Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
mpaer
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Harbor Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Walmes Marques Zeviani
mpaer
Commits
dd0df83f
Project 'c3sl/c3docs/suporte' was moved to 'root/suporte'. Please update any links and bookmarks that may still have the old path.
Commit
dd0df83f
authored
3 years ago
by
Walmes Marques Zeviani
Browse files
Options
Downloads
Patches
Plain Diff
Adds content about non parametric analysis.
parent
c20460de
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
analise-nao-parametrica.Rmd
+103
-0
103 additions, 0 deletions
analise-nao-parametrica.Rmd
with
103 additions
and
0 deletions
analise-nao-parametrica.Rmd
+
103
−
0
View file @
dd0df83f
...
@@ -76,3 +76,106 @@ aggregate(breaks ~ trt,
...
@@ -76,3 +76,106 @@ aggregate(breaks ~ trt,
FUN = mean)
FUN = mean)
```
```
```{r}
# Solução baseada no arquivo `compact_letter_display.r` no tópico abaixo
# https://www.researchgate.net/post/How_to_denote_the_letters_in_mean_on_the_basis_of_p_value_in_R-console
library(dunn.test)
ls("package:dunn.test")
# Documentação da função.
help(dunn.test, help_type = "html")
# Um conjunto de dados para usar.
str(chickwts)
# Ajusta o modelo.
m0 <- lm(weight ~ feed, data = chickwts)
anova(m0)
# Aplica o teste de Dunn.
dunn <- with(chickwts,
dunn.test(weight, feed, method = "sidak"))
str(dunn)
# NOTE: o teste dá a matriz de p-valores para os contrastes par a par.
# Como obter o resumo compacto por letras?
# Criar a matriz com os p-valores.
k <- nlevels(chickwts$feed)
pval_matrix <- matrix(0, nrow = k, ncol = k)
pval_matrix[upper.tri(pval_matrix)] <- dunn$P.adjusted
pval_matrix <- t(pval_matrix)
pval_matrix[upper.tri(pval_matrix)] <- dunn$P.adjusted
diag(pval_matrix) <- NA
colnames(pval_matrix) <- levels(chickwts$feed)
rownames(pval_matrix) <- levels(chickwts$feed)
# Onde estão as diferenças?
round(pval_matrix, digits = 5)
(pval_matrix < 0.05) * 1
library(multcompView)
# Determina das letras.
cld <- multcompLetters(pval_matrix,
compare = "<",
threshold = 0.05,
Letters = letters,
reversed = FALSE)
cld
# Organiza em uma tabela.
cld <- data.frame(feed = names(cld$Letters),
cld = unname(cld$Letters))
cld
# Junta com a médias.
tb_means <- aggregate(weight ~ feed, data = chickwts, FUN = mean)
tb_means <- merge(tb_means, cld, by = "feed")
tb_means <- tb_means[order(tb_means$weight), ]
# Letras diferentes, rejeita hipótese nula de que o contraste é 0. Dá
# para ordenar as letras.
source("https://raw.githubusercontent.com/walmes/wzRfun/master/R/pairwise.R")
# Ordena as letras para facilitar.
tb_means$cld_fix <- with(tb_means,
ordered_cld(let = cld, means = weight))
tb_means
# DONE!
# Tem como fazer de outro jeito sem gerar a matriz de p-valores.
dunn_pairs <- dunn$P.adjusted
names(dunn_pairs) <- dunn$comparisons
# Ajusta o modelo.
m0 <- lm(weight ~ feed, data = chickwts)
anova(m0)
# Teste de Tukey.
tk <- TukeyHSD(aov(m0))
tk
tk_pairs <- tk[[1]][, "p adj"]
library(multcompView)
multcompLetters(tk_pairs)
str(dunn)
dunn_pairs <- dunn$P.adjusted
names(dunn_pairs) <- dunn$comparisons
# Tem que inverter os nomes no contraste: "A - B" --> "B-A".
dunn_pairs <- dunn$P.adjusted
names(dunn_pairs) <- gsub(x = dunn$comparisons,
pattern = "^(.*) - (.*)$",
replacement = "\\2-\\1")
multcompLetters(dunn_pairs)
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment