Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
legTools
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Harbor Registry
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
leg
legTools
Commits
337b821f
Commit
337b821f
authored
9 years ago
by
Walmes Marques Zeviani
Browse files
Options
Downloads
Patches
Plain Diff
Document the 4 dataset of the chapter 8.
parent
08c3d001
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
R/legTools.R
+250
-0
250 additions, 0 deletions
R/legTools.R
with
250 additions
and
0 deletions
R/legTools.R
+
250
−
0
View file @
337b821f
...
@@ -946,3 +946,253 @@ NULL
...
@@ -946,3 +946,253 @@ NULL
#' ylab="y", xlab="Treatment")
#' ylab="y", xlab="Treatment")
#'
#'
NULL
NULL
#' @name potatoYield2
#'
#' @title Potato variety competition experiments in several locations
#'
#' @description These data are from a set of experiments done by the
#' engineer Oscar A. Garay at Balcare, Argentina. These experiments
#' were done in a randomized complete block design with 4 blocks and
#' at 7 locations on the potato production region at the Buenos
#' Aires province.
#'
#' \itemize{
#'
#' \item \code{variety} a categorical unordered factor with 8 levels,
#' varieties of potato.
#'
#' \item \code{loc} a categorical unordered factor with 7 levels, the
#' locations that represent farms or experimental stations.
#'
#' \item \code{sumYield} is the sum of yield for a variety in each
#' experiment. Then, this sum values across 4 blocks in each
#' experiment. To get the mean yield you should divide by 4. Yield
#' is t/ha.
#'
#' }
#'
#' @details The data in the book was not complete because doesn't report
#' individual plot values but, instead, the sum for a variety in
#' each experiment. To do a joint or global analysis, with all
#' locations, varieties and blocks, its necessary all individual
#' plot values. The book report the Mean Square Error estimates for
#' each experiment as an attribute of the object,
#' \code{attr(potatoYield2, "MSE")} and they comes from the ANOVA
#' table in which the model is \code{~block+variety} for each
#' location. The data set \link[legTools]{potatoYield} correspond
#' the location 3. With these MSE is possible use them in a such a
#' way that a partial ANOVA table can be obtained to test the effect
#' of location, variety and its interaction.
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @usage data(potatoYield2)
#'
#' @format a \code{data.frame} with 56 records and 3 variables. There is
#' an attribute named \code{MSE}, a named vector containing the Mean
#' Squares Errors estimates for each experiment.
#'
#' @source Pimentel Gomes, F. (2009). Curso de Estatística Experimental
#' (15th ed.). Piracicaba, São Paulo: FEALQ. (page 147)
#'
#' @examples
#'
#' require(lattice)
#'
#' data(potatoYield2)
#' str(potatoYield2)
#'
#' lot(sumYield/4~variety, data=potatoYield2,
#' groups=loc, type="o",
#' ylab=expression(Yield~(t~ha^{-1})),
#' xlab="Variety")
#'
NULL
#' @name castorbeansYield
#'
#' @title Castor beans variety competition experiments in some locations
#'
#' @description These data are from a set of experiments evaluating
#' varieties of castor beans in terms of yield (kg/ha) for some
#' locations (counties).
#'
#' \itemize{
#'
#' \item \code{variety} a categorical unordered factor with 8 levels,
#' varieties and lines of castor beans.
#'
#' \item \code{loc} a categorical unordered factor with 5 levels, the
#' locations (counties) experimental stations.
#'
#' \item \code{meanYield} is the mean of yield for a variety in each
#' location. So, this the mean across all plots of the same variety
#' in each experiment.
#'
#' }
#'
#' @details The data in the book was not complete because doesn't report
#' individual plot values but the mean for a variety in each single
#' experiment. Neither mention which experimental design was used in
#' each station. The book report the Mean Square Error estimates for
#' each experiment. These values as provided as an attribute of the
#' object, \code{attr(peanut, "MSE")} and they comes from the ANOVA
#' table corresponding to an appropriate model for each
#' location. With these MSE is possible use them in a such a way
#' that a partial ANOVA table can be obtained to test the effect of
#' location, variety and its interaction.
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @usage data(castorbeansYield)
#'
#' @format a \code{data.frame} with 45 records and 3 variables.
#'
#' @source Pimentel Gomes, F. (2009). Curso de Estatística Experimental
#' (15th ed.). Piracicaba, São Paulo: FEALQ. (page 149)
#'
#' Souza, O. Ferreira de.; Canecchio, F. V. (1952). Melhoramento de
#' mamoeira, VII. Bragantia 12:301-307.
#'
#' @examples
#'
#' require(lattice)
#'
#' data(castorbeansYield)
#' str(castorbeansYield)
#'
#' xyplot(meanYield~variety, data=castorbeansYield,
#' groups=loc, type="o",
#' ylab=expression(Yield~(t~ha^{-1})),
#' xlab="Variety")
#'
NULL
#' @name peanutYield
#'
#' @title Peanut variety competition experiments in some locations and
#' years
#'
#' @description These data are from a set of experiments evaluating
#' varieties of peanut in terms of yield (kg/ha) for some locations
#' and years.
#'
#' \itemize{
#'
#' \item \code{variety} a categorical unordered factor with 4 levels,
#' peanut varieties.
#'
#' \item \code{loc} a categorical unordered factor with 3 levels, the
#' locations (counties) of the experimental stations.
#'
#' \item \code{year} a categorical factor, the crop year.
#'
#' \item \code{meanYield} is the adjusted mean of yield for a variety in
#' each location and year.
#'
#' }
#'
#' @details The data in the book was not complete because doesn't report
#' individual plot values but the adjusted mean for a variety in
#' each single experiment. Neither mention which experimental design
#' was used in each station. The book report the Mean Square Error
#' estimates for each experiment. These values as provided as an
#' attribute of the object, \code{attr(peanut, "MSE")} and they
#' comes from the ANOVA table corresponding to an appropriate model
#' for each location. With these MSE is possible use them in a such
#' a way that a partial ANOVA table can be obtained to test the
#' effect of location, variety and its interaction.
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @usage data(peanutYield)
#'
#' @format a \code{data.frame} with 36 records and 4 variables.
#'
#' @source Pimentel Gomes, F. (2009). Curso de Estatística Experimental
#' (15th ed.). Piracicaba, São Paulo: FEALQ. (page 150)
#'
#' Souza, O. Ferreira de.; Abramides, Eduardo. (1952). Ensaios de
#' variedades de amendoim. Bragantia 12:349-358.
#'
#' @examples
#'
#' require(lattice)
#'
#' data(peanutYield)
#' str(peanutYield)
#'
#' xyplot(meanYield~variety|year, data=peanutYield,
#' groups=loc, type="o",
#' ylab=expression(Yield~(t~ha^{-1})),
#' xlab="Variety")
#'
NULL
#' @name peanutYield2
#'
#' @title Peanut variety competition experiments in some locations
#'
#' @description These data are from a set of experiments evaluating
#' varieties of peanut in terms of yield (kg/ha) for some locations
#' in different years.
#'
#' \itemize{
#'
#' \item \code{variety} a categorical unordered factor with 4 levels,
#' peanut varieties.
#'
#' \item \code{loc} a categorical unordered factor with 4 levels, the
#' location:year of the experiment.
#'
#' \item \code{meanYield} is mean of yield for a variety in each
#' location:year.
#'
#' }
#'
#' @details The data in the book was not complete because doesn't report
#' individual plot values but the adjusted mean for a variety in
#' each single experiment. Neither mention which experimental design
#' was used in each station. The book report the Mean Square Error
#' estimates for each experiment. These values as provided as an
#' attribute of the object, \code{attr(peanut, "MSE")} and they
#' comes from the ANOVA table corresponding to an appropriate model
#' for each location. With these MSE is possible use them in a such
#' a way that a partial ANOVA table can be obtained to test the
#' effect of location, variety and its interaction.
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @usage data(peanutYield2)
#'
#' @format a \code{data.frame} with 16 records and 3 variables.
#'
#' @source Pimentel Gomes, F. (2009). Curso de Estatística Experimental
#' (15th ed.). Piracicaba, São Paulo: FEALQ. (page 150)
#'
#' Souza, O. Ferreira de.; Abramides, Eduardo. (1952). Ensaios de
#' variedades de amendoim. Bragantia 12:349-358.
#'
#' @examples
#'
#' require(lattice)
#'
#' data(peanutYield2)
#' str(peanutYield2)
#'
#' xyplot(meanYield~variety, data=peanutYield2,
#' groups=loc, type="o",
#' ylab=expression(Yield~(t~ha^{-1})),
#' xlab="Variety")
#'
NULL
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment