Skip to content
Snippets Groups Projects
Commit 337b821f authored by Walmes Marques Zeviani's avatar Walmes Marques Zeviani
Browse files

Document the 4 dataset of the chapter 8.

parent 08c3d001
No related branches found
No related tags found
No related merge requests found
...@@ -946,3 +946,253 @@ NULL ...@@ -946,3 +946,253 @@ NULL
#' ylab="y", xlab="Treatment") #' ylab="y", xlab="Treatment")
#' #'
NULL NULL
#' @name potatoYield2
#'
#' @title Potato variety competition experiments in several locations
#'
#' @description These data are from a set of experiments done by the
#' engineer Oscar A. Garay at Balcare, Argentina. These experiments
#' were done in a randomized complete block design with 4 blocks and
#' at 7 locations on the potato production region at the Buenos
#' Aires province.
#'
#' \itemize{
#'
#' \item \code{variety} a categorical unordered factor with 8 levels,
#' varieties of potato.
#'
#' \item \code{loc} a categorical unordered factor with 7 levels, the
#' locations that represent farms or experimental stations.
#'
#' \item \code{sumYield} is the sum of yield for a variety in each
#' experiment. Then, this sum values across 4 blocks in each
#' experiment. To get the mean yield you should divide by 4. Yield
#' is t/ha.
#'
#' }
#'
#' @details The data in the book was not complete because doesn't report
#' individual plot values but, instead, the sum for a variety in
#' each experiment. To do a joint or global analysis, with all
#' locations, varieties and blocks, its necessary all individual
#' plot values. The book report the Mean Square Error estimates for
#' each experiment as an attribute of the object,
#' \code{attr(potatoYield2, "MSE")} and they comes from the ANOVA
#' table in which the model is \code{~block+variety} for each
#' location. The data set \link[legTools]{potatoYield} correspond
#' the location 3. With these MSE is possible use them in a such a
#' way that a partial ANOVA table can be obtained to test the effect
#' of location, variety and its interaction.
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @usage data(potatoYield2)
#'
#' @format a \code{data.frame} with 56 records and 3 variables. There is
#' an attribute named \code{MSE}, a named vector containing the Mean
#' Squares Errors estimates for each experiment.
#'
#' @source Pimentel Gomes, F. (2009). Curso de Estatística Experimental
#' (15th ed.). Piracicaba, São Paulo: FEALQ. (page 147)
#'
#' @examples
#'
#' require(lattice)
#'
#' data(potatoYield2)
#' str(potatoYield2)
#'
#' lot(sumYield/4~variety, data=potatoYield2,
#' groups=loc, type="o",
#' ylab=expression(Yield~(t~ha^{-1})),
#' xlab="Variety")
#'
NULL
#' @name castorbeansYield
#'
#' @title Castor beans variety competition experiments in some locations
#'
#' @description These data are from a set of experiments evaluating
#' varieties of castor beans in terms of yield (kg/ha) for some
#' locations (counties).
#'
#' \itemize{
#'
#' \item \code{variety} a categorical unordered factor with 8 levels,
#' varieties and lines of castor beans.
#'
#' \item \code{loc} a categorical unordered factor with 5 levels, the
#' locations (counties) experimental stations.
#'
#' \item \code{meanYield} is the mean of yield for a variety in each
#' location. So, this the mean across all plots of the same variety
#' in each experiment.
#'
#' }
#'
#' @details The data in the book was not complete because doesn't report
#' individual plot values but the mean for a variety in each single
#' experiment. Neither mention which experimental design was used in
#' each station. The book report the Mean Square Error estimates for
#' each experiment. These values as provided as an attribute of the
#' object, \code{attr(peanut, "MSE")} and they comes from the ANOVA
#' table corresponding to an appropriate model for each
#' location. With these MSE is possible use them in a such a way
#' that a partial ANOVA table can be obtained to test the effect of
#' location, variety and its interaction.
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @usage data(castorbeansYield)
#'
#' @format a \code{data.frame} with 45 records and 3 variables.
#'
#' @source Pimentel Gomes, F. (2009). Curso de Estatística Experimental
#' (15th ed.). Piracicaba, São Paulo: FEALQ. (page 149)
#'
#' Souza, O. Ferreira de.; Canecchio, F. V. (1952). Melhoramento de
#' mamoeira, VII. Bragantia 12:301-307.
#'
#' @examples
#'
#' require(lattice)
#'
#' data(castorbeansYield)
#' str(castorbeansYield)
#'
#' xyplot(meanYield~variety, data=castorbeansYield,
#' groups=loc, type="o",
#' ylab=expression(Yield~(t~ha^{-1})),
#' xlab="Variety")
#'
NULL
#' @name peanutYield
#'
#' @title Peanut variety competition experiments in some locations and
#' years
#'
#' @description These data are from a set of experiments evaluating
#' varieties of peanut in terms of yield (kg/ha) for some locations
#' and years.
#'
#' \itemize{
#'
#' \item \code{variety} a categorical unordered factor with 4 levels,
#' peanut varieties.
#'
#' \item \code{loc} a categorical unordered factor with 3 levels, the
#' locations (counties) of the experimental stations.
#'
#' \item \code{year} a categorical factor, the crop year.
#'
#' \item \code{meanYield} is the adjusted mean of yield for a variety in
#' each location and year.
#'
#' }
#'
#' @details The data in the book was not complete because doesn't report
#' individual plot values but the adjusted mean for a variety in
#' each single experiment. Neither mention which experimental design
#' was used in each station. The book report the Mean Square Error
#' estimates for each experiment. These values as provided as an
#' attribute of the object, \code{attr(peanut, "MSE")} and they
#' comes from the ANOVA table corresponding to an appropriate model
#' for each location. With these MSE is possible use them in a such
#' a way that a partial ANOVA table can be obtained to test the
#' effect of location, variety and its interaction.
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @usage data(peanutYield)
#'
#' @format a \code{data.frame} with 36 records and 4 variables.
#'
#' @source Pimentel Gomes, F. (2009). Curso de Estatística Experimental
#' (15th ed.). Piracicaba, São Paulo: FEALQ. (page 150)
#'
#' Souza, O. Ferreira de.; Abramides, Eduardo. (1952). Ensaios de
#' variedades de amendoim. Bragantia 12:349-358.
#'
#' @examples
#'
#' require(lattice)
#'
#' data(peanutYield)
#' str(peanutYield)
#'
#' xyplot(meanYield~variety|year, data=peanutYield,
#' groups=loc, type="o",
#' ylab=expression(Yield~(t~ha^{-1})),
#' xlab="Variety")
#'
NULL
#' @name peanutYield2
#'
#' @title Peanut variety competition experiments in some locations
#'
#' @description These data are from a set of experiments evaluating
#' varieties of peanut in terms of yield (kg/ha) for some locations
#' in different years.
#'
#' \itemize{
#'
#' \item \code{variety} a categorical unordered factor with 4 levels,
#' peanut varieties.
#'
#' \item \code{loc} a categorical unordered factor with 4 levels, the
#' location:year of the experiment.
#'
#' \item \code{meanYield} is mean of yield for a variety in each
#' location:year.
#'
#' }
#'
#' @details The data in the book was not complete because doesn't report
#' individual plot values but the adjusted mean for a variety in
#' each single experiment. Neither mention which experimental design
#' was used in each station. The book report the Mean Square Error
#' estimates for each experiment. These values as provided as an
#' attribute of the object, \code{attr(peanut, "MSE")} and they
#' comes from the ANOVA table corresponding to an appropriate model
#' for each location. With these MSE is possible use them in a such
#' a way that a partial ANOVA table can be obtained to test the
#' effect of location, variety and its interaction.
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @usage data(peanutYield2)
#'
#' @format a \code{data.frame} with 16 records and 3 variables.
#'
#' @source Pimentel Gomes, F. (2009). Curso de Estatística Experimental
#' (15th ed.). Piracicaba, São Paulo: FEALQ. (page 150)
#'
#' Souza, O. Ferreira de.; Abramides, Eduardo. (1952). Ensaios de
#' variedades de amendoim. Bragantia 12:349-358.
#'
#' @examples
#'
#' require(lattice)
#'
#' data(peanutYield2)
#' str(peanutYield2)
#'
#' xyplot(meanYield~variety, data=peanutYield2,
#' groups=loc, type="o",
#' ylab=expression(Yield~(t~ha^{-1})),
#' xlab="Variety")
#'
NULL
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment