Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
ce219
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Harbor Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Walmes Marques Zeviani
ce219
Commits
a656187d
Commit
a656187d
authored
9 years ago
by
Walmes Marques Zeviani
Browse files
Options
Downloads
Patches
Plain Diff
Adiciona script de graf de controle para S e bar_X.
parent
12a6050f
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
scripts/03_S_distr.R
+239
-0
239 additions, 0 deletions
scripts/03_S_distr.R
with
239 additions
and
0 deletions
scripts/03_S_distr.R
0 → 100644
+
239
−
0
View file @
a656187d
#=======================================================================
# Gráfico de controle para bar_X e S.
#-----------------------------------------------------------------------
# Definições da sessão.
# Instalar o pacote IQCC.
# install.package("IQCC")
suppressMessages
(
library
(
IQCC
))
library
(
latticeExtra
)
# Trellis graphical style.
mycol
<-
c
(
"#E41A1C"
,
"#377EB8"
,
"#4DAF4A"
,
"#984EA3"
,
"#FF7F00"
,
"#FFFF33"
)
ps
<-
list
(
box.rectangle
=
list
(
col
=
1
,
fill
=
c
(
"gray70"
)),
box.umbrella
=
list
(
col
=
1
,
lty
=
1
),
dot.symbol
=
list
(
col
=
1
,
pch
=
19
),
dot.line
=
list
(
col
=
"gray50"
,
lty
=
3
),
plot.symbol
=
list
(
col
=
1
,
cex
=
0.8
),
plot.line
=
list
(
col
=
1
),
plot.polygon
=
list
(
col
=
"gray95"
),
superpose.line
=
list
(
col
=
mycol
,
lty
=
1
),
superpose.symbol
=
list
(
col
=
mycol
,
pch
=
1
),
superpose.polygon
=
list
(
col
=
mycol
),
strip.background
=
list
(
col
=
c
(
"gray80"
,
"gray50"
)))
trellis.par.set
(
ps
)
library
(
reshape
)
#-----------------------------------------------------------------------
# Distribuição amostral de R e S. Qual é o melhor estimador?
# Diferentes tamanhos de amostra.
n
<-
c
(
3
,
5
,
7
,
10
,
15
,
25
)
# Para cada tamanho de amostra, são geradas 500 amostras e calculados R
# e S.
L
<-
lapply
(
n
,
FUN
=
function
(
n
)
{
res
<-
replicate
(
500
,
{
c4
<-
c4
(
n
)
d2
<-
d2
(
n
)
x
<-
rnorm
(
n
)
r
<-
diff
(
range
(
x
))
s
<-
sd
(
x
)
c
(
r
=
r
/
d2
,
s
=
s
/
c4
)
})
res
<-
cbind
(
n
=
n
,
as.data.frame
(
t
(
res
)))
return
(
res
)
})
str
(
L
)
L
<-
do.call
(
rbind
,
L
)
library
(
reshape
)
M
<-
melt
(
data
=
L
,
id.vars
=
"n"
,
variable_name
=
"estim"
)
str
(
M
)
# Qual é o estimador mais preciso ou eficiente?
ecdfplot
(
~
value
|
factor
(
n
),
groups
=
estim
,
data
=
M
,
scales
=
"free"
,
auto.key
=
TRUE
,
as.table
=
TRUE
)
str
(
M
)
# names(trellis.par.get())
# trellis.par.get()$superpose.line$col
with
(
M
,
tapply
(
value
,
list
(
estim
,
n
),
mean
))
with
(
M
,
tapply
(
value
,
list
(
estim
,
n
),
sd
))
aggregate
(
M
$
value
[
subscripts
],
M
$
estim
[
subscripts
],
FUN
=
function
(
x
)
c
(
mean
(
x
),
sd
(
x
)))
a
<-
aggregate
(
cbind
(
y
=
M
$
value
),
by
=
list
(
M
$
estim
),
FUN
=
function
(
x
)
c
(
mean
(
x
),
sd
(
x
)))
a
c
(
t
(
apply
(
a
[,
-1
],
1
,
FUN
=
function
(
x
)
{
x
[
1
]
+
c
(
-1
,
0
,
1
)
*
x
[
2
]})))
xtabs
(
~
estim
+
n
,
M
)
densityplot
(
~
value
|
factor
(
n
),
groups
=
estim
,
data
=
M
,
# scales = "free",
auto.key
=
TRUE
,
as.table
=
TRUE
,
plot.points
=
FALSE
,
ref
=
TRUE
,
panel
=
function
(
x
,
subscripts
,
...
){
panel.densityplot
(
x
,
subscripts
=
subscripts
,
...
)
a
<-
aggregate
(
cbind
(
M
$
value
[
subscripts
]),
list
(
estim
=
M
$
estim
[
subscripts
]),
FUN
=
function
(
x
)
c
(
mean
(
x
),
sd
(
x
)))
m
<-
c
(
t
(
apply
(
a
[,
-1
],
1
,
FUN
=
function
(
x
)
{
x
[
1
]
+
c
(
-1
,
0
,
1
)
*
x
[
2
]
})))
k
<-
trellis.par.get
(
"superpose.line"
)
$
col
[
1
:
nlevels
(
M
$
estim
)]
panel.abline
(
v
=
m
,
col
=
k
,
lty
=
2
)
# panel.grid(v = 2)
})
bwplot
(
value
~
estim
|
factor
(
n
),
data
=
M
,
pch
=
"|"
,
as.table
=
TRUE
,
layout
=
c
(
NA
,
1
),
panel
=
function
(
x
,
y
,
subscripts
,
...
)
{
panel.bwplot
(
x
=
x
,
y
=
y
,
subscripts
=
subscripts
,
...
)
m
<-
tapply
(
y
,
x
,
mean
)
panel.points
(
x
=
1
:
nlevels
(
x
),
y
=
m
,
pch
=
19
)
})
+
layer
(
panel.abline
(
h
=
1
,
lty
=
2
))
#-----------------------------------------------------------------------
# Gráfico de controle para n fixo.
# x <- read.table("clipboard")
# dput(x[, 1])
browseURL
(
paste0
(
"http://bcs.wiley.com/he-bcs/Books?action="
,
"chapter&bcsId=7327&itemId=1118146816&chapterId=80371"
))
# arquivo: ch06.xlxs, sheet: Exercise Data, coluna: Ex6-15ID (AB).
x
<-
c
(
74.03
,
74.002
,
74.019
,
73.992
,
74.008
,
73.995
,
73.992
,
74.001
,
74.011
,
74.004
,
73.988
,
74.024
,
74.021
,
74.005
,
74.002
,
74.002
,
73.996
,
73.993
,
74.015
,
74.009
,
73.992
,
74.007
,
74.015
,
73.989
,
74.014
,
74.009
,
73.994
,
73.997
,
73.985
,
73.993
,
73.995
,
74.006
,
73.994
,
74
,
74.005
,
73.985
,
74.003
,
73.993
,
74.015
,
73.988
,
74.008
,
73.995
,
74.009
,
74.005
,
74.004
,
73.998
,
74
,
73.99
,
74.007
,
73.995
,
73.994
,
73.998
,
73.994
,
73.995
,
73.99
,
74.004
,
74
,
74.007
,
74
,
73.996
,
73.983
,
74.002
,
73.998
,
73.997
,
74.012
,
74.006
,
73.967
,
73.994
,
74
,
73.984
,
74.012
,
74.014
,
73.998
,
73.999
,
74.007
,
74
,
73.984
,
74.005
,
73.998
,
73.996
,
73.994
,
74.012
,
73.986
,
74.005
,
74.007
,
74.006
,
74.01
,
74.018
,
74.003
,
74
,
73.984
,
74.002
,
74.003
,
74.005
,
73.997
,
74
,
74.01
,
74.013
,
74.02
,
74.003
,
73.982
,
74.001
,
74.015
,
74.005
,
73.996
,
74.004
,
73.999
,
73.99
,
74.006
,
74.009
,
74.01
,
73.989
,
73.99
,
74.009
,
74.014
,
74.015
,
74.008
,
73.993
,
74
,
74.01
,
73.982
,
73.984
,
73.995
,
74.017
,
74.013
)
length
(
x
)
n
<-
rep
(
1
:
25
,
each
=
5
)
library
(
qcc
)
da
<-
t
(
unstack
(
x
=
data.frame
(
i
=
n
,
x
=
x
),
form
=
x
~
i
))
obj
<-
qcc
(
data
=
da
,
type
=
"xbar"
)
obj
<-
qcc
(
data
=
da
,
type
=
"S"
)
#-----------------------------------------------------------------------
# Gráfico de controle para n variável.
# n <- scan()
# dput(n)
n
<-
c
(
5
,
3
,
5
,
5
,
5
,
4
,
4
,
5
,
4
,
5
,
5
,
5
,
3
,
5
,
3
,
5
,
4
,
5
,
5
,
3
,
5
,
5
,
5
,
5
,
5
)
# Cada amostra separada.
L
<-
do.call
(
rbind
,
by
(
data
=
da
,
INDICES
=
da
$
i
,
FUN
=
function
(
d
)
{
i
<-
d
$
i
[
1
]
d
[
1
:
n
[
i
],
]
}))
str
(
L
)
# As estimativas de média e desvio-padrão por amostra.
A
<-
aggregate
(
x
~
i
,
data
=
L
,
FUN
=
function
(
x
)
{
c
(
m
=
mean
(
x
),
s
=
sd
(
x
))
})
str
(
A
)
# Média das médias: bar_bar_X.
bbx
<-
sum
(
A
$
x
[,
"m"
]
*
n
)
/
sum
(
n
)
# Médias dos desvios-padrões: bar_S.
bs
<-
sqrt
(
sum
((
n
-
1
)
*
A
$
x
[,
"s"
]
^
2
)
/
c
(
sum
(
n
-
1
)))
# As constantes que dependem do n.
A3
<-
3
/
(
c4
(
n
)
*
sqrt
(
n
))
B3
<-
1
-
3
*
sqrt
(
1
-
c4
(
n
)
^
2
)
/
c4
(
n
)
B4
<-
1
+
3
*
sqrt
(
1
-
c4
(
n
)
^
2
)
/
c4
(
n
)
# Os limites para as duas medidas.
LC
<-
data.frame
(
i
=
1
:
length
(
n
),
LCm
=
bbx
,
LICm
=
bbx
-
A3
*
bs
,
LSCm
=
bbx
+
A3
*
bs
,
LCs
=
bs
,
LICs
=
pmax
(
0
,
B3
*
bs
),
LSCs
=
B4
*
bs
)
# bar_X chart.
matplot
(
x
=
LC
$
i
-
0.5
,
y
=
LC
[,
c
(
"LCm"
,
"LICm"
,
"LSCm"
)],
type
=
"n"
,
xlab
=
"Número da amostra"
,
ylab
=
expression
(
bar
(
x
)))
lines
(
LC
$
i
,
LC
$
LCm
)
with
(
LC
,
segments
(
x0
=
i
-
0.5
,
x1
=
i
+
0.5
,
y0
=
LICm
,
y1
=
LICm
))
with
(
LC
,
segments
(
x0
=
i
-
0.5
,
x1
=
i
+
0.5
,
y0
=
LSCm
,
y1
=
LSCm
))
points
(
x
=
LC
$
i
,
y
=
A
$
x
[,
"m"
],
type
=
"o"
)
# S chart.
matplot
(
x
=
LC
$
i
-
0.5
,
y
=
LC
[,
c
(
"LCs"
,
"LICs"
,
"LSCs"
)],
type
=
"n"
,
xlab
=
"Número da amostra"
,
ylab
=
expression
(
s
))
lines
(
LC
$
i
,
LC
$
LCs
)
with
(
LC
,
segments
(
x0
=
i
-
0.5
,
x1
=
i
+
0.5
,
y0
=
LICs
,
y1
=
LICs
))
with
(
LC
,
segments
(
x0
=
i
-
0.5
,
x1
=
i
+
0.5
,
y0
=
LSCs
,
y1
=
LSCs
))
points
(
x
=
LC
$
i
,
y
=
A
$
x
[,
"s"
],
type
=
"o"
)
# DANGER: tem alguma coisa nesse código passo a passo, algum fator de
# escala, por exemplo, que faz com que esses resultados sejam
# ligeiramente diferentes do pacote qqc.
#-----------------------------------------------------------------------
# help(qcc, h = "html")
# qcc()
# help.search("rbind.fill")
sam
<-
by
(
L
,
L
$
i
,
FUN
=
function
(
d
)
{
as.data.frame
(
matrix
(
d
$
x
,
nrow
=
1
))
})
db
<-
do.call
(
plyr
::
rbind.fill
,
sam
)
qcc
(
data
=
db
,
type
=
"xbar"
)
qcc
(
data
=
db
,
type
=
"S"
)
#-----------------------------------------------------------------------
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment