diff --git a/distCalc.ipynb b/distCalc.ipynb
index e5eeb87d5ea5ae1841e55407a499858901cdcff4..67cac9e6667f08eefb024c93b7d041f1dd2d4bdc 100644
--- a/distCalc.ipynb
+++ b/distCalc.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 1,
    "id": "2c81bc78-04e0-4bad-83ef-380cf3be1610",
    "metadata": {
     "tags": []
@@ -15,7 +15,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 23,
    "id": "af419e44-d6ef-41f7-970c-78c316aeb712",
    "metadata": {
     "tags": []
@@ -28,10 +28,36 @@
     "        self.stat_ks = []\n",
     "        self.stat_t = []\n",
     "        self.stat_cohend = []\n",
+    "        self.stat_f_matches = []\n",
+    "        self.stat_ks_matches = []\n",
+    "        self.stat_t_matches = []\n",
+    "        self.stat_cohend_matches = []\n",
+    "        self.stat_f_new = []\n",
+    "        self.stat_ks_new = []\n",
+    "        self.stat_t_new = []\n",
+    "        self.stat_cohend_new = []\n",
+    "        self.stat_f_empty = []\n",
+    "        self.stat_ks_empty = []\n",
+    "        self.stat_t_empty = []\n",
+    "        self.stat_cohend_empty = []\n",
+    "        \n",
     "        self.stat_f_top3 = []\n",
     "        self.stat_ks_top3 = []\n",
     "        self.stat_t_top3 = []\n",
     "        self.stat_cohend_top3 = []\n",
+    "        self.stat_f_matches_top3 = []\n",
+    "        self.stat_ks_matches_top3 = []\n",
+    "        self.stat_t_matches_top3 = []\n",
+    "        self.stat_cohend_matches_top3 = []\n",
+    "        self.stat_f_new_top3 = []\n",
+    "        self.stat_ks_new_top3 = []\n",
+    "        self.stat_t_new_top3 = []\n",
+    "        self.stat_cohend_new_top3 = []\n",
+    "        self.stat_f_empty_top3 = []\n",
+    "        self.stat_ks_empty_top3 = []\n",
+    "        self.stat_t_empty_top3 = []\n",
+    "        self.stat_cohend_empty_top3 = []\n",
+    "        \n",
     "        self.years = []\n",
     "    \n",
     "    @property\n",
@@ -104,35 +130,61 @@
     "\n",
     "            all_match_columns = np.union1d(prev_col, next_col)\n",
     "            not_match_columns = np.setdiff1d(all_columns, all_match_columns)\n",
+    "            found_new_columns = np.setdiff1d(new_columns, next_col)             # Colunas novas encontradas pelo algoritmo\n",
+    "            no_data_columns = np.setdiff1d(base_columns, prev_col)              # Colunas que não receram dados encontradas pelo algoritmo\n",
     "\n",
     "            # Calcula resultados ========================\n",
-    "            acertos = 0\n",
-    "            acuracia = 0\n",
-    "            # Passeia pelos matches\n",
+    "            acertos_p = 0\n",
     "            for i in range(len(prev_col)):\n",
     "                if prev_col[i] == next_col[i]:            \n",
-    "                    acertos += 1\n",
-    "\n",
-    "            for col in not_match_columns:\n",
+    "                    acertos_p += 1\n",
+    "            acuracia_matches = acertos_p / len(prev_col)\n",
+    "            \n",
+    "            acertos_p = 0\n",
+    "            unionNewColumns = np.union1d(found_new_columns, true_new_columns)\n",
+    "            for col in unionNewColumns:\n",
     "                if col in true_new_columns:\n",
-    "                    acertos += 1\n",
+    "                    acertos_p += 1\n",
+    "            if(len(unionNewColumns) > 0):\n",
+    "                acuracia_new_columns = acertos_p / len(unionNewColumns)\n",
+    "            else:\n",
+    "                acuracia_new_columns = 1.0\n",
+    "                \n",
+    "                \n",
+    "            acertos_p = 0\n",
+    "            unionEmptyColumns = np.union1d(no_data_columns, base_empty_columns)\n",
+    "            for col in unionEmptyColumns:\n",
     "                if col in base_empty_columns:\n",
-    "                    acertos += 1\n",
-    "\n",
-    "            if len(all_columns) == 0:\n",
-    "                acuracia = 0\n",
+    "                    acertos_p += 1\n",
+    "            if(len(unionEmptyColumns) > 0):\n",
+    "                acuracia_empty_columns = acertos_p / len(unionEmptyColumns)\n",
     "            else:\n",
-    "                acuracia = acertos / len(all_columns)\n",
+    "                acuracia_empty_columns = 1.0\n",
+    "                \n",
+    "            soma_acuracia = acuracia_matches * len(prev_col) + acuracia_new_columns * len(unionNewColumns) + acuracia_empty_columns * len(unionEmptyColumns)\n",
+    "            acuracia_total = soma_acuracia / (len(prev_col) + len(unionNewColumns) + len(unionEmptyColumns))\n",
     "        \n",
     "            # Adiciona acuracia\n",
     "            if(stat_column == 'estatistica_f'):\n",
-    "                self.stat_f.append([ano, acuracia])\n",
+    "                self.stat_f.append([ano, acuracia_total])\n",
+    "                self.stat_f_matches.append([ano, acuracia_matches])\n",
+    "                self.stat_f_new.append([ano, acuracia_new_columns])\n",
+    "                self.stat_f_empty.append([ano, acuracia_empty_columns])\n",
     "            elif(stat_column == 'estatistica_t'):\n",
-    "                self.stat_t.append([ano, acuracia])\n",
+    "                self.stat_t.append([ano, acuracia_total])\n",
+    "                self.stat_t_matches.append([ano, acuracia_matches])\n",
+    "                self.stat_t_new.append([ano, acuracia_new_columns])\n",
+    "                self.stat_t_empty.append([ano, acuracia_empty_columns])\n",
     "            elif(stat_column == 'estatistica_ks'):\n",
-    "                self.stat_ks.append([ano, acuracia])\n",
+    "                self.stat_ks.append([ano, acuracia_total])\n",
+    "                self.stat_ks_matches.append([ano, acuracia_matches])\n",
+    "                self.stat_ks_new.append([ano, acuracia_new_columns])\n",
+    "                self.stat_ks_empty.append([ano, acuracia_empty_columns])\n",
     "            elif(stat_column == 'estatistica_cohend'):\n",
-    "                self.stat_cohend.append([ano, acuracia])\n",
+    "                self.stat_cohend.append([ano, acuracia_total])\n",
+    "                self.stat_cohend_matches.append([ano, acuracia_matches])\n",
+    "                self.stat_cohend_new.append([ano, acuracia_new_columns])\n",
+    "                self.stat_cohend_empty.append([ano, acuracia_empty_columns])\n",
     "\n",
     "        \n",
     "    def calcTop3(self, df, stat_column, threshold):\n",
@@ -175,6 +227,7 @@
     "            acuracia_matches = 0\n",
     "            acuracia_novas_colunas = 0\n",
     "            acuracia_colunas_vazias = 0\n",
+    "            \n",
     "\n",
     "            # Acurácia matches\n",
     "            acertos = 0\n",
@@ -182,43 +235,96 @@
     "                if(len(res) == 0):\n",
     "                    continue\n",
     "                for i in res:\n",
-    "                    if i[0] == i[2]:\n",
+    "                    if i[0] == i[2] and i[0] not in no_data_columns and i[0] not in found_new_columns and i[2] not in no_data_columns and i[2] not in found_new_columns:\n",
     "                        acertos += 1\n",
     "                        break\n",
-    "            acuracia_matches = acertos / len(intersection_columns)\n",
-    "\n",
+    "                        \n",
     "            # Acurácia novas colunas\n",
-    "            acertos = 0\n",
     "            for new in found_new_columns:\n",
-    "                if new in true_new_columns:\n",
+    "                if new in true_new_columns and new not in no_data_columns and new not in all_match_columns:\n",
     "                    acertos += 1\n",
-    "            if(len(true_new_columns) == 0 and len(found_new_columns) == 0):\n",
-    "                acuracia_novas_colunas = 1.0\n",
-    "            else:\n",
-    "                acuracia_novas_colunas = acertos / len(found_new_columns)\n",
     "\n",
     "            # Acurácia colunas vazias\n",
-    "            acertos = 0\n",
     "            for no_data in no_data_columns:\n",
-    "                if no_data in true_empty_columns:\n",
+    "                if no_data in true_empty_columns and no_data not in found_new_columns and no_data not in all_match_columns:\n",
     "                    acertos += 1\n",
-    "            if(len(true_empty_columns) == 0 and len(no_data_columns) == 0):\n",
-    "                acuracia_colunas_vazias = 1.0\n",
-    "            else:\n",
-    "                acuracia_colunas_vazias = acertos / len(no_data_columns)\n",
     "\n",
     "            # Acurácia total\n",
-    "            acuracia_total = (acuracia_matches + acuracia_colunas_vazias + acuracia_novas_colunas) / 3 \n",
+    "            acuracia_total = acertos / len(all_columns)\n",
+    "            \n",
+    "            \n",
+    "            # =========================\n",
+    "            acertos_p = 0\n",
+    "            unionNewColumns = np.union1d(found_new_columns, true_new_columns)\n",
+    "            if len(unionNewColumns) > 0:\n",
+    "                for col in unionNewColumns:\n",
+    "                    if col in found_new_columns and col in true_new_columns:\n",
+    "                        acertos_p += 1\n",
+    "                acuracia_new_columns = acertos_p / len(unionNewColumns)            \n",
+    "            else:\n",
+    "                acuracia_new_columns = 1.0\n",
+    "\n",
+    "            acertos_p = 0\n",
+    "            unionEmptyColumns = np.union1d(no_data_columns, true_empty_columns)\n",
+    "            if len(unionEmptyColumns) > 0:\n",
+    "                for col in unionEmptyColumns:\n",
+    "                    if col in no_data_columns and col in true_empty_columns:\n",
+    "                        acertos_p += 1\n",
+    "                acuracia_empty_columns = acertos_p / len(unionEmptyColumns)            \n",
+    "            else:\n",
+    "                acuracia_empty_columns = 1.0\n",
+    "            \n",
+    "            acertos_p = 0\n",
+    "            results_len = 0\n",
+    "            for res in resultados:\n",
+    "                if(len(res) == 0):\n",
+    "                    continue\n",
+    "                results_len += 1\n",
+    "                for i in res:\n",
+    "                    if i[0] == i[2]:\n",
+    "                        acertos_p += 1\n",
+    "                        break\n",
+    "                        \n",
+    "            acuracia_matches = acertos_p / len(prev_col)\n",
+    "            soma_acuracia = acuracia_matches * results_len + acuracia_new_columns * len(unionNewColumns) + acuracia_empty_columns * len(unionEmptyColumns)\n",
+    "            acuracia_total = soma_acuracia / (results_len + len(unionNewColumns) + len(unionEmptyColumns))\n",
+    "            \n",
+    "            # print(ano)\n",
+    "            # print(f'{acuracia_matches} matches')\n",
+    "            # print(f'{acuracia_new_columns} new')\n",
+    "            # print(f'{acuracia_empty_columns} empty')\n",
+    "            # print(f'{acuracia_total} total')\n",
+    "            \n",
+    "            # =========================\n",
+    "            \n",
+    "            \n",
+    "            \n",
+    "            \n",
+    "            \n",
+    "            \n",
     "            \n",
+    "                        \n",
     "            # Adiciona acuracia\n",
     "            if(stat_column == 'estatistica_f'):\n",
     "                self.stat_f_top3.append([ano, acuracia_total])\n",
+    "                self.stat_f_matches_top3.append([ano, acuracia_matches])\n",
+    "                self.stat_f_new_top3.append([ano, acuracia_new_columns])\n",
+    "                self.stat_f_empty_top3.append([ano, acuracia_empty_columns])\n",
     "            elif(stat_column == 'estatistica_t'):\n",
     "                self.stat_t_top3.append([ano, acuracia_total])\n",
+    "                self.stat_t_matches_top3.append([ano, acuracia_matches])\n",
+    "                self.stat_t_new_top3.append([ano, acuracia_new_columns])\n",
+    "                self.stat_t_empty_top3.append([ano, acuracia_empty_columns])\n",
     "            elif(stat_column == 'estatistica_ks'):\n",
     "                self.stat_ks_top3.append([ano, acuracia_total])\n",
+    "                self.stat_ks_matches_top3.append([ano, acuracia_matches])\n",
+    "                self.stat_ks_new_top3.append([ano, acuracia_new_columns])\n",
+    "                self.stat_ks_empty_top3.append([ano, acuracia_empty_columns])\n",
     "            elif(stat_column == 'estatistica_cohend'):\n",
-    "                self.stat_cohend_top3.append([ano, acuracia_total])"
+    "                self.stat_cohend_top3.append([ano, acuracia_total])\n",
+    "                self.stat_cohend_matches_top3.append([ano, acuracia_matches])\n",
+    "                self.stat_cohend_new_top3.append([ano, acuracia_new_columns])\n",
+    "                self.stat_cohend_empty_top3.append([ano, acuracia_empty_columns])"
    ]
   },
   {
@@ -231,7 +337,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 3,
    "id": "26287a6f-5537-4509-a09d-52dd59b3a76d",
    "metadata": {
     "tags": []
@@ -277,7 +383,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 24,
    "id": "f9541a11-c1bf-4318-847a-100917e13204",
    "metadata": {
     "tags": []
@@ -286,7 +392,7 @@
    "source": [
     "dist = DistCalc()\n",
     "dist.calc(df_f, 'estatistica_f', 0.7)\n",
-    "dist.calc(df_t, 'estatistica_t', 50)\n",
+    "dist.calc(df_t, 'estatistica_t', 40)\n",
     "dist.calc(df_c, 'estatistica_cohend', 0.15)\n",
     "dist.calc(df_ks, 'estatistica_ks', 0.10)\n",
     "\n",
@@ -306,43 +412,104 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
-   "id": "01ba08fd-63ce-4618-b3b2-434227604dcd",
+   "execution_count": 25,
+   "id": "527ff27d-f321-4749-a94d-dd7d824ef682",
    "metadata": {
     "tags": []
    },
    "outputs": [],
    "source": [
-    "result = pd.DataFrame(columns=['ano_base', 'estatistica_ks', 'estatistica_f', 'estatistica_t', 'estatistica_cohend'])\n",
-    "resultTop3 = pd.DataFrame(columns=['ano_base', 'estatistica_ks', 'estatistica_f', 'estatistica_t', 'estatistica_cohend'])\n",
+    "# ================= KS =================\n",
+    "result_ks = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n",
+    "resultTop3_ks = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n",
     "for i, ano in enumerate(dist.get_years):\n",
-    "    new_row = [ano, dist.stat_ks[i][1], dist.stat_f[i][1], dist.stat_t[i][1], dist.stat_cohend[i][1]]\n",
-    "    result.loc[len(result)] = new_row\n",
-    "    new_row = [ano, dist.stat_ks_top3[i][1], dist.stat_f_top3[i][1], dist.stat_t_top3[i][1], dist.stat_cohend_top3[i][1]]\n",
-    "    resultTop3.loc[len(resultTop3)] = new_row\n",
-    "result.loc[len(result)] = result.mean()\n",
-    "result.loc[len(result)] = result.std()\n",
-    "resultTop3.loc[len(resultTop3)] = resultTop3.mean()\n",
-    "resultTop3.loc[len(resultTop3)] = resultTop3.std()"
+    "    new_row = [ano, dist.stat_ks_matches[i][1], dist.stat_ks_new[i][1], dist.stat_ks_empty[i][1], dist.stat_ks[i][1]]\n",
+    "    result_ks.loc[len(result_ks)] = new_row\n",
+    "    new_row = [ano, dist.stat_ks_matches_top3[i][1], dist.stat_ks_new_top3[i][1], dist.stat_ks_empty_top3[i][1], dist.stat_ks_top3[i][1]]\n",
+    "    resultTop3_ks.loc[len(resultTop3_ks)] = new_row\n",
+    "    \n",
+    "result_ks.loc[len(result_ks)] = result_ks.mean()\n",
+    "result_ks.loc[len(result_ks)] = result_ks.std()\n",
+    "resultTop3_ks.loc[len(resultTop3_ks)] = resultTop3_ks.mean()\n",
+    "resultTop3_ks.loc[len(resultTop3_ks)] = resultTop3_ks.std()\n",
+    "result_ks = result_ks.round(3)\n",
+    "resultTop3_ks = resultTop3_ks.round(3)\n",
+    "\n",
+    "# ================= F =================\n",
+    "result_f = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n",
+    "resultTop3_f = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n",
+    "for i, ano in enumerate(dist.get_years):\n",
+    "    new_row = [ano, dist.stat_f_matches[i][1], dist.stat_f_new[i][1], dist.stat_f_empty[i][1], dist.stat_f[i][1]]\n",
+    "    result_f.loc[len(result_f)] = new_row\n",
+    "    new_row = [ano, dist.stat_f_matches_top3[i][1], dist.stat_f_new_top3[i][1], dist.stat_f_empty_top3[i][1], dist.stat_f_top3[i][1]]\n",
+    "    resultTop3_f.loc[len(resultTop3_f)] = new_row\n",
+    "    \n",
+    "result_f.loc[len(result_f)] = result_f.mean()\n",
+    "result_f.loc[len(result_f)] = result_f.std()\n",
+    "resultTop3_f.loc[len(resultTop3_f)] = resultTop3_f.mean()\n",
+    "resultTop3_f.loc[len(resultTop3_f)] = resultTop3_f.std()\n",
+    "result_f = result_f.round(3)\n",
+    "resultTop3_f = resultTop3_f.round(3)\n",
+    "\n",
+    "# ================= COHEN =================\n",
+    "result_cohend = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n",
+    "resultTop3_cohend = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n",
+    "for i, ano in enumerate(dist.get_years):\n",
+    "    new_row = [ano, dist.stat_cohend_matches[i][1], dist.stat_cohend_new[i][1], dist.stat_cohend_empty[i][1], dist.stat_cohend[i][1]]\n",
+    "    result_cohend.loc[len(result_cohend)] = new_row\n",
+    "    new_row = [ano, dist.stat_cohend_matches_top3[i][1], dist.stat_cohend_new_top3[i][1], dist.stat_cohend_empty_top3[i][1], dist.stat_cohend_top3[i][1]]\n",
+    "    resultTop3_cohend.loc[len(resultTop3_cohend)] = new_row\n",
+    "    \n",
+    "result_cohend.loc[len(result_cohend)] = result_cohend.mean()\n",
+    "result_cohend.loc[len(result_cohend)] = result_cohend.std()\n",
+    "resultTop3_cohend.loc[len(resultTop3_cohend)] = resultTop3_cohend.mean()\n",
+    "resultTop3_cohend.loc[len(resultTop3_cohend)] = resultTop3_cohend.std()\n",
+    "result_cohend = result_cohend.round(3)\n",
+    "resultTop3_cohend = resultTop3_cohend.round(3)\n",
+    "\n",
+    "# ================= T =================\n",
+    "result_t = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n",
+    "resultTop3_t = pd.DataFrame(columns=['ano_base', 'match', 'new', 'empty', 'total'])\n",
+    "for i, ano in enumerate(dist.get_years):\n",
+    "    new_row = [ano, dist.stat_t_matches[i][1], dist.stat_t_new[i][1], dist.stat_t_empty[i][1], dist.stat_t[i][1]]\n",
+    "    result_t.loc[len(result_t)] = new_row\n",
+    "    new_row = [ano, dist.stat_t_matches_top3[i][1], dist.stat_t_new_top3[i][1], dist.stat_t_empty_top3[i][1], dist.stat_t_top3[i][1]]\n",
+    "    resultTop3_t.loc[len(resultTop3_t)] = new_row\n",
+    "    \n",
+    "result_t.loc[len(result_t)] = result_t.mean()\n",
+    "result_t.loc[len(result_t)] = result_t.std()\n",
+    "resultTop3_t.loc[len(resultTop3_t)] = resultTop3_t.mean()\n",
+    "resultTop3_t.loc[len(resultTop3_t)] = resultTop3_t.std()\n",
+    "result_t = result_t.round(3)\n",
+    "resultTop3_t = resultTop3_t.round(3)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 26,
    "id": "4cb4afc8-6149-40a7-8f77-af06183d4d23",
    "metadata": {
     "tags": []
    },
    "outputs": [],
    "source": [
-    "result.to_csv(f'./result.csv', index=False)\n",
-    "resultTop3.to_csv(f'./resultTop3.csv', index=False)"
+    "result_ks.to_csv(f'./result_ks.csv', index=False)\n",
+    "resultTop3_ks.to_csv(f'./resultTop3_ks.csv', index=False)\n",
+    "\n",
+    "result_f.to_csv(f'./result_f.csv', index=False)\n",
+    "resultTop3_f.to_csv(f'./resultTop3_f.csv', index=False)\n",
+    "\n",
+    "result_t.to_csv(f'./result_t.csv', index=False)\n",
+    "resultTop3_t.to_csv(f'./resultTop3_t.csv', index=False)\n",
+    "\n",
+    "result_cohend.to_csv(f'./result_cohend.csv', index=False)\n",
+    "resultTop3_cohend.to_csv(f'./resultTop3_cohend.csv', index=False)"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "f88a6745-c669-49f3-85b7-12c53b35d28a",
+   "id": "d0d2606e-2ddb-4752-a101-823af86fec45",
    "metadata": {},
    "outputs": [],
    "source": []
@@ -364,7 +531,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.12.3"
+   "version": "3.11.4"
   }
  },
  "nbformat": 4,
diff --git a/resultTop3_cohend.csv b/resultTop3_cohend.csv
new file mode 100644
index 0000000000000000000000000000000000000000..07b04721122be5a1b3af82f6adac45fdaf1ed1f1
--- /dev/null
+++ b/resultTop3_cohend.csv
@@ -0,0 +1,17 @@
+ano_base,match,new,empty,total
+2007.0,1.0,1.0,1.0,1.0
+2008.0,1.0,0.0,0.0,0.714
+2009.0,1.0,1.0,1.0,1.0
+2010.0,1.0,1.0,1.0,1.0
+2011.0,1.0,1.0,1.0,1.0
+2012.0,0.833,0.875,1.0,0.857
+2013.0,1.0,0.0,0.0,0.857
+2014.0,0.818,0.333,0.0,0.625
+2015.0,1.0,0.0,0.0,0.867
+2016.0,1.0,0.0,0.0,0.733
+2017.0,1.0,1.0,1.0,1.0
+2018.0,0.5,0.909,0.5,0.8
+2019.0,1.0,1.0,1.0,1.0
+2020.0,0.857,0.0,0.0,0.632
+2013.5,0.929,0.58,0.536,0.863
+4.031,0.137,0.463,0.48,0.138
diff --git a/resultTop3_f.csv b/resultTop3_f.csv
new file mode 100644
index 0000000000000000000000000000000000000000..dabc1945ef4311199c485ed64e310e2f9d376f8e
--- /dev/null
+++ b/resultTop3_f.csv
@@ -0,0 +1,17 @@
+ano_base,match,new,empty,total
+2007.0,1.0,1.0,1.0,1.0
+2008.0,1.0,1.0,1.0,1.0
+2009.0,1.0,1.0,1.0,1.0
+2010.0,1.0,1.0,1.0,1.0
+2011.0,1.0,1.0,1.0,1.0
+2012.0,0.833,1.0,1.0,0.923
+2013.0,1.0,1.0,1.0,1.0
+2014.0,0.917,0.333,0.0,0.75
+2015.0,1.0,1.0,1.0,1.0
+2016.0,1.0,1.0,0.0,0.929
+2017.0,1.0,1.0,1.0,1.0
+2018.0,0.5,0.909,0.5,0.8
+2019.0,1.0,0.25,1.0,0.812
+2020.0,0.875,1.0,1.0,0.875
+2013.5,0.938,0.892,0.821,0.935
+4.031,0.132,0.247,0.359,0.087
diff --git a/resultTop3_ks.csv b/resultTop3_ks.csv
new file mode 100644
index 0000000000000000000000000000000000000000..c8e233c96926fb34e8fa8d0d20578e05aa125997
--- /dev/null
+++ b/resultTop3_ks.csv
@@ -0,0 +1,17 @@
+ano_base,match,new,empty,total
+2007.0,1.0,1.0,1.0,1.0
+2008.0,1.0,1.0,1.0,1.0
+2009.0,1.0,1.0,1.0,1.0
+2010.0,1.0,1.0,1.0,1.0
+2011.0,1.0,1.0,1.0,1.0
+2012.0,1.0,0.875,0.0,0.857
+2013.0,1.0,1.0,1.0,1.0
+2014.0,0.917,0.333,0.0,0.75
+2015.0,1.0,1.0,1.0,1.0
+2016.0,1.0,1.0,0.0,0.929
+2017.0,1.0,1.0,1.0,1.0
+2018.0,0.5,0.909,0.5,0.8
+2019.0,1.0,0.75,1.0,0.938
+2020.0,0.867,0.0,0.0,0.722
+2013.5,0.949,0.848,0.679,0.928
+4.031,0.13,0.293,0.447,0.099
diff --git a/resultTop3_t.csv b/resultTop3_t.csv
new file mode 100644
index 0000000000000000000000000000000000000000..60fe5683e9e06174a6324bfcd5c77cb47005849b
--- /dev/null
+++ b/resultTop3_t.csv
@@ -0,0 +1,17 @@
+ano_base,match,new,empty,total
+2007.0,1.0,1.0,1.0,1.0
+2008.0,1.0,1.0,1.0,1.0
+2009.0,1.0,1.0,1.0,1.0
+2010.0,1.0,1.0,1.0,1.0
+2011.0,1.0,1.0,1.0,1.0
+2012.0,0.833,0.875,1.0,0.857
+2013.0,1.0,0.0,0.0,0.857
+2014.0,0.833,0.5,0.0,0.733
+2015.0,1.0,0.0,0.0,0.867
+2016.0,1.0,0.0,0.0,0.8
+2017.0,1.0,1.0,1.0,1.0
+2018.0,0.5,0.909,0.5,0.8
+2019.0,1.0,0.5,1.0,0.875
+2020.0,0.857,0.0,0.0,0.667
+2013.5,0.93,0.627,0.607,0.89
+4.031,0.136,0.429,0.47,0.109
diff --git a/result_cohend.csv b/result_cohend.csv
new file mode 100644
index 0000000000000000000000000000000000000000..5d0468e6b96abe654a04be91cf562fe55ce19a4f
--- /dev/null
+++ b/result_cohend.csv
@@ -0,0 +1,17 @@
+ano_base,match,new,empty,total
+2007.0,1.0,1.0,1.0,1.0
+2008.0,0.6,0.0,0.0,0.429
+2009.0,0.4,0.0,0.0,0.286
+2010.0,0.4,0.0,0.0,0.286
+2011.0,0.667,1.0,1.0,0.667
+2012.0,1.0,0.875,0.0,0.857
+2013.0,0.583,0.0,0.0,0.5
+2014.0,0.222,0.2,0.0,0.167
+2015.0,0.692,0.0,0.0,0.6
+2016.0,0.727,0.0,0.0,0.471
+2017.0,1.0,1.0,1.0,1.0
+2018.0,0.0,1.0,1.0,0.867
+2019.0,0.833,1.0,1.0,0.875
+2020.0,0.667,0.0,0.0,0.4
+2013.5,0.628,0.434,0.357,0.6
+4.031,0.285,0.476,0.479,0.27
diff --git a/result_f.csv b/result_f.csv
new file mode 100644
index 0000000000000000000000000000000000000000..43a1ab88e5702531bd1324e89873c9a270a3297a
--- /dev/null
+++ b/result_f.csv
@@ -0,0 +1,17 @@
+ano_base,match,new,empty,total
+2007.0,1.0,1.0,1.0,1.0
+2008.0,1.0,1.0,1.0,1.0
+2009.0,1.0,1.0,1.0,1.0
+2010.0,1.0,1.0,1.0,1.0
+2011.0,1.0,1.0,1.0,1.0
+2012.0,0.6,0.875,0.0,0.714
+2013.0,0.615,1.0,1.0,0.615
+2014.0,0.417,0.5,0.0,0.4
+2015.0,0.857,1.0,1.0,0.857
+2016.0,1.0,0.0,0.0,0.867
+2017.0,1.0,1.0,1.0,1.0
+2018.0,0.0,1.0,1.0,0.867
+2019.0,0.833,1.0,1.0,0.875
+2020.0,0.786,0.0,0.0,0.611
+2013.5,0.793,0.812,0.714,0.843
+4.031,0.286,0.356,0.452,0.183
diff --git a/result_ks.csv b/result_ks.csv
new file mode 100644
index 0000000000000000000000000000000000000000..c0984fb625f82137bb16f2fb7c885a1a9ce91ec9
--- /dev/null
+++ b/result_ks.csv
@@ -0,0 +1,17 @@
+ano_base,match,new,empty,total
+2007.0,1.0,1.0,1.0,1.0
+2008.0,0.667,1.0,1.0,0.667
+2009.0,0.667,1.0,1.0,0.667
+2010.0,0.667,1.0,1.0,0.667
+2011.0,0.667,1.0,1.0,0.667
+2012.0,1.0,0.875,0.0,0.857
+2013.0,0.615,1.0,1.0,0.615
+2014.0,0.273,0.333,0.0,0.25
+2015.0,0.857,1.0,1.0,0.857
+2016.0,0.846,0.0,0.0,0.733
+2017.0,1.0,1.0,1.0,1.0
+2018.0,0.0,1.0,1.0,0.867
+2019.0,1.0,1.0,1.0,1.0
+2020.0,1.0,0.0,0.0,0.684
+2013.5,0.733,0.801,0.714,0.752
+4.031,0.288,0.369,0.452,0.194
diff --git a/result_t.csv b/result_t.csv
new file mode 100644
index 0000000000000000000000000000000000000000..334bbce581c577d446df6fa296ec61839d2d814a
--- /dev/null
+++ b/result_t.csv
@@ -0,0 +1,17 @@
+ano_base,match,new,empty,total
+2007.0,1.0,1.0,1.0,1.0
+2008.0,0.667,1.0,1.0,0.667
+2009.0,0.4,0.0,0.0,0.286
+2010.0,0.4,0.0,0.0,0.286
+2011.0,0.667,1.0,1.0,0.667
+2012.0,1.0,0.875,0.0,0.857
+2013.0,0.583,0.0,0.0,0.5
+2014.0,0.3,0.25,0.0,0.235
+2015.0,0.692,0.0,0.0,0.6
+2016.0,0.667,0.0,0.0,0.5
+2017.0,1.0,1.0,1.0,1.0
+2018.0,0.0,1.0,1.0,0.867
+2019.0,0.833,1.0,1.0,0.875
+2020.0,0.667,0.0,0.0,0.4
+2013.5,0.634,0.509,0.429,0.624
+4.031,0.277,0.478,0.495,0.257