia total\n", - " acuracia_total = (acuracia_matches + acuracia_colunas_vazias + acuracia_novas_colunas) / 3 \n", + " acuracia_total = acertos / len(all_columns)\n", + " \n", + " \n", + " # =========================\n", + " acertos_p = 0\n", + " unionNewColumns = np.union1d(found_new_columns, true_new_columns)\n", + " if len(unionNewColumns) > 0:\n", + " for col in unionNewColumns:\n", + " if col in found_new_columns and col in true_new_columns:\n", + " acertos_p += 1\n", + " acuracia_new_columns = acertos_p / len(unionNewColumns) \n", + " else:\n", + " acuracia_new_columns = 1.0\n", + "\n", + " acertos_p = 0\n", + " unionEmptyColumns = np.union1d(no_data_columns, true_empty_columns)\n", + " if len(unionEmptyColumns) > 0:\n", + " for col in unionEmptyColumns:\n", + " if col in no_data_columns and col in true_empty_columns:\n", + " acertos_p += 1\n", + " acuracia_empty_columns = acertos_p / len(unionEmptyColumns) \n", + " else:\n", + " acuracia_empty_columns = 1.0\n", + " \n", + " acertos_p = 0\n", + " results_len = 0\n", + " for res in resultados:\n", + " if(len(res) == 0):\n", + " continue\n", + " results_len += 1\n", + " for i in res:\n", + " if i[0] == i[2]:\n", + " acertos_p += 1\n", + " break\n", + " \n", + " acuracia_matches = acertos_p / len(prev_col)\n", + " soma_acuracia = acuracia_matches * results_len + acuracia_new_columns * len(unionNewColumns) + acuracia_empty_columns * len(unionEmptyColumns)\n", + " acuracia_total = soma_acuracia / (results_len + len(unionNewColumns) + len(unionEmptyColumns))\n", + " \n", + " # print(ano)\n", + " # print(f'{acuracia_matches} matches')\n", + " # print(f'{acuracia_new_columns} new')\n", + " # print(f'{acuracia_empty_columns} empty')\n", + " # print(f'{acuracia_total} total')\n", + " \n", + " # =========================\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " # Adiciona acuracia\n", " if(stat_column == 'estatistica_f'):\n", " self.stat_f_top3.append([ano, acuracia_total])\n", + " self.stat_f_matches_top3.append([ano, acuracia_matches])\n", + " self.stat_f_new_top3.append([ano, acuracia_new_columns])\n", + " self.stat_f_empty_top3.append([ano, acuracia_empty_columns])\n", " elif(stat_column == 'estatistica_t'):\n", " self.stat_t_top3.append([ano, acuracia_total])\n", + " self.stat_t_matches_top3.append([ano, acuracia_matches])\n", + " self.stat_t_new_top3.append([ano, acuracia_new_columns])\n", + " self.stat_t_empty_top3.append([ano, acuracia_empty_columns])\n", " elif(stat_column == 'estatistica_ks'):\n", " self.stat_ks_top3.append([ano, acuracia_total])\n", + " self.stat_ks_matches_top3.append([ano, acuracia_matches])\n", + " self.stat_ks_new_top3.append([ano, acuracia_new_columns])\n", + " self.stat_ks_empty_top3.append([ano, acuracia_empty_columns])\n", " elif(stat_column == 'estatistica_cohend'):\n", - " self.stat_cohend_top3.append([ano, acuracia_total])" + " self.stat_cohend_top3.append([ano, acuracia_total])\n", + " self.stat_cohend_matches_top3.append([ano, acuracia_matches])\n", + " self.stat_cohend_new_top3.append([ano, acuracia_new_columns])\n", + " self.stat_cohend_empty_top3.append([ano, acuracia_empty_columns])" ] }, { @@ -231,7 +337,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 3, "id": "26287a6f-5537-4509-a09d-52dd59b3a76d", "metadata": { "tags": [] @@ -277,7 +383,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 24, "id": "f9541a11-c1bf-4318-847a-100917e13204", "metadata": { "tags": [] @@ -286,7 +392,7 @@ "source": [ "dist = DistCalc()\n", "dist.calc(df_f, 'estatistica_f', 0.7)\n", - "dist.calc(df_t, 'estatistica_t', 50)\n", + "dist.calc(df_t, 'estatistica_t', 40)\n", "dist.calc(df_c, 'estatistica_cohend', 0.15)\n", "dist.calc(df_ks, 'estatistica_ks', 0.10)\n", "\n", @@ -306,43 +412,104 @@ }, { "cell_type": "code", - "execution_count": 11, - "id": "01ba08fd-63ce-4618-b3b2-434227604dcd", + "execution_count": 25, + "id": "527ff27d-f321-4749-a94d-dd7d824ef682", "metadata": { "tags": [] }, "outputs": [], "source": [ - "result = pd.DataFrame(columns=['ano_base', 'estatistica_ks', 'estatistica_f', 'estatistica_t', 'estatistica_cohend'])\n", - "resultTop3 = pd.DataFrame(columns=['ano_base', 'estatistica_ks', 'estatistica_f', 'estatistica_t', 'estatistica_cohend'])\n", + "# ================= KS =================\n", + "result_ks = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "resultTop3_ks = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", "for i, ano in enumerate(dist.get_years):\n", - " new_row = [ano, dist.stat_ks[i][1], dist.stat_f[i][1], dist.stat_t[i][1], dist.stat_cohend[i][1]]\n", - " result.loc[len(result)] = new_row\n", - " new_row = [ano, dist.stat_ks_top3[i][1], dist.stat_f_top3[i][1], dist.stat_t_top3[i][1], dist.stat_cohend_top3[i][1]]\n", - " resultTop3.loc[len(resultTop3)] = new_row\n", - "result.loc[len(result)] = result.mean()\n", - "result.loc[len(result)] = result.std()\n", - "resultTop3.loc[len(resultTop3)] = resultTop3.mean()\n", - "resultTop3.loc[len(resultTop3)] = resultTop3.std()" + " new_row = [ano, dist.stat_ks_matches[i][1], dist.stat_ks_new[i][1], dist.stat_ks_empty[i][1], dist.stat_ks[i][1]]\n", + " result_ks.loc[len(result_ks)] = new_row\n", + " new_row = [ano, dist.stat_ks_matches_top3[i][1], dist.stat_ks_new_top3[i][1], dist.stat_ks_empty_top3[i][1], dist.stat_ks_top3[i][1]]\n", + " resultTop3_ks.loc[len(resultTop3_ks)] = new_row\n", + " \n", + "result_ks.loc[len(result_ks)] = result_ks.mean()\n", + "result_ks.loc[len(result_ks)] = result_ks.std()\n", + "resultTop3_ks.loc[len(resultTop3_ks)] = resultTop3_ks.mean()\n", + "resultTop3_ks.loc[len(resultTop3_ks)] = resultTop3_ks.std()\n", + "result_ks = result_ks.round(3)\n", + "resultTop3_ks = resultTop3_ks.round(3)\n", + "\n", + "# ================= F =================\n", + "result_f = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "resultTop3_f = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "for i, ano in enumerate(dist.get_years):\n", + " new_row = [ano, dist.stat_f_matches[i][1], dist.stat_f_new[i][1], dist.stat_f_empty[i][1], dist.stat_f[i][1]]\n", + " result_f.loc[len(result_f)] = new_row\n", + " new_row = [ano, dist.stat_f_matches_top3[i][1], dist.stat_f_new_top3[i][1], dist.stat_f_empty_top3[i][1], dist.stat_f_top3[i][1]]\n", + " resultTop3_f.loc[len(resultTop3_f)] = new_row\n", + " \n", + "result_f.loc[len(result_f)] = result_f.mean()\n", + "result_f.loc[len(result_f)] = result_f.std()\n", + "resultTop3_f.loc[len(resultTop3_f)] = resultTop3_f.mean()\n", + "resultTop3_f.loc[len(resultTop3_f)] = resultTop3_f.std()\n", + "result_f = result_f.round(3)\n", + "resultTop3_f = resultTop3_f.round(3)\n", + "\n", + "# ================= COHEN =================\n", + "result_cohend = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "resultTop3_cohend = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "for i, ano in enumerate(dist.get_years):\n", + " new_row = [ano, dist.stat_cohend_matches[i][1], dist.stat_cohend_new[i][1], dist.stat_cohend_empty[i][1], dist.stat_cohend[i][1]]\n", + " result_cohend.loc[len(result_cohend)] = new_row\n", + " new_row = [ano, dist.stat_cohend_matches_top3[i][1], dist.stat_cohend_new_top3[i][1], dist.stat_cohend_empty_top3[i][1], dist.stat_cohend_top3[i][1]]\n", + " resultTop3_cohend.loc[len(resultTop3_cohend)] = new_row\n", + " \n", + "result_cohend.loc[len(result_cohend)] = result_cohend.mean()\n", + "result_cohend.loc[len(result_cohend)] = result_cohend.std()\n", + "resultTop3_cohend.loc[len(resultTop3_cohend)] = resultTop3_cohend.mean()\n", + "resultTop3_cohend.loc[len(resultTop3_cohend)] = resultTop3_cohend.std()\n", + "result_cohend = result_cohend.round(3)\n", + "resultTop3_cohend = resultTop3_cohend.round(3)\n", + "\n", + "# ================= T =================\n", + "result_t = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "resultTop3_t = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n", + "for i, ano in enumerate(dist.get_years):\n", + " new_row = [ano, dist.stat_t_matches[i][1], dist.stat_t_new[i][1], dist.stat_t_empty[i][1], dist.stat_t[i][1]]\n", + " result_t.loc[len(result_t)] = new_row\n", + " new_row = [ano, dist.stat_t_matches_top3[i][1], dist.stat_t_new_top3[i][1], dist.stat_t_empty_top3[i][1], dist.stat_t_top3[i][1]]\n", + " resultTop3_t.loc[len(resultTop3_t)] = new_row\n", + " \n", + "result_t.loc[len(result_t)] = result_t.mean()\n", + "result_t.loc[len(result_t)] = result_t.std()\n", + "resultTop3_t.loc[len(resultTop3_t)] = resultTop3_t.mean()\n", + "resultTop3_t.loc[len(resultTop3_t)] = resultTop3_t.std()\n", + "result_t = result_t.round(3)\n", + "resultTop3_t = resultTop3_t.round(3)" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 26, "id": "4cb4afc8-6149-40a7-8f77-af06183d4d23", "metadata": { "tags": [] }, "outputs": [], "source": [ - "result.to_csv(f'./result.csv', index=False)\n", - "resultTop3.to_csv(f'./resultTop3.csv', index=False)" + "result_ks.to_csv(f'./result_ks.csv', index=False)\n", + "resultTop3_ks.to_csv(f'./resultTop3_ks.csv', index=False)\n", + "\n", + "result_f.to_csv(f'./result_f.csv', index=False)\n", + "resultTop3_f.to_csv(f'./resultTop3_f.csv', index=False)\n", + "\n", + "result_t.to_csv(f'./result_t.csv', index=False)\n", + "resultTop3_t.to_csv(f'./resultTop3_t.csv', index=False)\n", + "\n", + "result_cohend.to_csv(f'./result_cohend.csv', index=False)\n", + "resultTop3_cohend.to_csv(f'./resultTop3_cohend.csv', index=False)" ] }, { "cell_type": "code", "execution_count": null, - "id": "f88a6745-c669-49f3-85b7-12c53b35d28a", + "id": "d0d2606e-2ddb-4752-a101-823af86fec45", "metadata": {}, "outputs": [], "source": [] @@ -364,7 +531,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/resultTop3_cohend.csv b/resultTop3_cohend.csv new file mode 100644 index 0000000000000000000000000000000000000000..07b04721122be5a1b3af82f6adac45fdaf1ed1f1 --- /dev/null +++ b/resultTop3_cohend.csv @@ -0,0 +1,17 @@ +ano_base,match,new,empty,total +2007.0,1.0,1.0,1.0,1.0 +2008.0,1.0,0.0,0.0,0.714 +2009.0,1.0,1.0,1.0,1.0 +2010.0,1.0,1.0,1.0,1.0 +2011.0,1.0,1.0,1.0,1.0 +2012.0,0.833,0.875,1.0,0.857 +2013.0,1.0,0.0,0.0,0.857 +2014.0,0.818,0.333,0.0,0.625 +2015.0,1.0,0.0,0.0,0.867 +2016.0,1.0,0.0,0.0,0.733 +2017.0,1.0,1.0,1.0,1.0 +2018.0,0.5,0.909,0.5,0.8 +2019.0,1.0,1.0,1.0,1.0 +2020.0,0.857,0.0,0.0,0.632 +2013.5,0.929,0.58,0.536,0.863 +4.031,0.137,0.463,0.48,0.138 diff --git a/resultTop3_f.csv b/resultTop3_f.csv new file mode 100644 index 0000000000000000000000000000000000000000..dabc1945ef4311199c485ed64e310e2f9d376f8e --- /dev/null +++ b/resultTop3_f.csv @@ -0,0 +1,17 @@ +ano_base,match,new,empty,total +2007.0,1.0,1.0,1.0,1.0 +2008.0,1.0,1.0,1.0,1.0 +2009.0,1.0,1.0,1.0,1.0 +2010.0,1.0,1.0,1.0,1.0 +2011.0,1.0,1.0,1.0,1.0 +2012.0,0.833,1.0,1.0,0.923 +2013.0,1.0,1.0,1.0,1.0 +2014.0,0.917,0.333,0.0,0.75 +2015.0,1.0,1.0,1.0,1.0 +2016.0,1.0,1.0,0.0,0.929 +2017.0,1.0,1.0,1.0,1.0 +2018.0,0.5,0.909,0.5,0.8 +2019.0,1.0,0.25,1.0,0.812 +2020.0,0.875,1.0,1.0,0.875 +2013.5,0.938,0.892,0.821,0.935 +4.031,0.132,0.247,0.359,0.087 diff --git a/resultTop3_ks.csv b/resultTop3_ks.csv new file mode 100644 index 0000000000000000000000000000000000000000..c8e233c96926fb34e8fa8d0d20578e05aa125997 --- /dev/null +++ b/resultTop3_ks.csv @@ -0,0 +1,17 @@ +ano_base,match,new,empty,total +2007.0,1.0,1.0,1.0,1.0 +2008.0,1.0,1.0,1.0,1.0 +2009.0,1.0,1.0,1.0,1.0 +2010.0,1.0,1.0,1.0,1.0 +2011.0,1.0,1.0,1.0,1.0 +2012.0,1.0,0.875,0.0,0.857 +2013.0,1.0,1.0,1.0,1.0 +2014.0,0.917,0.333,0.0,0.75 +2015.0,1.0,1.0,1.0,1.0 +2016.0,1.0,1.0,0.0,0.929 +2017.0,1.0,1.0,1.0,1.0 +2018.0,0.5,0.909,0.5,0.8 +2019.0,1.0,0.75,1.0,0.938 +2020.0,0.867,0.0,0.0,0.722 +2013.5,0.949,0.848,0.679,0.928 +4.031,0.13,0.293,0.447,0.099 diff --git a/resultTop3_t.csv b/resultTop3_t.csv new file mode 100644 index 0000000000000000000000000000000000000000..60fe5683e9e06174a6324bfcd5c77cb47005849b --- /dev/null +++ b/resultTop3_t.csv @@ -0,0 +1,17 @@ +ano_base,match,new,empty,total +2007.0,1.0,1.0,1.0,1.0 +2008.0,1.0,1.0,1.0,1.0 +2009.0,1.0,1.0,1.0,1.0 +2010.0,1.0,1.0,1.0,1.0 +2011.0,1.0,1.0,1.0,1.0 +2012.0,0.833,0.875,1.0,0.857 +2013.0,1.0,0.0,0.0,0.857 +2014.0,0.833,0.5,0.0,0.733 +2015.0,1.0,0.0,0.0,0.867 +2016.0,1.0,0.0,0.0,0.8 +2017.0,1.0,1.0,1.0,1.0 +2018.0,0.5,0.909,0.5,0.8 +2019.0,1.0,0.5,1.0,0.875 +2020.0,0.857,0.0,0.0,0.667 +2013.5,0.93,0.627,0.607,0.89 +4.031,0.136,0.429,0.47,0.109 diff --git a/result_cohend.csv b/result_cohend.csv new file mode 100644 index 0000000000000000000000000000000000000000..5d0468e6b96abe654a04be91cf562fe55ce19a4f --- /dev/null +++ b/result_cohend.csv @@ -0,0 +1,17 @@ +ano_base,match,new,empty,total +2007.0,1.0,1.0,1.0,1.0 +2008.0,0.6,0.0,0.0,0.429 +2009.0,0.4,0.0,0.0,0.286 +2010.0,0.4,0.0,0.0,0.286 +2011.0,0.667,1.0,1.0,0.667 +2012.0,1.0,0.875,0.0,0.857 +2013.0,0.583,0.0,0.0,0.5 +2014.0,0.222,0.2,0.0,0.167 +2015.0,0.692,0.0,0.0,0.6 +2016.0,0.727,0.0,0.0,0.471 +2017.0,1.0,1.0,1.0,1.0 +2018.0,0.0,1.0,1.0,0.867 +2019.0,0.833,1.0,1.0,0.875 +2020.0,0.667,0.0,0.0,0.4 +2013.5,0.628,0.434,0.357,0.6 +4.031,0.285,0.476,0.479,0.27 diff --git a/result_f.csv b/result_f.csv new file mode 100644 index 0000000000000000000000000000000000000000..43a1ab88e5702531bd1324e89873c9a270a3297a --- /dev/null +++ b/result_f.csv @@ -0,0 +1,17 @@ +ano_base,match,new,empty,total +2007.0,1.0,1.0,1.0,1.0 +2008.0,1.0,1.0,1.0,1.0 +2009.0,1.0,1.0,1.0,1.0 +2010.0,1.0,1.0,1.0,1.0 +2011.0,1.0,1.0,1.0,1.0 +2012.0,0.6,0.875,0.0,0.714 +2013.0,0.615,1.0,1.0,0.615 +2014.0,0.417,0.5,0.0,0.4 +2015.0,0.857,1.0,1.0,0.857 +2016.0,1.0,0.0,0.0,0.867 +2017.0,1.0,1.0,1.0,1.0 +2018.0,0.0,1.0,1.0,0.867 +2019.0,0.833,1.0,1.0,0.875 +2020.0,0.786,0.0,0.0,0.611 +2013.5,0.793,0.812,0.714,0.843 +4.031,0.286,0.356,0.452,0.183 diff --git a/result_ks.csv b/result_ks.csv new file mode 100644 index 0000000000000000000000000000000000000000..c0984fb625f82137bb16f2fb7c885a1a9ce91ec9 --- /dev/null +++ b/result_ks.csv @@ -0,0 +1,17 @@ +ano_base,match,new,empty,total +2007.0,1.0,1.0,1.0,1.0 +2008.0,0.667,1.0,1.0,0.667 +2009.0,0.667,1.0,1.0,0.667 +2010.0,0.667,1.0,1.0,0.667 +2011.0,0.667,1.0,1.0,0.667 +2012.0,1.0,0.875,0.0,0.857 +2013.0,0.615,1.0,1.0,0.615 +2014.0,0.273,0.333,0.0,0.25 +2015.0,0.857,1.0,1.0,0.857 +2016.0,0.846,0.0,0.0,0.733 +2017.0,1.0,1.0,1.0,1.0 +2018.0,0.0,1.0,1.0,0.867 +2019.0,1.0,1.0,1.0,1.0 +2020.0,1.0,0.0,0.0,0.684 +2013.5,0.733,0.801,0.714,0.752 +4.031,0.288,0.369,0.452,0.194 diff --git a/result_t.csv b/result_t.csv new file mode 100644 index 0000000000000000000000000000000000000000..334bbce581c577d446df6fa296ec61839d2d814a --- /dev/null +++ b/result_t.csv @@ -0,0 +1,17 @@ +ano_base,match,new,empty,total +2007.0,1.0,1.0,1.0,1.0 +2008.0,0.667,1.0,1.0,0.667 +2009.0,0.4,0.0,0.0,0.286 +2010.0,0.4,0.0,0.0,0.286 +2011.0,0.667,1.0,1.0,0.667 +2012.0,1.0,0.875,0.0,0.857 +2013.0,0.583,0.0,0.0,0.5 +2014.0,0.3,0.25,0.0,0.235 +2015.0,0.692,0.0,0.0,0.6 +2016.0,0.667,0.0,0.0,0.5 +2017.0,1.0,1.0,1.0,1.0 +2018.0,0.0,1.0,1.0,0.867 +2019.0,0.833,1.0,1.0,0.875 +2020.0,0.667,0.0,0.0,0.4 +2013.5,0.634,0.509,0.429,0.624 +4.031,0.277,0.478,0.495,0.257