Skip to content
Snippets Groups Projects
Commit 9442211e authored by Walmes Marques Zeviani's avatar Walmes Marques Zeviani
Browse files

Document data sets of chapter 10 in legTools.R.

parent d41339d3
Branches
No related tags found
No related merge requests found
......@@ -1196,3 +1196,246 @@ NULL
#'
NULL
#' @name bib3
#'
#' @title A balanced incomplete block design of type III
#'
#' @description This data is under a balanced complete block design
#' named type III. There are 5 treatments and 10 blocks of size 3
#' plots. Each treatment is repeated 6 times and they occour
#' together (in pairs) 3 times.
#'
#' \itemize{
#'
#' \item \code{block} a categorical unordered factor with 10 levels.
#'
#' \item \code{treat} a categorical unordered factor with 5 levels, the
#' treatments studied.
#'
#' \item \code{y} some response variable. The book doesn't gave details.
#'
#' }
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @usage data(bib3)
#'
#' @format a \code{data.frame} with 30 records and 3 variables.
#'
#' @source Pimentel Gomes, F. (2009). Curso de Estatística Experimental
#' (15th ed.). Piracicaba, São Paulo: FEALQ. (page 185)
#'
#' @examples
#'
#' require(lattice)
#'
#' data(bib3)
#' str(bib3)
#'
#' xyplot(y~treat|block, data=bib3,
#' ylab="Y",
#' xlab="Treatment")
#'
#' g <- nlevels(bib3$treat)
#' a <- seq(0, by=(2*pi)/(g), length.out=g)
#' y <- sin(a)
#' x <- cos(a)
#' plot(y~x, asp=1, xlim=c(-1,1), ylim=c(-1,1))
#'
#' for (b in levels(bib3$block)){
#' cbn <- combn(x=as.integer(bib3$treat[bib3$block==b]),
#' m=2)
#' segments(
#' x0=x[cbn[1,]], y0=y[cbn[1,]],
#' x1=x[cbn[2,]], y1=y[cbn[2,]], col=b)
#' }
#'
NULL
#' @name bib1
#'
#' @title A balanced incomplete block design of type I
#'
#' @description This data is under a balanced complete block design
#' named type I. There are 7 replications that are groups of 4
#' blocks of size 2 in a such a way that each treatment occurs once
#' in each replication and 7 times at all. There are 8 treatments,
#' 28 blocks at all. Treatment occur in pairs once. These treatments
#' are in fact cells of a \eqn{2^3} factorial design from combining
#' nitrogen (P), phosphorus (P) and potassium (K) fertilizers at two
#' levels each.
#'
#' \itemize{
#'
#' \item \code{rept} a categorical unordered factor with 7 levels. Each
#' \code{rept} has 4 bloks of size 2.
#'
#' \item \code{N} content of nitrogen in the fertilizer (low/high).
#'
#' \item \code{P} content of phosphorus in the fertilizer (low/high).
#'
#' \item \code{K} content of potassium in the fertilizer (low/high).
#'
#' \item \code{block} a categorical unordered factor with 4 levels in
#' each \code{rept}, so 28 at all.
#'
#' \item \code{treat} a categorical unordered factor with 8 levels, the
#' treatments studied.
#'
#' \item \code{y} some response variable. The book doesn't gave details.
#'
#' }
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @usage data(bib1)
#'
#' @format a \code{data.frame} with 56 records and 4 variables.
#'
#' @source Pimentel Gomes, F. (2009). Curso de Estatística Experimental
#' (15th ed.). Piracicaba, São Paulo: FEALQ. (page 190)
#'
#' @examples
#'
#' require(lattice)
#'
#' data(bib1)
#' str(bib1)
#'
#' xyplot(y~treat|rept, groups=block, data=bib1, type="b",
#' ylab="Y", xlab="Treatment")
#'
#' xyplot(y~treat, data=bib1, jitter.x=TRUE,
#' ylab="Y", xlab="Treatment")
#'
#' xyplot(y~N|P+K, groups=rept, data=bib1, type="b",
#' ylab="Y", xlab="Nitrogen")
#'
NULL
#' @name bib2
#'
#' @title A balanced incomplete block design of type II
#'
#' @description This data is under a balanced complete block design
#' named type II. There are 3 replications that are groups of 7
#' blocks of size 2 in a such a way that each treatment occurs twice
#' in each replication and 6 times at all. There are 7 treatments
#' and 21 blocks at all. Treatments occur in pairs once.
#'
#' \itemize{
#'
#' \item \code{rept} a categorical unordered factor with 3 levels. Each
#' \code{rept} has 7 bloks of size 2.
#'
#' \item \code{block} a categorical unordered factor with 8 levels in
#' each \code{rept}, so 21 at all.
#'
#' \item \code{treat} a categorical unordered factor with 7 levels, the
#' treatments studied.
#'
#' \item \code{y} some response variable. The book doesn't gave details.
#'
#' }
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @usage data(bib2)
#'
#' @format a \code{data.frame} with 42 records and 4 variables.
#'
#' @source Pimentel Gomes, F. (2009). Curso de Estatística Experimental
#' (15th ed.). Piracicaba, São Paulo: FEALQ. (page 192)
#'
#' @examples
#'
#' require(lattice)
#'
#' data(bib2)
#' str(bib2)
#'
#' xyplot(y~treat|rept, groups=block, data=bib2, type="b",
#' ylab="Y", xlab="Treatment")
#'
#' xyplot(y~treat, data=bib2, jitter.x=TRUE,
#' ylab="Y", xlab="Treatment")
#'
NULL
#' @name bib3sin
#'
#' @title A balanced incomplete block design of type III
#'
#' @description This data is under a balanced complete block design
#' named type III. There are 13 treatments and 13 blocks of size 4
#' plots. Each treatment is repeated 6 times and they occour
#' together (in pairs) only once.
#'
#' \itemize{
#'
#' \item \code{block} a categorical unordered factor with 13 levels.
#'
#' \item \code{treat} a categorical unordered factor with 13 levels, the
#' treatments studied.
#'
#' \item \code{z} correpond a transformation of the original recorded
#' variable, the observed percentual of healthy plants, \eqn{p}. So,
#' \eqn{z = \arcsin{\sqrt{p/100}}}, in radians is applied to
#' stabilize the variance to comply with the assumption of constant
#' variance.
#'
#' }
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @usage data(bib3asin)
#'
#' @format a \code{data.frame} with 52 records and 3 variables.
#'
#' @source Pimentel Gomes, F. (2009). Curso de Estatística Experimental
#' (15th ed.). Piracicaba, São Paulo: FEALQ. (page 198)
#'
#' Fraga Jr., C. G.; Costa, A. S. (1950). Análise de um experimento para
#' combate de vira-cabeça do tomateiro. Bragantia, 10:305-316.
#'
#' @examples
#'
#' require(lattice)
#'
#' data(bib3asin)
#' str(bib3asin)
#'
#' xyplot(z~treat|block, data=bib3asin,
#' ylab="Arc sin of heathy plants fraction",
#' xlab="Treatment")
#'
#' ## Why not consider a beta distribution for p?
#' bib3asin$p <- sin(bib3asin$z*pi/180)^2
#'
#' xyplot(p~treat|block, data=bib3asin,
#' ylab="Fraction of healthy plants",
#' xlab="Treatment")
#'
#' g <- nlevels(bib3asin$treat)
#' a <- seq(0, by=(2*pi)/(g), length.out=g)
#' y <- sin(a)
#' x <- cos(a)
#' plot(y~x, asp=1, xlim=c(-1,1), ylim=c(-1,1))
#'
#' for (b in levels(bib3asin$block)){
#' cbn <- combn(x=as.integer(bib3asin$treat[bib3asin$block==b]),
#' m=2)
#' segments(
#' x0=x[cbn[1,]], y0=y[cbn[1,]],
#' x1=x[cbn[2,]], y1=y[cbn[2,]], col=b)
#' }
#'
NULL
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment