Skip to content
Snippets Groups Projects
Commit 8cf72add authored by Walmes Marques Zeviani's avatar Walmes Marques Zeviani
Browse files

Exclude documentation .Rd of removed functions.

parent 582a2408
No related branches found
No related tags found
No related merge requests found
......@@ -12,22 +12,14 @@ S3method(vcov,mcglm)
export(fit_mcglm)
export(mc_bias_corrected_std)
export(mc_dexp_gold)
export(mc_dfbetaOij)
export(mc_fast_forward)
export(mc_influence)
export(mc_initial_values)
export(mc_link_function)
export(mc_matrix_linear_predictor)
export(mc_qll)
export(mc_quasi_score)
export(mc_robust_std)
export(mc_rw1)
export(mc_rw2)
export(mc_sic)
export(mc_sic_covariance)
export(mc_unstructured)
export(mc_variance_function)
export(mcglm)
export(qic.mcglm)
import(Matrix)
import(assertthat)
% Generated by roxygen2 (4.1.1): do not edit by hand
% Please edit documentation in R/mc_influence.R
\name{mc_dfbetaOij}
\alias{mc_dfbetaOij}
\title{Influence measures for McGLMs}
\usage{
mc_dfbetaOij(Di, Ci, inv_Ci, ri, inv_M)
}
\arguments{
\item{Di}{D matrix for the cluster i.}
\item{Ci}{C matrix for the cluster i.}
\item{inv_Ci}{Inverse of C matrix for the cluster i.}
\item{ri}{Residual vector for the cluster i.}
\item{inv_M}{Inverse of variance/covariance of regression parameters.}
}
\value{
Matrix with the DFBETA for observation in the cluster i.
}
\description{
Compute influence measures for multivariate covariance
generalized linear models. Leverage, DFBETA and Cook's distance
for observations. Auxiliar function for \code{mc_influence}.
}
\author{
Wagner Hugo Bonat, \email{wbonat@ufpr.br}
}
% Generated by roxygen2 (4.1.1): do not edit by hand
% Please edit documentation in R/mc_fast_forward.R
\name{mc_fast_forward}
\alias{mc_fast_forward}
\title{Fast forward selection for multivariate covariance generalized linear
models.}
\usage{
mc_fast_forward(object, scope, interaction = 1, penalty = 2, n_max = 10)
}
\arguments{
\item{object}{an object representing a model of \code{mcglm} class.}
\item{scope}{a vector specyfing the covariate to be tested.}
\item{interaction}{Maximum number of covariates interacting.}
\item{penalty}{penalty term (default = 2).}
\item{n_max}{Maximum number of models to be fitted.}
}
\value{
The selected model.
}
\description{
Perform fast forward model selection using the score
information criterion. This function works only for univariate months.
}
% Generated by roxygen2 (4.1.1): do not edit by hand
% Please edit documentation in R/mc_influence.R
\name{mc_influence}
\alias{mc_influence}
\title{Influence measures for McGLMs}
\usage{
mc_influence(object, id)
}
\arguments{
\item{object}{An object of \code{mcglm} class.}
\item{id}{a vector which identifies the clusters.
The length and order of id should match with the number of
observations.}
}
\value{
A list with influence measures for cluster and observations.
}
\description{
Compute influence measures for multivariate covariance
generalized linear models. Leverage, DFBETA and Cook's distance
for unit sample and observations.
}
\author{
Wagner Hugo Bonat, \email{wbonat@ufpr.br}
}
% Generated by roxygen2 (4.1.1): do not edit by hand
% Please edit documentation in R/mc_qll.R
\name{mc_qll}
\alias{mc_qll}
\title{Compute quasi-likelihood function.}
\usage{
mc_qll(y, mu, variance, power)
}
\arguments{
\item{y}{A vector of observed values.}
\item{mu}{A vector of fitted values.}
\item{variance}{Variance function (constant, tweedie, poisson_tweedie, binomial).}
\item{power}{Power parameter value.}
}
\value{
The quasi-likelihood values.
}
\description{
Given a variance function mc_qll function computes the quasi-likelihood values.
}
% Generated by roxygen2 (4.1.1): do not edit by hand
% Please edit documentation in R/mc_rw1.R
\name{mc_rw1}
\alias{mc_rw1}
\title{Random walk first order model}
\usage{
mc_rw1(n_time, intrinsic = TRUE)
}
\arguments{
\item{n_time}{Number observations time.}
\item{intrinsic}{Logical indicating if the models is intrinsic (rho = 1) or not.}
}
\value{
A matrix. Note that the function assumes that the data are in the correct order.
}
\description{
Builds a random walk first order model matrix.
}
% Generated by roxygen2 (4.1.1): do not edit by hand
% Please edit documentation in R/mc_rw2.R
\name{mc_rw2}
\alias{mc_rw2}
\title{Random walk second order model}
\usage{
mc_rw2(n_time, intrinsic = TRUE)
}
\arguments{
\item{n_time}{Number observations time.}
\item{intrinsic}{Logical indicating if the models is intrinsic (rho = 1) or not.}
}
\value{
A matrix. Note that the function assumes that the data are in the correct order.
}
\description{
Builds a random walk second order model matrix.
}
% Generated by roxygen2 (4.1.1): do not edit by hand
% Please edit documentation in R/mc_unstructured.R
\name{mc_unstructured}
\alias{mc_unstructured}
\title{Unstructured model}
\usage{
mc_unstructured(n_time)
}
\arguments{
\item{n_time}{Number of observations per unit sample.}
}
\value{
A matrix. Note that the function assumes that the data are in the correct order.
}
\description{
Builds a unstructured model matrix.
}
% Generated by roxygen2 (4.1.1): do not edit by hand
% Please edit documentation in R/mc_qic.R
\name{qic.mcglm}
\alias{qic.mcglm}
\title{Compute Quasi Information Criterion (QIC) for McGLMs.}
\usage{
qic.mcglm(object, object.iid)
}
\arguments{
\item{object}{An object of \code{mcglm} class.}
\item{object.iid}{An object of \code{mcglm} class contained the model
fitted using independent covariance structure.}
}
\value{
The QIC value.
}
\description{
\code{qic.mcglm} is a function which computes the QIC
for McGLMs.
}
\author{
Wagner Hugo Bonat, \email{wbonat@ufpr.br}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment