Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
legTools
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Harbor Registry
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
leg
legTools
Commits
62b18888
Commit
62b18888
authored
9 years ago
by
Walmes Zeviani
Browse files
Options
Downloads
Patches
Plain Diff
Add loessGui, a function to explore loess regression.
parent
f35bd986
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
R/loessGui.R
+218
-0
218 additions, 0 deletions
R/loessGui.R
with
218 additions
and
0 deletions
R/loessGui.R
0 → 100644
+
218
−
0
View file @
62b18888
#' @title Loess regression GUI
#'
#' @name loessGui
#'
#' @description This function opens an interface to control the settings
#' of a loess regression:
#' \itemize{
#' \item degree choose the local polynomial degree with a radio
#' selector;
#' \item span set the span value that controls the degree of
#' smoothing;
#' \item center move the x value to be predicted;
#' }
#'
#' The elements of the interface change a plot that shows the observed
#' values and the corresponding fitted curve superimposed with
#' confidence bands (for the fitted values). It assumes that
#' \code{gWidgets} and \code{gWidgetstcltk} packages are available.
#'
#' @param x,y independent and dependent (numeric) regression variables.
#'
#' @param data an optional \code{data.frame}.
#'
#' @param er stands for extend range. It is used to extend the plotting
#' range by a fraction on both sides and directions. Default is
#' 0.05. See \link[grDevices]{extendrange}.
#'
#' @return None is returned by the function, only a GUI is opened.
#'
#' @import gWidgets gWidgetstcltk
#'
#' @author Walmes Zeviani, \email{walmes@@ufpr.br}
#'
#' @export
#' @examples
#' \donttest{
#'
#' library(gWidgets)
#' library(gWidgetstcltk)
#'
#' loessGui(x=area, y=peri, data=rock, er=0.3)
#' loessGui(x=speed, y=dist, data=cars, er=0.3)
#' loessGui(x=eruptions, y=waiting, data=faithful, er=0.3)
#'
#' }
loessGui
<-
function
(
x
,
y
,
data
,
er
=
0.05
){
##
##-------------------------------------------
## Loading the required packages.
##
if
(
!
requireNamespace
(
"gWidgets"
,
quietly
=
TRUE
)){
stop
(
"`gWidgets` needed for this function to work. Please install it."
,
call.
=
FALSE
)
}
if
(
!
requireNamespace
(
"gWidgetstcltk"
,
quietly
=
TRUE
)){
stop
(
"`gWidgetstcltk` needed for this function to work. Please install it."
,
call.
=
FALSE
)
}
options
(
guiToolkit
=
"tcltk"
)
##
##-------------------------------------------
## Auxiliary variables not controled by the GUI.
##
xlab
<-
deparse
(
substitute
(
x
))
ylab
<-
deparse
(
substitute
(
y
))
if
(
!
missing
(
data
)){
da
<-
eval
(
data
,
envir
=
parent.frame
())
x
<-
da
[,
deparse
(
substitute
(
x
))]
y
<-
da
[,
deparse
(
substitute
(
y
))]
}
xl
<-
range
(
x
)
nx
<-
length
(
x
)
erx
<-
extendrange
(
xl
,
f
=
er
)
ery
<-
extendrange
(
y
,
f
=
er
)
newdata
<-
data.frame
(
x
=
seq
(
erx
[
1
],
erx
[
2
],
length.out
=
200
))
##
##-------------------------------------------
## Functions to annotate in the plot upper margin.
##
annotations
<-
function
(
m0
,
y
){
mtext
(
side
=
3
,
adj
=
0
,
line
=
1.5
,
text
=
sprintf
(
"H trace: %0.2f"
,
m0
$
trace.hat
))
mtext
(
side
=
3
,
adj
=
0
,
line
=
0.5
,
text
=
sprintf
(
"Equivalent num. param.: %0.2f"
,
m0
$
enp
))
r2
<-
100
*
cor
(
fitted
(
m0
),
y
)
^
2
mtext
(
side
=
3
,
adj
=
1
,
line
=
1.5
,
text
=
sprintf
(
"R^2: %0.2f"
,
r2
))
}
##
##-------------------------------------------
## Functions to adjust 0 order, 1 and 2 local polynomial regression
## model.
##
f0
<-
function
(
w
,
xl
){
y.pred
<-
sum
(
w
*
y
)
/
sum
(
w
)
segments
(
xl
[
1
],
y.pred
,
xl
[
2
],
y.pred
,
col
=
2
)
}
f1
<-
function
(
w
,
xl
){
m
<-
lm
(
y
~
poly
(
x
,
degree
=
1
),
weights
=
w
)
y.pred
<-
predict
(
m
,
newdata
=
list
(
x
=
xl
))
segments
(
xl
[
1
],
y.pred
[
1
],
xl
[
2
],
y.pred
[
2
],
col
=
2
)
}
f2
<-
function
(
w
,
xl
){
m
<-
lm
(
y
~
poly
(
x
,
degree
=
2
),
weights
=
w
)
x.pred
<-
seq
(
xl
[
1
],
xl
[
2
],
length.out
=
20
)
y.pred
<-
predict
(
m
,
newdata
=
list
(
x
=
x.pred
))
lines
(
x.pred
,
y.pred
,
col
=
2
)
}
##
##-------------------------------------------
## Reactive function.
##
draw.loess
<-
function
(
...
){
##
##-------------------------------------------
## Fit loess regression.
##
m0
<-
loess
(
formula
=
y
~
x
,
span
=
svalue
(
SPAN
),
degree
=
as.integer
(
svalue
(
DEGREE
)),
family
=
"gaussian"
)
##
##-------------------------------------------
## Predicted values with confidence bands.
##
pred
<-
predict
(
m0
,
newdata
=
newdata
,
se
=
TRUE
)
pred
$
me
<-
pred
$
se.fit
*
1.96
pred
$
ci
<-
sweep
(
x
=
cbind
(
fit
=
0
,
lwr
=-
pred
$
me
,
upr
=
pred
$
me
),
MARGIN
=
1
,
STATS
=
pred
$
fit
,
FUN
=
"+"
)
##
##-------------------------------------------
## Weights to be used in local polynomial.
##
x0
<-
svalue
(
XCENTER
)
sp
<-
svalue
(
SPAN
)
a
<-
abs
(
x
-
x0
)
if
(
sp
<
1
){
q
<-
as.integer
(
sp
*
nx
)
d
<-
sort
(
a
)[
q
]
}
else
{
q
<-
nx
d
<-
max
(
abs
(
a
))
*
sqrt
(
sp
)
}
s
<-
a
<=
d
w
<-
rep
(
0
,
nx
)
w
[
s
]
<-
(
1
-
(
a
[
s
]
/
d
)
^
3
)
^
3
##
##-------------------------------------------
## Scatter plot, point size proportional to weight.
##
i
<-
as.integer
(
s
)
plot
(
x
,
y
,
pch
=
2
*
(
!
s
)
+1
,
cex
=
i
*
3
*
w
+1
,
xlim
=
erx
,
ylim
=
ery
)
##
##-------------------------------------------
## Local polynomial.
##
xl
[
1
]
<-
ifelse
(
x0
-
d
>
xl
[
1
],
x0
-
d
,
xl
[
1
])
xl
[
2
]
<-
ifelse
(
x0
+
d
<
xl
[
2
],
x0
+
d
,
xl
[
2
])
matlines
(
x
=
newdata
$
x
,
y
=
pred
$
ci
,
lty
=
c
(
1
,
2
,
2
),
col
=
1
)
abline
(
v
=
c
(
x0
,
xl
),
lty
=
c
(
2
,
3
,
3
))
annotations
(
m0
,
y
)
mtext
(
side
=
3
,
adj
=
1
,
line
=
0.5
,
text
=
sprintf
(
"Number of obs. used/total: %i/%i"
,
sum
(
s
),
nx
))
## NOTE: usar action aqui!
## xl <- c(min(c(xl[1], x0)), max(c(x0, xl[2])))
do.call
(
what
=
paste0
(
"f"
,
svalue
(
DEGREE
)),
args
=
list
(
w
=
w
,
xl
=
xl
))
}
##
##-------------------------------------------
## Building the GUI.
##
WDW
<-
gwindow
(
title
=
"LOESS regression"
,
visible
=
FALSE
)
GG
<-
ggroup
(
container
=
WDW
,
expand
=
TRUE
,
horizontal
=
FALSE
)
GF_DG
<-
gframe
(
text
=
"Local polynomial degree:"
,
container
=
GG
)
DEGREE
<-
gradio
(
items
=
0
:
2
,
selected
=
2L
,
horizontal
=
TRUE
,
handler
=
draw.loess
,
container
=
GF_DG
)
GF_XC
<-
gframe
(
text
=
"Predicted point:"
,
expand
=
TRUE
,
container
=
GG
)
XCENTER
<-
gslider
(
from
=
erx
[
1
],
to
=
erx
[
2
],
value
=
mean
(
erx
),
length.out
=
51
,
handler
=
draw.loess
,
expand
=
TRUE
,
container
=
GF_XC
)
XCLABEL
<-
glabel
(
text
=
sprintf
(
"%0.2f"
,
svalue
(
XCENTER
)),
container
=
GF_XC
)
addHandlerChanged
(
XCENTER
,
action
=
XCLABEL
,
handler
=
function
(
h
,
...
){
svalue
(
h
$
action
)
<-
sprintf
(
"%0.2f"
,
svalue
(
h
$
obj
))
})
GF_SP
<-
gframe
(
text
=
"Span:"
,
expand
=
TRUE
,
container
=
GG
)
SPAN
<-
gslider
(
from
=
0
,
to
=
1.5
,
value
=
0.75
,
by
=
0.05
,
handler
=
draw.loess
,
expand
=
TRUE
,
container
=
GF_SP
)
SPLABEL
<-
glabel
(
text
=
sprintf
(
"%0.2f"
,
svalue
(
SPAN
)),
container
=
GF_SP
)
addHandlerChanged
(
SPAN
,
action
=
SPLABEL
,
handler
=
function
(
h
,
...
){
svalue
(
h
$
action
)
<-
sprintf
(
"%0.2f"
,
svalue
(
h
$
obj
))
})
##-------------------------------------------
## Initializing.
svalue
(
SPAN
)
<-
0.75
svalue
(
DEGREE
)
<-
1L
svalue
(
XCENTER
)
<-
mean
(
erx
)
do.call
(
what
=
draw.loess
,
args
=
list
(
NA
))
visible
(
WDW
)
<-
TRUE
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment