Skip to content
Snippets Groups Projects
Commit d9014aca authored by Walmes Marques Zeviani's avatar Walmes Marques Zeviani
Browse files

Adiciona calculo de tamanho de amostra e cco.

parent 35a6ddb7
No related branches found
No related tags found
No related merge requests found
......@@ -29,8 +29,8 @@ ylim <- extendrange(c(p, unlist(L)), f = 0.1)
plot(p ~ i, type = "o", ylim = ylim)
with(L, abline(h = c(LC, LIC, LSC), lty = c(1, 2, 2)))
# r <- c(15, 23)
r <- identify(x = i, y = p, n = 2)
# r <- identify(x = i, y = p, n = 2)
r <- c(15, 23)
L <- list(LC = mean(p[-r]))
L <- within(L, {
......@@ -139,3 +139,72 @@ curve(1 - exp(-lambda),
abline(h = gamma, v = n * p, col = 2)
#-----------------------------------------------------------------------
# Curva característica de Operação.
# Limites de controle do processo.
M
n <- 50
p
# Pr(D < n * LSC) - Pr(D <= n * LIC)
lim <- pmax(floor(n * c(M$LSC, M$LIC)), 0)
lim
pgrid <- seq(0.001, 0.999, by = 0.001)
length(pgrid)
beta <- pbinom(lim[1], size = n, prob = pgrid) -
pbinom(lim[2], size = n, prob = pgrid)
plot(beta ~ pgrid, type = "l",
ylab = expression(beta), xlab = "p")
abline(h = 1 - 2 * pnorm(-3), lty = 2, col = 2)
abline(v = M, lty = 2, col = 2)
# Comprimento médio de sequência.
# Prob. de mostrar fora de controle quando está em controle.
cms0 <- 1/(2 * pnorm(-3))
cms0
# Se o processo agora tem p = 35.
bt <- pbinom(lim[1], size = n, prob = 0.15) -
pbinom(lim[2], size = n, prob = 0.15)
cm1 <- 1/(1 - bt)
cm1
#-----------------------------------------------------------------------
# Maneiras de calcular os limites de controle.
M <- L
M$LC * n
# Aproximação Normal.
M
# Simulação.
s <- replicate(10000, {
rbinom(n = 1, size = n, prob = M$LC)/n
})
# Reamostragem.
r <- replicate(10000, {
sample(x0, replace = TRUE)/n
})
quantile(r, probs = pnorm(c(-3, 3)))
quantile(s, probs = pnorm(c(-3, 3)))
# O tuque está no weights.
m <- length(x0)
n <- 50
m0 <- glm(cbind(x0, 50 - x0) ~ 1,
family = "binomial",
weights = rep(1/m, m))
plot(profile(m0))
abline(h = c(-3, 3), lty = 2, col = 2)
# Intervalo de perfil de verossimilhança.
binomial()$linkinv(confint(m0, level = 1 - pnorm(-3)))
#-----------------------------------------------------------------------
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment