Skip to content
Snippets Groups Projects
Commit 3e1e871f authored by Walmes Marques Zeviani's avatar Walmes Marques Zeviani
Browse files

Prepares the first three datasets of.

parent d3b3c991
No related branches found
No related tags found
No related merge requests found
##----------------------------------------------------------------------
## Data generation. Pimentel page 269.
cowmilkYield <- expand.grid(casein=c(0, 10, 15, 20),
block=gl(3, 1))
cowmilkYield$yield <- c(431.4, 687.5, 679.2, 569.7, 485.2, 560.4, 563.3,
502.5, NA, 443, 430.5, 462.4)
save(cowmilkYield, file="../data/cowmilkYield.RData")
##----------------------------------------------------------------------
m0 <- lm(yield~block+factor(casein), data=cowmilkYield)
anova(m0)
## The imputed value is the estimated value by the missing model.
predict(m0, newdata=cowmilkYield)
cowmilkYield$yield[9] <- 309.8
m0 <- lm(yield~block+factor(casein), data=cowmilkYield)
anova(m0)
aggregate(yield~casein, data=cowmilkYield, FUN=mean)
addmargins(with(cowmilkYield,
tapply(yield, list(casein, block), FUN=sum)))
##----------------------------------------------------------------------
## Examples.
library(lattice)
data(cowmilkYield)
str(cowmilkYield)
xyplot(yield~casein, groups=block,
data=cowmilkYield, type="o",
ylab=expression(Milk~yield~(kg)),
xlab=expression(Casein~(g~day^{-1})))
rm(list=ls())
load("../data/cowmilkYield.RData")
ls()
str(cowmilkYield)
##----------------------------------------------------------------------
## Data generation. Pimentel page 272.
cowmilkYield2 <- expand.grid(period=gl(3, 1),
cow=gl(3, 1),
group=gl(4, 1))
cowmilkYield2$feed <- factor(c(1, 3, 2, 2, 1, 3, 3, 2, 1, 1, 2, 3, 2, 3,
1, 3, 1, 2, 1, 3, 2, 2, 1, 3, 3, 2, 1, 1,
2, 3, 2, 3, 1, 3, 1, 2),
labels=c("A", "B", "C"))
cowmilkYield2$yield <- c(527L, 883L, 785L, 696L, 635L, 901L, 989L, 899L,
657L, 608L, 715L, 844L, 885L, 1087L, 711L,
940L, 766L, 832L, 472L, 819L, 778L, 734L, 644L,
953L, 897L, 766L, 706L, 586L, 723L, 892L, 635L,
799L, 595L, 805L, 542L, 681L)
names(cowmilkYield2)
cowmilkYield2 <- cowmilkYield2[, c(3,1,2,4,5)]
cowmilkYield2 <- cowmilkYield2[
with(cowmilkYield2, order(group, period, cow)), ]
str(cowmilkYield2)
save(cowmilkYield2, file="../data/cowmilkYield2.RData")
##----------------------------------------------------------------------
m0 <- aov(terms(yield~group/(cow+period)+feed+group:feed,
keep.order=TRUE),
data=cowmilkYield2)
anova(m0)
m0 <- aov(terms(yield~group/(cow+period)+feed,
keep.order=TRUE),
data=cowmilkYield2)
anova(m0)
aggregate(yield~feed, data=cowmilkYield2, FUN=mean)
addmargins(with(cowmilkYield2,
tapply(yield, list(feed, group), FUN=sum)))
##----------------------------------------------------------------------
## Examples.
library(lattice)
data(cowmilkYield2)
str(cowmilkYield2)
xyplot(yield~feed, groups=group,
data=cowmilkYield2, type=c("p", "a"),
ylab=expression(Milk~yield~(kg)),
xlab="Feed")
rm(list=ls())
load("../data/cowmilkYield2.RData")
ls()
str(cowmilkYield2)
##----------------------------------------------------------------------
## Data generation. Pimentel page 267.
## wgChickens <- read.table("clipboard", header=FALSE, sep="\t")
## wgChickens <- wgChickens[with(wgChickens, order(V1, V2)), ]
## names(wgChickens) <- c("gender", "conc", "n", "twg")
## dput(wgChickens)
wgChickens <- structure(list(
gender = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L),
.Label = c("F", "M"),
class = "factor"),
conc = c(0L, 0L, 10L, 10L, 20L, 20L, 30L, 30L, 0L, 0L, 10L, 10L,
20L, 20L, 30L, 30L),
n = c(12L, 12L, 13L, 12L, 13L, 12L, 13L, 12L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L),
twg = c(399L, 388L, 503L, 508L, 475L, 437L, 398L, 448L, 548L, 512L,
689L, 646L, 543L, 611L, 514L, 537L)),
.Names = c("gender", "conc", "n", "twg"),
row.names = c(9L, 13L, 10L, 14L, 11L, 15L, 12L, 16L, 1L, 5L,
2L, 6L, 3L, 7L, 4L, 8L),
class = "data.frame")
save(wgChickens, file="../data/wgChickens.RData")
##----------------------------------------------------------------------
m0 <- lm(twg~factor(conc)*gender, data=wgChickens)
anova(m0)
## The number of animals is not considered in the book analysis.
m0 <- lm((twg/n)~factor(conc)*gender, data=wgChickens, weights=n)
anova(m0)
##----------------------------------------------------------------------
## Examples.
library(lattice)
data(wgChickens)
str(wgChickens)
xyplot(twg/n~conc, groups=gender,
data=wgChickens, type=c("p", "a"),
auto.key=list(columns=2, corner=c(0.95, 0.95),
title="Gender"),
ylab="Mean weight gain (kg)",
xlab="Sorghum concentration in the feed (%)")
rm(list=ls())
load("../data/wgChickens.RData")
ls()
str(wgChickens)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment